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Reducing the frequency of the Higgs mode in a helical superconductor coupled to an LC circuit
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We show that the amplitude or Higgs mode of a superconductor with strong spin-orbit coupling and an
exchange field, couples linearly to the electromagnetic field. Furthermore, by coupling such a superconductor
to an LC resonator, we demonstrate that the Higgs resonance becomes a regular mode at frequencies smaller
than the quasiparticle energy threshold 2�0. We finally propose and discuss a possible experiment based on
microwave spectroscopy for an unequivocal detection of the Higgs mode. Our approach may allow visualizing
Higgs modes also in more complicated multiband superconductors with a coupling between the charge and other
electronic degrees of freedom.
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Introduction. In superconductors with spontaneously bro-
ken U (1) symmetry, the Higgs mode is an excitation
associated with the oscillation of the order parameter am-
plitude around its saddle point value [1–5]; see Fig. 1.
Despite the progress in studying the Higgs mode in systems
where charge-density-wave order and superconductivity coex-
ist [5–9], or via its nonlinear coupling to the electromagnetic
(EM) field [10–21], detecting unequivocally the Higgs mode,
in general, remains a challenging task.

One of the obstacles is that the Higgs mode in conventional
superconductors is a scalar mode, and hence it couples non-
linearly to the EM field. A linear coupling can be achieved
in the presence of a supercurrent [22]. A second reason for
its challenging detection is that with a mass of 2�0, the
Higgs mode resides precisely at the bottom of the quasipar-
ticle continuum, and is thus overdamped by the quasiparticle
excitations. Unlike a regular collective mode, the Higgs mode
corresponds to a square root singularity of the pair suscepti-
bility. As a result, it decays in time in a power law fashion
δ�(t ) ∼ δ�(0) cos(2�0t )/

√
2�0t [23], where δ� is a small

perturbation of the pairing gap around its average value, �0.
Even though it was suggested that the mass of the Higgs
mode can be below the energy gap in strongly disordered
superconductors [24], it was shown later that in such systems,
the Higgs mode never shows up as a real mode [25].

In this paper, we propose a way of overcoming these
difficulties. We first demonstrate that the amplitude mode
in helical superconductors [26–28] couples linearly to the
EM field, even in the absence of a supercurrent. Helical su-
perconductivity occurs in systems where both inversion and
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time-reversal symmetries are broken, for instance due to mag-
netic fields and spin-orbit coupling (SOC). Second, we exploit
such a linear coupling and demonstrate the reduction of the
Higgs frequency by coupling the superconductor to an LC
resonator (Fig. 1). When the resonant frequency of the LC
mode is slightly larger than the Higgs frequency, and the
direct coupling between the two modes is finite, they repel
each other, and the Higgs mode is pushed down to frequencies
smaller than 2�0 making it a well-defined mode.

Summary of the results from a phenomenological model.
In a conventional superconductor the Higgs-light coupling is
characterized by the susceptibility

χA� = ∂2S

∂A∂�
= ∂J

∂�
, (1)

where S is the action, A is the vector potential, and J = ∂S/∂A
is the supercurrent. Near the critical temperature, J ∝ �2, and
the susceptibility is χA� ∝ J/�. In other words, it is finite
only in the presence of a supercurrent [22].

The situation is different in superconductors with broken
time-reversal and inversion symmetries. These may corre-
spond to superconductors with Rashba SOC and an in-plane
exchange field, intensively studied in the context of mag-
netoelectric phenomena in superconductors, such as helical
superconductivity [26–28], Josephson φ0 junctions [29,30],
and most recently supercurrent diode effects [31–36]. In this
case, the action up to the fourth order in the order parameter
is given by [35,36]

S = S0 +
∫

dtdr(a1Q̃ + b1Q̃
2
)|�(t )|2

+ (a2Q̃ + b2Q̃
2
)|�(t )|4, (2)

where Q̃ = Q + A(t ) is the gauge-invariant condensate mo-
mentum and Q is the phase gradient of the order parameter.
S0 is the zeroth-order term in Q̃, and �(t ) the time-dependent
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FIG. 1. Schematic diagram of the circuit that couples a helical
superconductor and an LC resonator. Microwave is sent to the system
through a transmission line, and the resonance modes are detected
by measuring the microwave reflection rate. The Lifshitz invariant
couples the supercurrent and the Higgs mode.

order parameter �(t ) = �0 + δ�(t ). The constants b1,2 are
the usual Ginzburg-Landau (GL) coefficients appearing in
even-power terms of Q̃. Linear-in-Q̃ terms, a1 and a2, are only
allowed in superconductors with broken time-reversal and
inversion symmetries, and are related to the Lifshitz invariant
[37,38,39].

The action, Eq. (2), describes a helical superconductor
with a spatially varying order parameter in the ground state,
�(r) = �0eiQ0r [26–28]. The amplitude of modulation Q0 can
be determined from the condition that the supercurrent J in
the ground state must vanish: ∂S/∂Q|Q=Q0

= 0. Thus, Q0 =
−(a1 + a2�

2
0)/[2(b1 + b2�

2
0)]. Next, we calculate χA� by

taking Q = Q0 + δQ, where δQ is a phase gradient generated
by passing a supercurrent through the system. Substituting
Eq. (2) into Eq. (1) we obtain the Higgs-light coupling

χA� =
∫

dr
(

4�0δQ
(
b1 + 2b2�

2
0

) + 2(a2b1 − a1b2)�3
0

b1 + b2�
2
0

)
.

(3)

The first term describes the linear Higgs-light coupling due
to a finite supercurrent discussed above and established in
Ref. [22]. The second term is an additional contribution that is
only finite in helical superconductors for which a1 and a2 are
nonzero. Equation (3) suggests that helical superconductors
can potentially exhibit a linear Higgs-light coupling, even
without the presence of an applied supercurrent. The rest of
the paper is dedicated to demonstrating, within a microscopic
model, the conditions under which this statement holds true.
Additionally, we show how the Higgs mode would be affected
if it were linearly coupled to an LC resonator. In writing
Eq. (3) we use the stationary version of the GL theory be-
cause it is simple and gives us qualitatively an idea about the
origin of Higgs-light coupling. But, we note that this theory is
limited and fails to capture the vanishing Higgs-light coupling
in the clean case, as we show using the microscopic theory.

Let us now investigate how the structure of the Higgs mode
would change, if it were to be coupled linearly to an LC

resonator (see setup in Fig. 1). The Higgs mode is described
by the fluctuations of the order parameter δ�(t ), whereas the
LC mode is described by the time-varying voltage V (t ). In
frequency domain, the effective equations of motion of this
system can be written as(√

�H − � + i�H γ1

γ2 �0 − � + i�0

)(
δ�(�)
V (�)

)
= 0. (4)

Here �H and �0 are the resonant frequencies of the Higgs and
the LC mode, respectively, and �H and �0 are the damping pa-
rameters. The coupling coefficients γ1 and γ2 are proportional
to χA�. We assume a vanishing injected DC supercurrent,
which is why only the second term in Eq. (3) contributes to
the coupling.

In the absence of any coupling, γ1 = γ2 = 0, the Higgs
mode is not a well-defined mode with a Lorentzian line shape,
as reflected in the square root function in Eq. (4). On the
other hand, the LC mode is a regular mode. For a finite but
small coupling such that �H � Re(η2) � �0 − �H , where
η = γ1γ2/(�0 − �H + i�0), and a low dissipation of the LC
mode, �0 < �0 − �H , we can approximate the eigenvalue
equation near the Higgs frequency as√

�H − � + i�H − η = 0. (5)

If Re(η) > 0, the eigenvalue equation can be linearized
around the new resonance frequency and becomes

[�H − Re(η2) − �] + i[�H − Im(η2)] = 0. (6)

The Higgs mode is shifted away from the branch cut at �H to
a lower frequency �H − Re(η2), and becomes a real mode
with a potentially small linewidth �H − Im(η2) [40]. Thus
by coupling the two modes, the resonant response from the
Higgs mode can be dramatically enhanced and its frequency
reduced. This is our second main result. In what follows we
derive our findings from a microscopic model.

Microscopic theory. One realization of helical supercon-
ductivity is a quasi-two-dimensional superconductor with
strong Rashba SOC and an in-plane magnetic field. To cal-
culate the susceptibility χA�, we start with the generalized
Eilenberger equation describing this system in the basis of the
two helical bands labeled by the index λ = ±1 [41,42]:

in · (QvF /2 + λhex × ẑ)[τ3, ĝλn] − {∂tτ3, ĝλn}
= [�0τ1 + ��e−i�tτ1 + 
̂λn, ĝλn]. (7)

Here, ĝλn is the quasiclassical Green function of the band
λ with the momentum direction at the Fermi level given by
n = p/pF . It is a matrix in the Nambu space, spanned by the
Pauli matrices τ1,2,3 and the identity matrix 1. The normal-
ization condition ĝ2

λn = 1 holds. Q is the phase gradient of
the order parameter, hex is the exchange field, and ẑ is the
unit vector perpendicular to the plane of the superconductor.
vF is the Fermi velocity, �0 is the saddle point value of the
order parameter, and �� is the Fourier amplitude of the ex-
ternal pairing potential with frequency �. 
̂λn is the disorder
self-energy


̂λn =
∑
λ′

1

4τλ′
(〈ĝλ′n′ 〉n′ + λλ′n · 〈n′ĝλ′n′ 〉n′ ). (8)
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Here τλ is the effective scattering time for the band λ,
1
τλ

= 1
τ

(1 + λ α
vF

), where τ is the impurity scattering time.
α is the velocity associated with Rashba SOC. Note that
Eq. (7) is valid when SOC is larger than all other energy
scales except the chemical potential μ, namely μ � αpF 	
�, hex, τ

−1, QvF , T , where T is the temperature. In the ab-
sence of disorder, the two bands are decoupled, but share the
same order parameter. Disorder couples the bands by intro-
ducing interband scattering.

Within linear response to the external field, the Green func-
tion can be written as ĝ = ĝ(0)eiω(t1−t2 ) + ĝ(�)eiω1t1−iω2t2 , with
ω1 = ω and ω2 = ω + �. Here ĝ(0) is the unperturbative static
Green function and ĝ(�) denotes the external field-induced
dynamical Green function, which is of the first order in ��.
Once we solve the Eilenberger equation, the supercurrent can
be determined from

J (0,�) =
∑

λ

NλvF Tr
[
τ3

〈
nĝ(0,�)

λn

〉
n

]
. (9)

Here, J (0) and J (�) correspond to DC and AC supercurrents,
respectively. Nλ = N0(1 + λ α

vF
) is the density of states of band

λ, with N0 denoting the average density of states. From the
condition J (0)(Q = Q0) = 0, we first determine the modula-
tion vector of the helical superconductivity Q0. Finally, we
calculate χA� from

χA� = J (�)/��. (10)

Our method using the Eilenberger equation is equivalent to
the diagrammatic approach taking into account all the ladder
impurity diagrams as explained in Ref. [13].

First, we consider χA� in two limiting cases, namely, the
pure ballistic and the diffusive limits. In the ballistic limit
τ−1 → 0, the system preserves a Galilean symmetry [43,44],
so that the current is time independent despite the presence
of an external pairing field, and hence χA� = 0. On the other
hand, in the diffusive limit τ−1 	 �, T , the two helical bands
are strongly mixed by disorder, and both bands are described
by the same Usadel equation derived in Ref. [41]. This leads
to χA� = 0 (see the Supplemental Material [42]).

For intermediate degree of disorder one needs to solve
the Eilenberger equation, Eq. (7). The weak exchange field
allows for an analytic solution presented in the Supplemental
Material [42,45]. We find a nonmonotonic behavior of χA�

while increasing the disorder strength [Fig. 2(a)]. Without
the disorder potential, χA� is zero, consistent with the above
symmetry analysis. With increasing disorder strength, χA�

rapidly reaches its maximum and then decays as a power law.
We also verified that χA� vanishes in the diffusive limit, when
1/τ�0 	 1. In this work, we focus on the case where the
Fermi energy is much greater than any other energy scale
EF 	 �0, 1/τ, T . This is a totally different parameter regime
from those considered in Refs. [46–49], where EF is compa-
rable with �0 and 1/τ .

The linear Higgs-light coupling leads to a modification
of the admittance of the superconductor. To find the total
admittance, we write the order parameter as � = �0 + δ�(t )
and expand the action up to the second order in δ� and the
external field A, S = SM + S f , where SM is the mean-field

(a) (b)

FIG. 2. (a) Real part (solid lines) and imaginary part (dashed
lines) of χA� at � = 2�0 as a function of the disorder strength for
different strengths of spin-orbit coupling. χA� behaves nonmono-
tonically as a function of the disorder strength. (b) The real parts
of admittance normalized by its value in the normal state with
(solid line) and without (dashed line) the Higgs contribution. The
peak localized at � = 2�0 is the signature of the Higgs mode. The
parameters used here are T = 0.1�0, hex/�0 = 0.5. In panel (b),
α/vF = 0.3. The Dynes parameter is � = 0.001�0.

term and S f is the fluctuation term given by

S f = 1

T

∑
n

[
δ�(−�n)
A(−�n)

]ᵀ[−χ−1
�� χ�A

χA� χAA

][
δ�(�n)
A(�n)

]
,

(11)

where �n is the bosonic Matsubara frequency �n = 2nπT
with n ∈ Z. χ�A is defined in Eq. (10), whereas χ�� and χ�A

are defined as χ�A = ∂F/∂A, and χ�� = ∂F/∂�� − 1/U ,
where F is the pair correlation F = ∑

λ NλTr[τ1〈ĝλn〉n] and U
is the BCS interaction. χ�A and χA� are related by χ�A(�) =
χA�(−�)∗ = χA�(�) [50]. Finally, the field susceptibility is
defined as χAA = ∂J/∂A.

The pair susceptibility χ�� has a square root singularity
at � = 2�0 indicating the existence of the Higgs mode. Inte-
grating out the δ� field, we obtain the total field susceptibility

χ̃AA = χAA + χA�χ��χ�A, (12)

which defines the total admittance Y = χ̃AA/i�. Here the
first term χAA represents the conventional AC response of the
superconductor, whereas the second term is the Higgs contri-
bution to the AC response. When χA� and χ�A are finite, the
admittance exhibits a peak at the Higgs frequency [Fig. 2(b)]
providing a way of detecting the Higgs mode using standard
experimental methods.

To couple the Higgs mode with an LC resonator we con-
sider the circuit shown in Fig. 1. A capacitor and an inductor
form an LC resonator. The effect of the conventional conduc-
tance of the superconductor is only to modify the inductance
and resistance of the LC loop as explained in the Supplemen-
tal Material [42]. The total inductance of the circuit, L−1

tot =
L−1 + L−1

S , includes the inductance L of the LC resonator and
the kinetic inductance of the superconductor LS = 1/Re[χAA].
The total resistance is R−1

tot = R−1 + R−1
S , where R represents

the damping of the LC circuit and RS is the resistance of the
superconductor given by RS = i�/Im[χAA]. We propose an
experiment in which microwaves are sent to the system, for
example through a transmission line, whereas the complex
reflection coefficient is measured. To explicitly calculate the
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FIG. 3. (a) The microwave absorption rate W and (b) the modi-
fied pair susceptibility χm

�� as functions of the inductance L and the
frequency �. Here we have assumed that the resistance is dominated
by the resistance of the superconductor R = RS . The parameters used

here are T = 0.1�0, 1
τ�0

= 0.4, hex
�0

= 0.5, α

vF
= 0.3, C = EF

2�2
0

e2
0

2π
,

Zt = 100 �0
EF

h
e2

0
, where EF is the Fermi energy of the superconductor.

Here we restore the electron charge e0 and the Planck constant h for
clarity. The Dynes parameter is � = 0.001�0.

modified Higgs spectrum, we combine the equation of current
conservation IC + IR + IL + IS = Iext, and the self-consistency
equation for the dynamical part of the order parameter [42]

M̂

(
δ�(�)

V (�)/id�

)
=

(
0

Iext/Cd

)
, (13)

with the response matrix given by

M̂ =
(

χ−1
�� −χA�

−χ�A�0Z0 �2 − �2
0 − i�κ

)
, (14)

where �0 = √
1/LtotC, Z0 = √

Ltot/C, κ = 1/RtotC, and d is
the size of the superconductor. The analytical expression of
χ�� was obtained in Ref. [5]. Its general form is complicated,
but for � � 2�0, χ−1

�� scales as
√

2�0 − �. The system can
thus be effectively described by Eq. (4). Moreover, when � <

�H = 2�0, χA� = χ�A become real [42]. The resonance fre-
quency is determined by det M̂ = 0. The total impedance of
the system is given by

Z =
[

i�C + 1

i�L
+ 1

R
+ χ̃AA

i�

]−1

, (15)

which determines the microwave reflection rate r = (Z −
Zt )/(Z + Zt ), where Zt is the impedance of the transmission
line and χ̃AA is defined in Eq. (12). The real part of Z has peaks
located at frequencies where det M̂ = 0 showing that the res-
onant modes can be detected by measuring the impedance or
the microwave reflection rate.

The microwave absorption rate W , defined as W = 1 −
|r|2, is shown in Fig. 3(a). W is hugely enhanced at the fre-
quencies of the resonance modes. An avoided crossing occurs
due to linear coupling when the LC frequency matches the
Higgs frequency. We find that the low-frequency mode is a
well-defined mode with a frequency below the quasiparticle
continuum, whereas the high-frequency mode is ill defined
and decays into quasiparticle excitations, especially when
� � 2�0. Figure 3(b) shows the modified pair susceptibility
χm

�� = M̂−1(1, 1), obtained by eliminating V from Eq. (13).

FIG. 4. The modified pair susceptibility χm
�� as a function of

frequency for different values of C normalized by the maximum
value without the LC resonator. The frequency of the LC resonator is
fixed �0 = 1√

LtotC
= 2.1�0. The parameters used here are the same

as those in Fig. 3.

The low-frequency mode has a significant Higgs component,
especially when LC < 1/(2�0)2 and the mode occurs below
the quasiparticle continuum.

Figure 4 shows how the spectral weight of the Higgs mode
(pair susceptibility) depends on the capacitance C of the LC
circuit, with fixed LC frequency �LC. One can see how the
pair susceptibility goes from a

√
2�0 − � behavior in the

absence of the LC mode, to a sharp resonance when coupled to
the LC mode. The Higgs frequency is reduced with decreasing
value of C.

The suggested experiment can be realized, for example, by
galvanically coupling a 2D superconductor with strong SOC
to a coplanar superconducting resonator [51]. The size of the
latter can be adjusted to be in resonance with the Higgs mode.
Ideally, to avoid extra damping, the Higgs frequency 2�HM

of the 2D superconductor needs to be smaller than the gap
of the superconductor forming the resonator. Strong SOC can
also be found at the LaAlO3/SrTiO3 interface. In this case
�HM ∼ 0.03 meV [52], which corresponds to a bare Higgs
mode frequency of around 10 GHz. This frequency is accessi-
ble with state-of-the-art microwave measurement setups. For
the needed Zeeman field, ∼0.3�HM, one can either apply an
in-plane field of 0.3 T or utilize the magnetic proximity effect
from an adjacent ferromagnetic insulator like EuS [53,54].
Recently, clean LaAlO3/SrTiO3 samples have been made with
mobility of 19 380 cm2/V s [55], corresponding to a scat-
tering time of 1/τ ≈ 0.05 meV comparable with �0, which
is in the parameter regime where the Higgs mode strongly
couples to electromagnetic fields according to Fig. 2. Other
candidate materials for the study of the effects discussed here
are two-dimensional superconducting materials grown with
state-of-the-art techniques in an inert atmosphere, in which
the mobility, and thus the mean free path, can be increased
by orders of magnitude [56]. Finally, noncentrosymmetric
superconductors [38], especially those at the clean limit [57],
could be potential candidates for studying the linear coupling
discussed here if it were feasible to produce them as thin
films.
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Conclusion. We have shown that the linear Higgs-light
coupling exists in a helical superconductor even without
a supercurrent. From a phenomenological Ginzburg-Landau
theory, we demonstrate that this linear Higgs-light coupling
relies on the terms in the action related to the Lifshitz in-
variant. We confirm this result by explicitly calculating the
susceptibility χA� of a helical superconductor within a mi-
croscopic theory. We find that χA� reaches its maximum at a
weak disorder but vanishes in both clean and diffusive limits.
We propose to reduce the mass of the Higgs mode by coupling
it with an LC resonator. We demonstrate that the Higgs mode
becomes an undamped regular collective mode when its fre-
quency is reduced below the quasiparticle excitation energy
2�0.

The linear Higgs-light coupling can show up in a system
with a Lifshitz invariant. It may therefore be relevant also
in the superconducting state of (twisted) multilayer graphene
systems where the role of spin is replaced by the valley degree
of freedom [58,59]. On the other hand, it would be interesting

to study this mechanism in multiband superconductors, where
it might allow for a direct visualization of the amplitude
modes.

Acknowledgments. We acknowledge discussions with
Miguel M. Ugeda. Y.L. and F.S.B. acknowledge financial
support from the Spanish AEI through Projects PID2020-
114252GB-I00 (SPIRIT), and TED2021-130292B-C42, the
Basque Government through Grant No. IT-1591-22 and the
IKUR strategy program. F.S.B. also acknowledges the A. v.
Humboldt Foundation. R.O. was supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion), TRR 288, 422213477 (Project No. A07). T.T.H. was
supported by the Research Council of Finland (Projects No.
317118 and 354735). The work of T.T.H., F.S.B., and S.I.
WAS partially funded by the European Union’s Horizon
research and innovation program under Grant Agreement
No. 800923 (SUPERTED project). F.S.B. thanks Prof. Björn
Trauzettel and his group for their kind hospitality during his
stay in Würzburg University.

[1] P. W. Higgs, Broken symmetries and the masses of gauge
bosons, Phys. Rev. Lett. 13, 508 (1964).

[2] I. Kulik, O. Entin-Wohlman, and R. Orbach, Pair susceptibil-
ity and mode propagation in superconductors: A microscopic
approach, J. Low Temp. Phys. 43, 591 (1981).

[3] A. Pashkin and A. Leitenstorfer, Particle physics in a supercon-
ductor, Science 345, 1121 (2014).

[4] P. B. Littlewood and C. M. Varma, Gauge-invariant theory of
the dynamical interaction of charge density waves and super-
conductivity, Phys. Rev. Lett. 47, 811 (1981).

[5] P. B. Littlewood and C. M. Varma, Amplitude collective modes
in superconductors and their coupling to charge-density waves,
Phys. Rev. B 26, 4883 (1982).

[6] M.-A. Méasson, Y. Gallais, M. Cazayous, B. Clair, P. Rodiere,
L. Cario, and A. Sacuto, Amplitude Higgs mode in the
2H -NbSe2 superconductor, Phys. Rev. B 89, 060503(R) (2014).

[7] R. Grasset, Y. Gallais, A. Sacuto, M. Cazayous, S. Mañas-
Valero, E. Coronado, and M.-A. Méasson, Pressure-induced
collapse of the charge density wave and Higgs mode visibility
in 2H -TaS2, Phys. Rev. Lett. 122, 127001 (2019).

[8] R. Grasset, T. Cea, Y. Gallais, M. Cazayous, A. Sacuto, L.
Cario, L. Benfatto, and M.-A. Méasson, Higgs-mode radiance
and charge-density-wave order in 2H -NbSe2, Phys. Rev. B 97,
094502 (2018).

[9] T. Cea and L. Benfatto, Nature and Raman signatures of
the Higgs amplitude mode in the coexisting superconduct-
ing and charge-density-wave state, Phys. Rev. B 90, 224515
(2014).

[10] R. Matsunaga, Y. I. Hamada, K. Makise, Y. Uzawa, H. Terai, Z.
Wang, and R. Shimano, Higgs amplitude mode in the BCS su-
perconductors Nb1−xTixN induced by terahertz pulse excitation,
Phys. Rev. Lett. 111, 057002 (2013).

[11] R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y.
Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, Light-
induced collective pseudospin precession resonating with Higgs
mode in a superconductor, Science 345, 1145 (2014).

[12] M. Beck, I. Rousseau, M. Klammer, P. Leiderer, M.
Mittendorff, S. Winnerl, M. Helm, G. N. Gol’tsman, and J.
Demsar, Transient increase of the energy gap of superconduct-
ing NbN thin films excited by resonant narrow-band terahertz
pulses, Phys. Rev. Lett. 110, 267003 (2013).

[13] M. Silaev, Nonlinear electromagnetic response and Higgs-mode
excitation in BCS superconductors with impurities, Phys. Rev.
B 99, 224511 (2019).

[14] M. A. Silaev, R. Ojajärvi, and T. T. Heikkilä, Spin and charge
currents driven by the Higgs mode in high-field superconduc-
tors, Phys. Rev. Res. 2, 033416 (2020).

[15] R. Matsunaga, N. Tsuji, K. Makise, H. Terai, H. Aoki, and R.
Shimano, Polarization-resolved terahertz third-harmonic gener-
ation in a single-crystal superconductor NbN: Dominance of the
Higgs mode beyond the BCS approximation, Phys. Rev. B 96,
020505(R) (2017).

[16] N. Tsuji and H. Aoki, Theory of Anderson pseudospin reso-
nance with Higgs mode in superconductors, Phys. Rev. B 92,
064508 (2015).

[17] T. Cea, C. Castellani, and L. Benfatto, Nonlinear optical ef-
fects and third-harmonic generation in superconductors: Cooper
pairs versus Higgs mode contribution, Phys. Rev. B 93,
180507(R) (2016).

[18] Y. Murotani and R. Shimano, Nonlinear optical response
of collective modes in multiband superconductors assisted
by nonmagnetic impurities, Phys. Rev. B 99, 224510
(2019).

[19] N. Tsuji, Y. Murakami, and H. Aoki, Nonlinear light–Higgs
coupling in superconductors beyond BCS: Effects of the re-
tarded phonon-mediated interaction, Phys. Rev. B 94, 224519
(2016).

[20] G. Seibold, M. Udina, C. Castellani, and L. Benfatto, Third
harmonic generation from collective modes in disordered su-
perconductors, Phys. Rev. B 103, 014512 (2021).

[21] N. Tsuji and Y. Nomura, Higgs-mode resonance in third har-
monic generation in NbN superconductors: Multiband electron-

224517-5

https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1007/BF00115617
https://doi.org/10.1126/science.1257302
https://doi.org/10.1103/PhysRevLett.47.811
https://doi.org/10.1103/PhysRevB.26.4883
https://doi.org/10.1103/PhysRevB.89.060503
https://doi.org/10.1103/PhysRevLett.122.127001
https://doi.org/10.1103/PhysRevB.97.094502
https://doi.org/10.1103/PhysRevB.90.224515
https://doi.org/10.1103/PhysRevLett.111.057002
https://doi.org/10.1126/science.1254697
https://doi.org/10.1103/PhysRevLett.110.267003
https://doi.org/10.1103/PhysRevB.99.224511
https://doi.org/10.1103/PhysRevResearch.2.033416
https://doi.org/10.1103/PhysRevB.96.020505
https://doi.org/10.1103/PhysRevB.92.064508
https://doi.org/10.1103/PhysRevB.93.180507
https://doi.org/10.1103/PhysRevB.99.224510
https://doi.org/10.1103/PhysRevB.94.224519
https://doi.org/10.1103/PhysRevB.103.014512


YAO LU et al. PHYSICAL REVIEW B 108, 224517 (2023)

phonon coupling, impurity scattering, and polarization-angle
dependence, Phys. Rev. Res. 2, 043029 (2020).

[22] A. Moor, A. F. Volkov, and K. B. Efetov, Amplitude Higgs
mode and admittance in superconductors with a moving con-
densate, Phys. Rev. Lett. 118, 047001 (2017).

[23] A. Volkov and S. M. Kogan, Collisionless relaxation of the en-
ergy gap in superconductors, Sov. Phys. JETP 38, 1018 (1974).

[24] D. Sherman, U. S. Pracht, B. Gorshunov, S. Poran, J. Jesudasan,
M. Chand, P. Raychaudhuri, M. Swanson, N. Trivedi, A.
Auerbach et al., The Higgs mode in disordered superconductors
close to a quantum phase transition, Nat. Phys. 11, 188 (2015).

[25] T. Cea, C. Castellani, G. Seibold, and L. Benfatto, Nonrelativis-
tic dynamics of the amplitude (Higgs) mode in superconductors,
Phys. Rev. Lett. 115, 157002 (2015).

[26] D. Agterberg, Novel magnetic field effects in unconventional
superconductors, Physica C: Superconductivity 387, 13 (2003).

[27] R. P. Kaur, D. F. Agterberg, and M. Sigrist, Helical vortex phase
in the noncentrosymmetric CePt3Si, Phys. Rev. Lett. 94, 137002
(2005).

[28] O. Dimitrova and M. V. Feigel’man, Theory of a two-
dimensional superconductor with broken inversion symmetry,
Phys. Rev. B 76, 014522 (2007).

[29] A. Buzdin, Direct coupling between magnetism and supercon-
ducting current in the Josephson ϕ0 junction, Phys. Rev. Lett.
101, 107005 (2008).

[30] F. S. Bergeret and I. V. Tokatly, Theory of diffusive ϕ0 Joseph-
son junctions in the presence of spin-orbit coupling, Europhys.
Lett. 110, 57005 (2015).

[31] F. Ando, Y. Miyasaka, T. Li, J. Ishizuka, T. Arakawa, Y. Shiota,
T. Moriyama, Y. Yanase, and T. Ono, Observation of supercon-
ducting diode effect, Nature (London) 584, 373 (2020).

[32] A. Daido, Y. Ikeda, and Y. Yanase, Intrinsic superconducting
diode effect, Phys. Rev. Lett. 128, 037001 (2022).

[33] K. Jiang and J. Hu, Superconducting diode effects, Nat. Phys.
18, 1145 (2022).

[34] N. F. Yuan and L. Fu, Supercurrent diode effect and finite-
momentum superconductors, Proc. Natl. Acad. Sci. USA 119,
e2119548119 (2022).
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