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Second-order optical response of superconductors induced by supercurrent injection
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We develop a theory of the nonlinear optical responses in superconducting systems in the presence of a
dc supercurrent. The optical transitions between particle-hole pair bands across the superconducting gap are
allowed in clean superconductors as the inversion symmetry breaking by supercurrent. Vertex correction is
included in optical conductivity to maintain the U(1) gauge symmetry in the mean-field formalism, which
contains the contributions from collective modes. We show two pronounced current-dependent peaks in the
second-harmonic generation σ (2)(2ω,ω, ω) at the gap edge 2h̄ω = 2� and h̄ω = 2� and one in the photocurrent
effect σ (2)(0, ω,−ω) at h̄ω = 2�, all of which diverge in the clean limit. We demonstrate this in the models
of a single-band superconductor with s-wave and d-wave pairings, and Dirac fermion systems with s-wave
pairing. Our theory predicts that the current-induced peak in Im[σ (2)(ω)] is proportional to the square of
the supercurrent density in the s-wave single-band model, with the same order of magnitude as the recent
experimental observation of second-harmonic generation in NbN by Nakamura et al. [Phys. Rev. Lett. 125,
097004 (2020)]. Supercurrent-induced nonlinear optical spectroscopy provides a valuable toolbox to explore
novel superconductors.
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I. INTRODUCTION

The linear and nonlinear optical spectroscopy methods are
well established as a powerful experimental technique to ex-
plore quantum materials, in particular superconductors [1–4],
which have long been the focus of research. In semiconduc-
tors, optical spectroscopy provides direct and nondestructive
measurements of pure spin currents [5–7]. In the context of
superconductors, the linear optical measurements can unveil
the characteristic nature of the superconducting state, for ex-
ample, by probing spectral weight transfer [8] and measuring
the superconducting gap size [9,10]. Theoretically, the optical
properties can be characterized by optical conductivity σ (ω),
which can be calculated from microscopic considerations. The
earliest analysis of the linear optical response for supercon-
ductors was made by Mattis and Bardeen in 1958 [11], who
stated that in a single-band Bardeen-Cooper-Schrieffer (BCS)
superconductor, the optical absorption [namely, the real part
of σ (1)(ω)] is absent when the photon energy of incident light
lies at or below the band gap in the dirty limit (superconduct-
ing coherence length ξ0 � mean free path �). Furthermore,
optical transitions even vanish at any finite frequency without
the mediation of impurity [12], owing to the band structure
of the normal state: if the dispersion of the electron satisfies
εk = ε−k, which can be guaranteed by inversion symmetry I
or time-reversal symmetry T , when a Cooper pair is broken
by light, the two electrons will have the same velocity but in
opposite directions, resulting in zero net current. The Mattis-
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Bardeen theory, together with its generalization to arbitrary
� [13], has been tested very successfully in explaining the
linear optical properties of many superconductors. Recently,
the optical transitions in a multiband superconductor with I
symmetry were theoretically shown to be allowed, leading to a
contribution to optical conductivity in the clean limit (ξ0 � �)
[14].

Meanwhile, the nonlinear response of superconductors
has attracted considerable interest. The second-order opti-
cal effects exist in superconductors with intrinsic broken I
symmetry of the band structure or superconducting pairing
order parameter [15–17]. The second-order nonlinear conduc-
tivity shows divergent behavior in the low-frequency limit,
which is analogous to the linear order case and unique to
superconductors. Apart from quasiparticles, the excitation of
collective modes in superconductors could also contribute to
the optical response [18–23], where a well-known example
is the third-harmonic generation of Higgs mode [24]. As
a scalar excitation, the Higgs mode can couple to a gauge
field at least in second order, giving rise to a photocurrent
with triple frequency of incident light. Therefore, the third-
harmonic generation of superconductors would originate from
both quasiparticle and Higgs mode excitation.

Recently, there is growing interest in the effect of a su-
percurrent on the optical response of superconductors. With
the help of a dc supercurrent, the Higgs mode can be linearly
excited by an electromagnetic field [25,26], leading to the
linear optical response. Meanwhile, a dc supercurrent breaks
I symmetry extrinsically, and thus makes εk �= ε−k, enabling
the nonzero optical response of clean single-band supercon-
ductors [27,28]. Experimentally, an optical response induced
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by a supercurrent was measured in Nb3Sn [29,30] and NbN
[31,32] film, where the enhanced optical response near the gap
edge by a supercurrent was observed in the linear order optical
effect, and the response peaks of second-harmonic generation
(SHG) was detected.

It has been a longstanding proposal that gauge invariance
should be maintained when calculating optical responses [33].
In the BCS mean-field formalism, the U(1) gauge symmetry
is broken, causing local charge nonconservation of the optical
response kernel and an unphysical result in the longitudinal
direction [34]. Nambu extended the vertex correction method
widely used in quantum electrodynamics to resolve this issue
[35], whose approach has been adopted in recent research on
the linear optical response of a superconductor, and the vertex
correction dramatically changes the linear optical conductiv-
ity [28,36]. All of these previous studies focus on the linear
optical response; a natural question arises as to how gauge
invariance affects the nonlinear optical response of supercon-
ductors, which is the main theme of the current paper. We
develop a theory of the nonlinear optical responses in clean
superconducting systems in the presence of a dc supercur-
rent, with the vertex correction reflecting electron-electron
interaction included. We show that the second-order optical
conductivity σ (2)(ω) depends on the nature of the normal
state as well as the type of superconducting pairing, which
is demonstrated in the model of single-band superconductor
with s-wave and d-wave pairings, and Dirac fermion systems
with s-wave pairing. Remarkably, we find that the peak value
of σ (2)(ω) in an s-wave superconductor has the same order of
magnitude as the SHG experimental measurement [32], which
means the proposed effect here may very well already have
been observed. The supercurrent flow may be induced by an
external magnetic field through the Meissner effect, and thus
the nonlinear optical spectroscopy provides a valuable toolbox
to explore the superconducting state.

The paper is organized as follows. Section II briefly re-
views the diagrammatic method applied to the superconductor
in mean-field formalism. Section III presents the formalism of
the gauge-invariant second-order nonlinear optical response in
superconductors by including vertex correction, which can be
readily applied to higher-order responses. In Sec. IV, we cal-
culate second-order nonlinear optical conductivity in several
different superconductor models, namely, the lattice model of
a single-band superconductor with s-wave and d-wave pair-
ings, and Dirac fermion systems with proximity effect from
an s-wave superconductor. Finally, we conclude our work with
some further discussions in Sec. V. Some auxiliary materials
are relegated to the Appendices.

II. DIAGRAMMATIC METHOD APPLIED
TO SUPERCONDUCTOR

We start by briefly reviewing the mean-field theory of
a superconductor, specifically the diagrammatic method of
the mean-field gap equation. The BCS mean-field the-
ory can be understood as the self-consistent Hartree-Fock
(SCHF) approximation [35,37]. To see this explicitly, we
consider a two-dimensional system with an effective attract-
ing two-body interaction between the electrons, while the
extension to the three-dimensional case is straightforward.
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FIG. 1. (a) Feynman diagram of self-energy correction for the
electron Green’s function up to first order. The first, on the right-
hand side, represents the Hartree term, and the second denotes the
Fock term. The single solid line represents the electron Green’s
function; the dashed line represents the electron-electron interaction.
(b) Feynman diagram of the Green’s function corrected by interac-
tion, which is represented by a double solid line. Only off-diagonal
correction is considered, and there is no crossing of the interaction
line.

The interacting Hamiltonian is H = ∑
k,σ εkc†

k,σ ck,σ −∑
k,k′ Vk,k′c†

k,↑c†
−k,↓c−k′,↓ck′,↑. In the Nambu basis, the inter-

action term can be written as
∑

k,k′ Vk,k′[�†
kτ3�k′][�†

k′τ3�k],

where �k = (ck,↑, c†
−k,↓)T is the Nambu spinor operator and

τ3 is the Pauli matrix. We approximate the four-fermion
interaction by a quadratic term. Then, up to first order
of the interaction, the self-energy of the electron can be
written as


(k0, k) = 
H + 
F(k0, k),


H = − 1

β
τ3Tr

⎡
⎣∑

k′
0

∫
d2k′

(2π )2
Vk′,k′G(k′

0, k′)τ3

⎤
⎦,


F(k0, k) = 1

β

∑
k′

0

∫
d2k′

(2π )2
Vk−k′,kτ3G(k0 − k′

0, k − k′)τ3,

(1)

where G(k0, k) = [ik0τ0 − H0(k) − 
(k0, k)]−1 is the Mat-
subara Green’s function containing self-energy correction in
the Nambu basis, k0 is the temporal component of the mo-
mentum, H0(k) = εkτ3 is the free Hamiltonian of the original
band, and we have implied that εk = ε−k. The corresponding
Feynman diagrams of the Hartree 
H and Fock 
F(k0, k)
terms are shown in Fig. 1(a). Since the diagonal correction
of self-energy only modifies the band structure and dose not
contribute to pairing potential, we ignore this part and define

(k) = �(k)τ1. On this account, the Feynman diagram of the
corrected Green’s function is constructed by adding an inter-
action line that can transfer finite momentum; see Fig. 1(b).
A typical character of this diagram is that no crossing of
the interaction line is considered. Therefore, we retrieve the
Bogoliubov–de Gennes (BdG) mean-field Hamiltonian from
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SCHF approximation as

HBdG =
∑

k

�
†
k

(
εk �(k)

�(k) −ε−k

)
�k. (2)

At zero temperature, the corresponding self-consistent gap
equation is obtained by integrating out k′

0,

�(k) =
∫

d2k′

(2π )2

Vk,k′�(k′)

2
√

ε2
k′ + �(k′)2

. (3)

If Vk,k′ can be approximate to be constant near the Fermi
surface, 
(k) will become a constant matrix, which is the case
for the s-wave BCS superconductor. If Vk,k′ can be factorized
as V φkφk′ , and φk takes the form (cos kx − cos ky), 
(k) turns
out to be a constant matrix multiplied by the factor φk, which
is the d-wave case [38].

When the superconductor carries a dc supercurrent, which
may be from an external source or induced by a magnetic field,
a Cooper pair will get a nonzero total momentum 2q. Then we
change the Nambu spinor to be �k = (ck+q,↑, c†

−k+q,↓)T , and
the BCS mean-field Hamiltonian will become [36]

HBdG =
∑

k

�
†
k

(
εk+q �(k)
�(k) −ε−k+q

)
�k. (4)

The eigenvalues of the BdG Hamiltonian are

Ek,± = εk+q − ε−k+q

2
±

√(
εk+q + ε−k+q

2

)2

+ �(k)2. (5)

The gap equation is almost the same as Eq. (3), except that
εk should be replaced by (εk+q + ε−k+q)/2. Without loss of
generality, we assume the supercurrent is along the x axis,
namely, q = qx̂ hereafter.

III. VERTEX CORRECTION AND GAUGE-INVARIANT
SECOND-ORDER OPTICAL RESPONSE

Now we are ready to study the nonlinear optical response
of superconductors. In the velocity gauge, an electromagnetic
field couples to a superconductor through minimal coupling:
k → k − q′A/h̄ in the diagonal sector of BdG Hamiltonian,
where q′ = −e (e) is the electron (hole) charge. We focus
on the limit of a weak, monochromatic, and uniform external
electromagnetic field. The generalized velocity operators are
defined by [16]

γa1a2···an =
(

−1

e

)n
∂nHBdG(A)

∂Aa1∂Aa2 · · · ∂Aan

∣∣∣∣
A→0

=
(

−τ3

h̄

)n(
∂a1a2···anεk+q 0

0 −∂a1a2···anε−k+q

)
, (6)

where ∂a1a2···an is the abbreviation for ∂
∂ka1

∂
∂ka2

· · · ∂
∂kan . These

operators are represented by bare electron-photon vertex func-
tions in the diagrammatic method, some examples of which
are shown in Fig. 2(a).

As mentioned previously, the gauge invariance should
be maintained when calculating the linear optical response

+ ,

+ +

+ ,

+

+ ,

= +

+= + + ⋯

(a)

(b)

FIG. 2. (a) Feynman diagrams for bare vertex functions in calcu-
lating the first and second optical responses. The wavy line represents
the electromagnetic field. (b) Feynman diagram for self-consistent
equation of vertex correction under no-crossing approximation.
These types of diagrams are also called ladder diagrams.

in BCS mean-field theory [28,36,39], and thus the Ward-
Takahashi identity needs to be satisfied. This requirement
must still be fulfilled if one calculates higher-order optical
responses [40]. This can be done by introducing a corrected
electron-photon vertex [35]. In Appendix A, we derive a series
of Ward identities needed for the nonlinear optical response
at arbitrary order. In the SCHF approximation to the first
order, the electron mean-field Green’s function is corrected
by interaction under the no-crossing approximation. There-
fore, the electron-photon vertex should also be corrected by
the no-crossing interaction line due to Ward identity; see
Fig. 2(b). The corrected vertex function is determined by the
self-consistent equation

�(p + q, p)

= γ (p + q, p) + 1

β

∑
k0

∫
d2k

(2π )2

× [Vk,pτ3G(k0 + q0, k + q)�(k + q, k)G(k0, k)τ3],
(7)

where γ (p + q, p) and �(p + q, p) are the bare and corrected
vertex. For an s-wave superconductor, Vk,p is a constant, the
integrand, and thus �(p + q, p) in the above equation is in-
dependent of p, while �(p + q, p) is generically determined
both by p and q (e.g., d-wave case; see Appendix B). In gen-
eral, the corrected vertex function will contain all τ1, τ2, and τ3

components, which characterize the fluctuations of the pairing
order parameter and charge density. Thus, after considering
the vertex correction, the final electromagnetic response al-
ready contains the contributions from the collective modes,
which is the necessary requirement for a gauge-invariant
theory.

The nonlinear optical responses of the superconductors can
be calculated via the diagrammatic approach [41–44]. Here
we mainly consider the clean limit � � ξ0, which means
the momentum of the electron remains unchanged during
optical transition under uniform and monophonic light il-
lumination. Moreover, we calculate the optical response up
to second order; this method also works for a higher-order
response. The first- and second-order optical conductivity are
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defined as

j (1)
a = σ

(1)
ab (ω)Eb(ω),

j (2)
a = σ

(2)
abc(ω1 + ω2, ω1, ω2)Eb(ω1)Ec(ω2).

(8)

The subscripts a, b, c are x or y in the two-dimensional system. After vertex correction, the gauge-invariant formulas for σ
(1)
ab (ω)

and σ
(2)
abc(ω1 + ω2, ω1, ω2) are given through Feynman diagrams shown in Fig. 3,

σ
(1)
ab (ω) = ie2

h̄ω

1

β
Tr

∑
k0

∫
d2k

(2π )2
[γabG(k0, k) + γaG(k0 + ω2, k)�bG(k0, k)], (9)

σ
(2)
abc(ω1 + ω2, ω1, ω2) = e3

h̄ω1ω2

1

β
Tr

∑
k0

∫
d2k

(2π )2

{
1

2
γabcG(k0, k) + γabG(k0 + ω2, k)�cG(k0, k)

+ 1

2
�aG(k0 + ω1 + ω2, k)γbcG(k0, k) + �aG(k0 + ω1 + ω2, k)

× �bG(k0 + ω2, k)�cG(k0, k) + (b, ω1) ↔ (c, ω2)

}
. (10)

Note that only the temporal component of photon momen-
tum q is considered since spatial components q are negligibly
small in the terahertz region, whose corresponding energy is
comparable to the superconducting gap. The analytic continu-
ation should be done in the Green’s function as ω → ω + iη,
where η is a infinitesimal positive parameter. In addition, we
consider the low-temperature limit, i.e., the summation of the
Matsubara frequency can be replaced by an integral. We study
two processes in the second-order response: SHG and the
photocurrent effect (PC) [45], characterized by σ

(2)
abc(2ω,ω,ω)

and σ
(2)
abc(0, ω,−ω), respectively. We will take both into ac-

count and show the frequency dependence of all their allowed
components in the subsequent superconductor models.

1 + 2

1

2

1 + 2
1

2

1 + 2

1

(a)

(c)

(e) (f)

(b)

1 + 2

1

2
(d)

FIG. 3. (a), (b) Feynman diagrams contribute to first-order op-
tical conductivity of the superconductor. (c)–(f) Feynman diagrams
contribute to second-order nonlinear optical conductivity of the su-
perconductor. Vertex correction under no-crossing approximation is
considered. Note that to avoid double counting, there is no vertex
correction in (a) and (c), and only one of the vertices is corrected in
(b), (d), and (e).

IV. RESULTS FOR SUPERCONDUCTOR MODELS

Now we calculate second-order nonlinear optical conduc-
tivity σ (2)(ω) in several different models of superconductors,
which could exemplify the different aspects of supercurrent-
enabled optical conductivity.

A. s-wave single-band superconductor

We first consider a single-band spin-degenerate s-wave
superconductor. A generic tight-binding model is on a square
lattice with unit lattice constant, the nearest-neighbor hop-
ping t , the chemical potential μ, and a superconducting
gap �,

Hs
TB(k) =

(
εk+qx̂ �

� −ε−k+qx̂

)
, (11)

where εk = t (2 − cos kx − cos ky) − μ. The model has C2x

symmetry when the supercurrent flows along the x di-
rection. The symmetry allows two nonzero independent
components of σ (1) : σ (1)

xx , σ (1)
yy , and four possible nonzero

independent components of σ (2) : σ (2)
xxx, σ

(2)
xyy, σ

(2)
yxy, σ

(2)
yyx . All of

the remaining components are zero. The intrinsic permu-
tation symmetry leads to σ

(2)
abc(ω1 + ω2, ω1, ω2) = σ

(2)
acb(ω1 +

ω2, ω2, ω1), and the reality condition requires σ
(2)
abc(ω1 +

ω2, ω1, ω2) = (σ (2)
abc)∗(−ω1 − ω2,−ω1,−ω2). Thus we ob-

tain the following relations of nonlinear optical responses in
the low-frequency regime:

σ
(2)
abc(2ω,ω,ω) = σ

(2)
acb(2ω,ω,ω),

σ
(2)
abc(0, ω,−ω) = (

σ
(2)
acb

)∗
(0, ω,−ω).

(12)

Finally, only σ (2)
xxx, σ

(2)
xyy, σ

(2)
yyx are independent. In addition,

σxxx(0, ω,−ω) and σxyy(0, ω,−ω) are real.
The numerical results of the linear, SHG, and PC optical

conductivity for the s-wave tight-binding model are shown in
Figs. 4–6, respectively. We set t = 1×102 meV, qx = 0.02/a,
where a ∼ 1 Å is the lattice constant, μ = 0.9×102 meV,
Vk,k′ = 1×102 meV, � ≈ 4.5 meV is determined by a self-
consistent gap equation, and η = 10−1 meV. It is worth
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(a) (b)

FIG. 4. σ (1)(ω) of s-wave single-band model. (a) The real part
of σ (1)

xx (ω) without (blue solid line) and with (red solid line) ver-
tex correction. (b) Im[σ (1)

xx (ω)] without and with vertex correction.
Im[σ (1)

yy (ω)] (gray dashed line) is also shown.

mentioning the choice of the magnitude of momentum q.
The current density is defined as J = ensvs, where ns is
the superfluid density that can be determined by Im[σ (ω →
0)] = limω→0 nse2/(m∗ω). Therefore, q = m∗vs is estimated
to be of the order of 10−2/a if the current injected into the
superconductor is about 1 A and the two-dimensional (2D)
superconducting film is 1 mm2 in area.

For the linear optical conductivity σ (1)(ω) shown in Fig. 4,
its real part Re[σ (1)] is totally contributed from the bubble
diagram in Fig. 3(b) owing to the purely imaginary nature
of the tadpole diagram in Fig. 3(a). Similar to the results
of previous research [28], the real part shows a resonance
peak near h̄ω = 2�, which is caused by supercurrent, and
has 1/

√
h̄ω − 2� frequency dependence above the gap edge.

Below the gap edge, there is no optical transition, and thus
the real part vanishes. When vertex correction is included, the
response is reduced in the full frequency range. The imag-
inary part Im[σ (1)] is mainly contributed from the tadpole
diagram, which is three orders of magnitude larger than the

(a) (b)

(c) (d)

(e) (f)

FIG. 5. σ
(2)
SHG of the s-wave tight-binding model. Blue and red

lines show SHG without and with vertex correction, respectively.
(a), (c), (e) real part Re[σ (2)

SHG]; (b), (d), (f) imaginary part Im[σ (2)
SHG].

(a) (b)

(c) (d)

FIG. 6. σ
(2)
PC of s-wave tight-binding model. Blue and red

lines show PC without and with vertex correction, respectively.
(a) Re[σ (2)

PC,xxx], (b) Re[σ (2)
PC,xyy]; both of their imaginary parts are zero.

(c) Re[σ (2)
PC,yyx]. (d) Im[σ (2)

PC,yyx].

bubble diagram. Im[σ (1)(ω)] has ω−1 frequency dependence
as shown in Fig. 4(b), which reflects the Meissner effect.
Meanwhile, q has a negligible effect on Im[σ (1)(ω)]. Since the
dominant contribution comes from the tadpole diagram, the
vertex correction makes almost no difference and Im[σ (1)

xx (ω)]
is almost the same as Im[σ (1)

yy (ω)].
For the second order in Figs. 5 and 6, Im[σ (2)] vanishes

below the superconducting gap since no quasiparticle optical
transition occurs, while Re[σ (2)] ∝ ω−2 in the low-frequency
limit. In the gapped s-wave superconductor with a dc super-
current, both T and I symmetry are broken, but the combined
T I symmetry is preserved, and the divergent behavior is
attributed to the response of nonreciprocal superfluid density
[16,46]. Namely, the divergence of Re[σ (2)] is robust against
the choice of q �= 0 and small parameter η in the Green’s
function. In the SHG of Fig. 5(b), there are two response
peaks near h̄ω = 2� and h̄ω = � in Im[σ (2)

SHG,xxx], which arise
from the bubble diagram in Figs. 3(d) and 3(e). The former
has a peak near h̄ω = 2�, and the latter has a peak near
h̄ω = �, which corresponds to and is very well explained by
the optical transition processes in Figs. 7(b) and 7(c), respec-
tively. Remarkably, the current-induced peak in Im[σ (2)

SHG,xxx]
at h̄ω = 2� is proportional to the square of the supercurrent
density since it is mainly contributed from the bubble diagram
of Fig. 3(d). Since the bare vertex γxy = 0, Fig. 3(d) does
not contribute to σ

(2)
SHG,xyy, and thus there is no peak near

h̄ω = 2�. Similarly, σ
(2)
SHG,yyx does not show the peak near

h̄ω = � due to γyx = 0 and no contribution from Fig. 3(e).
Meanwhile, in Fig. 6 for PC, only the resonant peak near h̄ω =
2� may exist, as seen in σ

(2)
PC,xxx and σ

(2)
PC,yyx. No peak will

appear near h̄ω = 2� in σ
(2)
PC,xyy for γxy = 0. For both SHG

and PC processes in the second-order response, the asymp-
totic behavior near h̄ω = � has a similar form to that near
h̄ω = 2�. Namely, the frequency dependence of Re[σ (2)]
shows 1/

√
� − h̄ω and 1/

√
2� − h̄ω when h̄ω is below �

and 2�, respectively, while Im[σ (2)] scales as 1/
√

h̄ω − �

and 1/
√

h̄ω − 2� above the resonance frequencies. After
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2

1

1

2

(c)

(b)

(a)

2

1

1 2

1

2

(d)

FIG. 7. Schematic picture for the second-order optical process.
(a) Pure intraband response, and no resonant frequency appears.
(b) Interband and intraband mixing process. In SHG and PC, res-
onance happens at h̄ω = 2�. (c),(d) Pure interband process. At
h̄ω = �, (c) resonance occurs in SHG, while (d) no resonance ap-
pears in PC.

vertex correction, the entire magnitude of the second-order
response is reduced, σ (2)

xyy and σ (2)
yyx even reverse sign, while

the shape of the frequency-dependence curve is unchanged.
Interestingly, we find that in this model, the contribution from
the triangular diagram of Fig. 3(f) can be neglected compared
with tadpole [Fig. 3(c)] and bubble [Figs. 3(d) and 3(e)]
diagrams, where the latter reveals similar resonant behav-
iors and asymptotic frequency dependence to that of linear
order.

B. Dirac fermion with s-wave pairing

Then we proceed to study the Dirac fermion with an s-wave
superconducting pairing, which describes the surface state of
a 3D topological insulator with the proximity effect from a
conventional s-wave superconductor [47]. In the presence of a
dc supercurrent, the BdG Hamiltonian is

HDirac
BdG (k) = [h̄v(kx + qx )sy − h̄vkysx − μ]τz + �τx. (13)

Here, v is the Fermi velocity, and we set μ staying high
above the Dirac point. Thus we can focus on the upper Dirac
bands around the proximity gap when the photon is in the
terahertz frequency. The projected single-band model for the
Dirac fermion is

HD
BdG(k) = h̄vqxk̂xτ0 + (h̄vk − μ)τz + �τx, (14)

where k̂x ≡ kx/k and k =
√

k2
x + k2

y . The model has C2x sym-
metry, similar to the above s-wave single-band model, and
the symmetry-allowed nonzero independent components are
σ (1)

xx , σ (1)
yy for linear order, and σ (2)

xxx, σ
(2)
xyy, σ

(2)
yyx for second order.

The numerical results of linear, SHG, and PC optical con-
ductivity for the Dirac fermion model are shown in Figs. 8

(a) (b)

FIG. 8. σ (1)(ω) of Dirac fermion model. Green (blue) dashed line
denotes σ (1)

xx (ω) without vertex correction [σ (1)
yy (ω)]; σ (1)

xx (ω) with
vertex correction is shown in red. (a) Re[σ (1)]. (b) Im[σ (1)]. Gray
lines are the analytical result of σ (1)

xx (ω) without vertex correction in
Appendix C.

and 9, respectively. Meanwhile, for comparison, the analytic
results for the responses without vertex correction are listed in
Appendix C. We set qx = 0.005/a, μ = 2×102 meV, Vk,k′ =
0.8×102 meV, h̄va = 6.6×102 meV, η = 5×10−2 meV, and
� ≈ 5 meV. Due to the linear dispersion of the Dirac fermion,
all vertex functions with more than one photon are zero.
As a result, only the bubble diagram [Fig. 3(b)] contributes
to σ (1) and the triangular diagram [Fig. 3(f)] contributes
to σ (2). As shown in Figs. 8 and 9, in the low-frequency
regime, Im[σ (1)] shows ω−1 behavior and Re[σ (2)] has ω−2

behavior. Below the superconducting gap, there is no optical
transition, and Re[σ (1)] and Im[σ (2)] vanish. Without vertex
correction, Re[σ (1)] has 1/

√
h̄ω − 2� asymptotic behaviors

above the gap edge, and Im[σ (1)] scales as 1/
√

2� − h̄ω

below the gap edge (Fig. 8, green dashed line), which are

(a)

(c)

(e)

(b)

(d)

(f)

FIG. 9. σ (2) of Dirac fermion model. (a),(c) Real and imaginary
part of σSHG without vertex correction, respectively. Gray lines are
the analytical result without vertex correction. (e) Real part of σPC

without vertex correction. The optical spectrum of σxyy and σyyx is
the same. Corresponding results with vertex correction are shown in
(b), (d), and (f), respectively. After vertex correction, σxyy and σyyx

differ.
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(a) (b)

FIG. 10. σ (1)(ω) of d-wave superconductor. (a) Re[σ (1)
xx (ω)]

without (blue solid line) and with (red solid line) vertex correction.
(b) Im[σ (1)

xx (ω)] without and with vertex correction. σ (1)
yy (ω) (gray

dashed line) is also shown.

the feature from the bubble diagram. However, for σ (2), no
sharp peak appears, as shown in Figs. 9(a), 9(c), and 9(e),
which is the feature of a triangular diagram. When vertex
correction is considered, the real and imaginary parts of σ (1)

are reduced since both of them are purely contributed from
the bubble diagram. However, the vertex correction does not
change the resonance shape of the response curve in σ (1).
In addition, the vertex corrected σ (1)

xx is identical to σ (1)
yy ,

which is consistent with previous research [27], while in
the second-order response, besides the quantitative differ-
ence between the bare value and vertex corrected σ (2), the
sharp peaks appear near h̄ω = � and h̄ω = 2� with vertex
correction.

C. d-wave single-band superconductor

Finally, we study a different type of superconducting
pairing, namely, a single-band spin-degenerate d-wave super-
conductor. The tight-binding model on a square lattice is

Hd
TB(k) =

(
εk+qx̂ �φk
�φk −ε−k+qx̂

)
, (15)

where εk = t (2 − cos kx − cos ky − μ), φk = (cos kx −
cos ky). The independent nonzero components of σ (1) and σ (2)

are the same as in the s-wave model since the d-wave model
here has C2x symmetry with the supercurrent flows along
the x axis. In the numerical calculations for σ (1) and σ (2),
we set qx = 0.07/a, μ = 0.9×102 meV, V = 1.8×102 meV,
η = 3×10−2 meV, and � ≈ 23 meV determined by Eq. (3).

Due to the nodal character of the quasiparticle spectrum,
when a supercurrent is induced inside a d-wave supercon-
ductor, there exists a Bogoliubov Fermi surface which causes
intraband conductivity. To capitalize the intraband response,
we replace the factor 1/ω in Eq. (9) and 1/(ω1ω2) in Eq. (10)
by 1/(ω + iη′) and 1/(ω1 + iη′)(ω2 + iη′), respectively [48].
This corresponds to adiabatic switching the electrodynamic
field as A(t )e−η′t , where we choose η′ = η. Figure 10 shows
the linear optical conductivity with and without vertex correc-
tion. Near h̄ω = 2�, a peak induced by supercurrent appears
in Re[σ (1)

xx ], which is reduced when considering the vertex
correction as expected. The intraband response gives a Drude
peak in the low-frequency regime and scales as η′/(η′2 + ω2).
As with the s-wave superconductor, the dominant contribution
to Im[σ (1)] comes from the tadpole diagram that accounts for
the Meissner effect.

(a) (b)

(c) (d)

(e) (f)

FIG. 11. σ
(2)
SHG of d-wave superconductor. Blue and red lines

show SHG without and with vertex correction, respectively. (a), (c),
(e) Real part Re[σ (2)

SHG]. (b), (d), (f) Imaginary part Im[σ (2)
SHG].

Figures 11 and 12 show second-order processes SHG and
PC, respectively. The real parts of σSHG and σPC show ω−2

divergent behavior, while the imaginary part Im[σ (2)] has a
finite contribution from the intraband response in the low-
frequency region, which is different from the s-wave case
where Im(σ (2) ) vanishes due to the superconducting gap.
Therefore, the current-induced second-order optical effect
could distinguish different superconducting order parameters.
Also different from the s-wave case, there are some kinks
in Im[σ (2)] of the d-wave superconductor when h̄ω/� ∼ 0.5
(i.e., h̄ω ∼ 10 meV), which corresponds to the optical transi-
tion happening near the Bogoliubov Fermi surface, and may

(a) (b)

(c) (d)

FIG. 12. σ
(2)
PC of d-wave tight-binding model. Blue and red

lines show PC without and with vertex correction, respectively.
(a) Re[σ (2)

PC,xxx], (b) Re[σ (2)
PC,xyy], where both of their imaginary parts

are zero. (c) Re[σ (2)
PC,yyx]. (d) Im[σ (2)

PC,yyx].
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come from Van Hove singularities. In general, the vertex
correction will reduce the magnitude of the second-order re-
sponse and some components even reverse sign, while, with
one exception, σ

(2)
PC,xyy gets enhanced.

V. DISCUSSION

We compare the magnitude of the predicted effect to
the present experiments on second-order optical conductiv-
ity of superconductors. A current-enabled SHG was recently
reported in the experimental of Ref. [32]. In that experi-
ment, the observed SHG nonlinear susceptibility attributed
to the supercurrent flow in the NbN superconductor thin
film can reach χ (2)

ex ∼ 2.2×108 pm/V near the resonance
frequency h̄ω = 2�. Our calculation of the 2D s-wave tight-
binding model shows a maximum of Im[σ (2)

SHG,xxx] and is about
7.2×10−13 m (� V)−1; the 3D SHG conductivity can be ob-
tained by the 2D value multiplied by the measured Fermi
wave vector of NbN, kF ≈ 1.45 Å−1 [28,49]. Converted to
susceptibility, the final result is χ

(2)
th ≈ 3.9×108 pm/V, which

matches well with the experimental result. Meanwhile, the
current-induced peak in Im[σ (2)(ω)] is predicted to be pro-
portional to the square of the supercurrent density, which is
also consistent with the experimental observations [32]. All
of these mean that the proposed effect may have very well
already been observed. However, more detailed studies are
required to convincingly separate our mechanism from one
based on vortex dynamics in that experiment.

So far, we only consider a clean system, and the effect
of impurity scattering can be considered as a positive imag-
inary parameter into the Green’s function. Thus the resulting
response from both linear and second order is reduced, espe-
cially near the resonance frequency region, and the divergent
behavior in the low-frequency limit is replaced by approach-
ing to a large value. In the dirty limit, the linear response will
return to Mattis-Bardeen theory [11], which is also similar
in the second-order effect; the optical response near the gap
edge will be reduced since a small supercurrent does not
dramatically change the band structure. Recently, the second-
order optical effect of the diffusive superconductor has been
studied [50].

In summary, we have studied a supercurrent-enabled
second-order optical response in BCS superconductors of the
clean limit. Such a supercurrent flow can be induced and
controlled by an external magnetic field through the Meiss-
ner effect. Similar to the linear order case, we find a large
second-order response near the gap edge in the presence of
dc supercurrent. After vertex correction, the entire magni-
tude of the linear- and second-order responses is reduced,
only some second-order components even reverse sign, while
the shape of the frequency-dependence curve is unchanged.
Here we point out that the contribution from collective modes
has already been included in vertex correction reflecting
the BCS electron-electron interactions. For the above sev-
eral examples with typical superconducting order parameters,
we show that the current-enabled second-order optical con-
ductivity strongly depends on the type of superconducting
pairing as well as the nature of the normal state. As such,
the supercurrent-induced nonlinear optical spectroscopy pro-
vides a valuable toolbox to explore novel superconductors.

Moreover, although we only present the nonlinear response up
to second order in this manuscript, the diagrammatic method
with vertex correction can be readily extended to a higher-
order optical response.

Note added. Recently, we learned of an independent work
on the second-order optical Hall response of superconductors
[51]. They consider the case of weak disorder, which is differ-
ent from our case.
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APPENDIX A: WARD-TAKAHASHI IDENTITY

Here we derive the Ward-Takahashi identity in a super-
conducting system, and apply it into the optical response to
maintain the gauge invariance, which leads to vertex correc-
tion. The partition function is

Z =
∫

D�̄D�e−S[�̄,�,A], (A1)

where S is the action for the superconductor without electro-
magnetic field, and � = (ψ↑, ψ̄↓)T is the Nambu bi-spinor.
The generating functional of the connected Green’s function
is

G = ln
∫

D�̄D�e−S[�̄,�,A]−∫
dr(JAμ Aμ+J�̄�+J��̄ ), (A2)

where JAμ
, J�̄ , and J� are auxiliary fields. The expectation

value of Aμ, �̄, and � can be calculated through the gener-
ating functional,

〈Aμ〉 = δG

δJAμ

, 〈�̄〉 = δG

δJ�

, 〈�〉 = δG

δJ�̄

. (A3)

The generating functional of the irreducible vertex
function is obtained via Legendre transformation:
� = G − ∫

dr(〈Aμ〉JAμ
+ 〈�〉J�̄ + 〈�̄〉J� ). Taking the

functional derivative of � will give vertex functions,

JAμ
= δ�

δ〈Aμ〉 , J�̄ = δ�

δ〈�〉 , J� = δ�

δ〈�̄〉 . (A4)

Gauge invariance requires that G is invariant under in-
finitesimal U(1) transformation: � ′ = (τ0 + iθτ3)�, �̄ ′ =
(τ0 − iθτ3)�̄, A′

μ = Aμ − ∂μθ . From δG/δθ = 0, we have

∂xμ

(
δ�

δ〈Aμ〉
)

= i

(
δ�

δ〈�〉τ3� − �̄
δ�

δ〈�̄〉
)

. (A5)

The series of Ward identities can be derived from Eq. (A5)
by taking the functional derivative of both sides with respect
to the expectation value of the fields. For example, taking the
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functional derivative with respect to 〈�̄〉 and 〈�〉 gives

∂xμ

δ3�

δ〈�̄(z)〉δ〈�(y)〉δ〈Aμ(x)〉

= i

[
δ2�

δ〈�̄(z)〉δ〈�(x)〉τ3δ(x − y)

− τ3
δ2�

δ〈�̄(x)〉δ〈�(y)〉δ(x − z)

]
. (A6)

Converted to momentum representation, Eq. (A6) becomes
the Ward-Takahashi identity, qμ�1

μ(k + q, k) = τ3G−1(k) −
G−1(k + q)τ3, which gives the connection between the
Green’s function and the one-photon vertex function. The
relation between the self-energy correction term 
(k) and
one-photon vertex correction term �1

μ(k + q, k) can be di-
rectly obtained by the Ward-Takahashi identity,

qμ�1
μ(k + q, k) = 
(k + q)τ3 − τ3
(k). (A7)

In addition, if we further take the functional derivative of
Eq. (A6) with respect to 〈Aμ〉, we will get the relation between
the one-photon vertex correction term �1

μ(k + q, k) and the
two-photon vertex correction term �2

μ,ν (k + q′ + q, k),

qμ�2
μ,ν (k + q′ + q, k)

= �1
μ(k + q′ + q, k)τ3 − τ3�

1
μ(k + q′, k). (A8)

A similar procedure can be done to get the relation between
the n-photon vertex correction term and the n + 1-photon
vertex correction term,

qμ�n+1
μ,ν (k + q′ + q, k)

= �n
μ(k + q′ + q, k)τ3 − τ3�

n
μ(k + q′, k). (A9)

A diagrammatical description is shown in Fig. 13, which
needs to be satisfied when calculating the higher-order optical
response of a superconductor. In this sense, the self-energy
correction term 
(k) can be viewed as the zero-photon vertex
correction term �0(k).

APPENDIX B: VERTEX CORRECTION
FOR OPTICAL RESPONSE

Here we give the detailed calculation of the vertex correc-
tion in the single-band superconductor models, then apply it
to the optical response.

The γa1,a2,...,an matrix can be decomposed into two compo-
nents in terms of Pauli matrices: γa1,a2,...,an = γ (1)

a1,a2,...,an
τ0 +

γ (2)
a1,a2,...,an

τ3. Similarly, the corrected vertex, � matrix can be
expanded as

�a1,a2,...,an = γa1,a2,...,an +
3∑

i=0

�(i)
a1,a2,...,an

τi. (B1)

In the s-wave case, �(p + q, p) is independent of p, and the
photon momentum q is negligible; thus all expansion coeffi-
cients of the � matrix can be solved by self-consistent Eq. (7)
at every frequency of incident light.

⋯

photon line

Ward identity

Ward identity

Ward identity

photon line

FIG. 13. Diagrammatical description of Ward identities. The n-
photon vertex correction term has a quantitative relation to the
n + 1-photon vertex correction term.

To find out the resonance frequency clearly, we sum over
the imaginary temporal component and reexpress the formulas
of σ (1) and σ (2). The diagram in Fig. 3(a) gives

∫
[dk]

(
−γ

(1)
ab + ε̄kγ

(2)
ab

E ′
k

)
, (B2)

where we denote ε̄k = (εk+q + ε−k+q)/2, E ′
k =

√
ε̄2

k + �2

and abbreviate the integral over k to
∫

[dk]. Figure 3(b)
gives∫

[dk]
2�

E ′
k[4E ′

k
2 − (h̄ω̃)2]

{−2ε̄k�
(1)
b (ω)γ (2)

a

+ ih̄ω̃�
(2)
b (ω)γ (2)

a + 2�
[
γ (2)

a γ
(2)

b + �
(3)
b (ω)γ (2)

a

]}
, (B3)

where ω̃ = ω + i0+. The denominator indicates that the res-
onance frequency is h̄ω ≈ 2�. Equation (10) consists of four
parts, each is represented by a diagram in Figs. 3(e) and 3(f).
The first part reads

∫
[dk]

(
γ

(1)
abc + ε̄kγ

(2)
abc

E ′
k

)
. (B4)

The second part is a bubble diagram,∫
[dk]

−2�

E ′
k[4E ′

k
2 − (h̄ω̃2)2]

{−2ε̄k�
(1)
c (ω2)γ (2)

ab

+ ih̄ω̃2�
(2)
c (ω2)γ (2)

ab +2�
[
γ

(2)
ab γ (2)

c + �(3)
c (ω2)γ (2)

ab

]}
+ (b, ω1) ↔ (c, ω2). (B5)
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The denominator indicates that the resonance frequency is h̄ω ≈ 2�. The third part is another bubble diagram,∫
[dk]

−2�

E ′
k

[
4E ′

k
2 − (h̄ω̃12)2

]{−2ε̄k�
(1)
c (−ω12)γ (2)

bc − ih̄ω̃12�
(2)
c (−ω12)γ (2)

bc + 2�
[
γ

(2)
bc γ (2)

a + �(3)
c (−ω12)γ (2)

bc

]}
, (B6)

where ω12 = ω1 + ω2 and ω̃12 = ω̃1 + ω̃2. The denominator indicates that in the case of SHG, the resonance frequency is
h̄ω ≈ �, and in the case of photocurrent effect, no resonance frequency appears.

The triangular diagram is far more complicated; we only show the result without vertex correction,∫
[dk]

16�2ε̄k
[
12E ′

k
2 − (h̄ω̃12)2 + h̄ω̃1h̄ω̃2

]
γ (2)

a γ
(2)

b γ (2)
c

E ′
k

[
4E ′

k
2 − (h̄ω̃12)2

][
4E ′

k
2 − (h̄ω̃1)2

][
4E ′

k
2 − (h̄ω̃2)2

] . (B7)

Likewise, the denominator indicates that for SHG, the res-
onance frequencies are h̄ω ≈ � and h̄ω ≈ 2�; for the
photocurrent effect, the resonance frequency is h̄ω ≈ 2�.
Vertex correction will modify this term significantly, while
leaving the resonance frequencies unchanged, which can be
seen in the Dirac fermion case in the main text.

As a side note, if there is no supercurrent, q = 0, γ (2)
a =

γ
(1)

ab = γ
(2)

abc = 0, then Eqs. (B3)–(B6) and the real part of
Eq. (B2) vanish in the condition of εk = ε−k. Only the imag-
inary part of σ (1) survives and there is no optical transition at
any finite frequency, verifying the effect of the supercurrent.
Besides, the zero response of the second order reflects inver-
sion symmetry of the system when q = 0.

In the d-wave case, Vk,k′ can factorized as V φkφk′ , where
V is a constant and φk = (cos kx − cos ky), and the self-
consistent equation for the corrected vertex function becomes

�(p + q, p)

φp

= γ (p+q, p)

φp
+V

1

β

∑
k0

∫
d2k

(2π )2
[φkτ3G(k0+q0, k+q)

× �(k + q, k)G(k0, k)τ3]. (B8)

After being divided by φp, the integrand above is independent
of p, and thus we can expand the � matrix as

�(p + q, p) = γ (p + q, p) + φp

3∑
i=0

�(i)τi. (B9)

In this manner, all the expansion coefficients of the � matrix
can be solved through Eq. (B8) for every frequency (again,
we consider q = 0); then the optical responses of the d-wave
superconductor can be obtained by Eqs. (9) and (10).

We show �(1), �(2), �(3) with respect to frequency calcu-
lated from the s-wave tight-binding model, Dirac fermion
model, and d-wave tight-binding model in Fig. 14. Clearly,
in the first two models, �(1) has a peak near resonance fre-
quency, while �(2) is almost proportional to ω−1, and �(3)

can be neglected compared with �(1) and �(2). We found
that the �(1) components contribute little to modification of
the bubble diagram, but are important to modification of the
triangular diagram, and thus can change the second-order con-
ductivity distinctly in the Dirac fermion model. In the d-wave
case, besides the peaks near h̄ω = 2� and ω−1 divergence
of �(2) at the low-frequency region, more complex behaviors
appear, especially near the frequency region when an optical
transition occurs near the Bogoliubov Fermi surface that is
induced by the supercurrent. These behaviors are reflected in

the intricate response after vertex correction of the d-wave
superconductor.

APPENDIX C: ANALYTICAL RESULT FOR OPTICAL
RESPONSES OF DIRAC FERMION WITH s-WAVE PAIRING

The optical conductivity for the Dirac fermion with s-wave
superconducting pairing without vertex correction can be cal-
culated analytically. The real part of σ (1)

xx is

Re[σ (1)(ω)] =e2

h̄
3π2 �

μ

(h̄vq)2

(h̄ω)2

�√
(h̄ω)2 − 4�2

�[h̄ω − 2�],

(C1)

and the imaginary part can be obtain via Kramers-Kronig (K-
K) relation as

Im[σ (1)(ω)] = e2

h̄
6π

�

μ

(h̄vq)2

(h̄ω)2

×

⎧⎪⎨
⎪⎩

− � arcsin ( h̄ω
2�

)√
4�2−(h̄ω)2

, 0 < h̄ω < 2�

� arcosh ( h̄ω
2�

)√
(h̄ω)2−4�2

, h̄ω > 2�,
(C2)

where σ (1)
yy (ω) = σ (1)

xx (ω)/3 due to the difference between γx

and γy in angular integrations.

(a) (b)

(c) (d)

(e) (f)

FIG. 14. Components of � vs frequency. (a), (b) Calculated from
s-wave tight-binding model; (c), (d) calculated from Dirac fermion
model; (e), (f) calculated from d-wave tight-binding model.
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The imaginary part of σ
(2)
SHG,xxx(ω) is

Im
[
σ

(2)
SHG,xxx(ω)

] = − e3

h̄2 5π2 �2

μ2

(h̄vq)3

(h̄ω)5

h̄v

μ

{√
(h̄ω)2 − �2�[h̄ω − �] −

√
(h̄ω)2 − 4�2�[h̄ω − 2�]

}
. (C3)

Through the generalized K-K relation for the nonlinear response [52], the real part is given by

Re
[
σ

(2)
SHG,xxx(ω)

] = e3

h̄
10π

�2

μ2

(h̄vq)3

(h̄ω)5

h̄v

μ

⎧⎪⎪⎨
⎪⎪⎩

√
�2 − (h̄ω)2 arcsin

(
h̄ω
�

) −
√

4�2 − (h̄ω)2 arcsin
(

h̄ω
2�

)
, 0 < h̄ω < �√

(h̄ω)2 − �2 arcosh
(

h̄ω
�

) −
√

4�2 − (h̄ω)2 arcsin
(

h̄ω
2�

)
, � < h̄ω < 2�√

(h̄ω)2 − �2 arcosh
(

h̄ω
�

) −
√

(h̄ω)2 − 4�2 arcosh
(

h̄ω
2�

)
, h̄ω > 2�.

(C4)

σ
(2)
PC,xxx(ω) is purely real:

σ
(2)
PC,xxx(ω) = e3

h̄

5π

2

�2

μ2

(h̄vq)3

(h̄ω)3

h̄v

μ

(
h̄ω

�2
+ 1

η

2π
√

(h̄ω)2 − 4�2�[h̄ω − 2�]

h̄ω

)
, (C5)

where η is a small positive parameter, which is set to be 5×10−2 meV in the calculation of the main text. Similarly, the different
factor of angular integral for γx and γy results in σ (2)

xyy = σ (2)
yyx = σ (2)

xxx/5.
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