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Superconductivity in Luttinger semimetals near the SU(4) limit
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We consider the spin-3/2 Luttinger fermions with contact attraction near the SU(4)-symmetric limit of van-
ishing Luttinger spin-orbit-coupling parameter responsible for band inversion, and at finite chemical potential.
In the case of exact SU(4) symmetry the previously considered s-wave and five d-wave superconducting order
parameters together form a six-dimensional irreducible representation which transforms as an antisymmetric
tensor under SU(4). In this limit, we find the SU(4) [�SO(6)] symmetry to be spontaneously broken down to
the SO(5) at the superconducting transition. When the SU(4) is reduced to the SO(3) by the weak band-inverting
kinetic energy term, we show that at low temperatures the superconducting state is is + d , with a dominant s
and a small d component, and spontaneously broken time-reversal symmetry. Relevance to superconductivity in
doped semiconductors with diamond structure is discussed.
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I. INTRODUCTION

Superconductivity in spin-orbit coupled materials such as
three-dimensional Luttinger semimetals [1] of electrons with
effective spin-3/2 has received plenty of attention lately [2–4].
When the spin-orbit coupling is strong so that the system
exhibits band inversion, an attractive interaction can lead to
various superconducting states with Cooper pairs with to-
tal angular momentum j = 0, 1, 2, 3 [5–14]. The opposite
limit of weak spin-orbit coupling without the band inversion,
relevant to semiconductors with diamond and zinc blende
structure, for example [15,16], has in contrast not been dis-
cussed as much, in spite of reports of superconductivity at
low temperatures [17]. In this limit the usual SO(3) rota-
tional symmetry of the Luttinger Hamiltonian is close to
being enlarged to the maximal SU(4) symmetry that four-
component fermions may have, and some of the previously
studied superconducting states may belong to the same irre-
ducible representation of the larger symmetry group [18,19].
In this paper, we consider the simplest such situation, when
an attractive density-density interaction, being itself SU(4)
symmetric, does not discriminate between the (single, j = 0)
s-wave and the (five, j = 2) d-wave pairings of Luttinger
fermions. The six complex order parameters are shown to
form the irreducible representation (irrep) which transforms
as the antisymmetric tensor under SU(4). Since SU(4) =
Spin(6), i.e., SU(4) is the spin version of SO(6) [20], the six
order parameters, appropriately defined, may equivalently be
considered to form the vector representation of SO(6).

We first derive the Ginzburg-Landau free energy for the
antisymmetric tensor order parameter in the SU(4)-symmetric
limit of vanishing spin-orbit coupling, and find that the quar-
tic term(s) dictate that the symmetry at the superconducting
transition is spontaneously broken to the SO(5). Interestingly,
at the same time the breaking of the time-reversal symmetry
remains undecided. When we allow a weak band-inverting
term in the Luttinger Hamiltonian that reduces the SU(4) to
the usual rotational SO(3), however, we find that the s-wave

component generically ends up with a higher critical tempera-
ture and therefore inevitably condenses first, with the d-wave
components to follow at a lower temperature. Interestingly,
the ratio of the subdominant d-wave and the dominant s-wave
transition temperatures is found to be given by a number
which is universal to the leading order in weak band-inverting
Luttinger parameter. Most importantly, the d-wave compo-
nents have their common overall phase differ from the s-wave
component by π/2, and the time reversal is consequently
broken at low temperatures.

The paper is organized as follows. In Sec. II, we introduce
the noninteracting Luttinger fermions and establish notation.
In Sec. III, we add attractive interaction between Luttinger
fermions and define the six relevant superconducting order
parameters. In Sec. IV A we first derive the Ginzburg-Landau
free energy in the strict SU(4) limit. Sec. IV B discusses
how the time-reversal symmetry acts on the order parameters.
In Sec. IV C the Ginzburg-Landau free energy is derived at
weak spin-order-coupling Luttinger parameter, and the ad-
ditional superconducting transition within the s-wave phase
is discussed. Finally, we summarize our results and discuss
relevance to doped semiconductors in the last section. Calcu-
lational details are relegated to five Appendixes.

II. LUTTINGER HAMILTONIAN

The low-energy action for interacting Luttinger fermions
can be written as S = S0 + Sint. The noninteracting action S0

is

S0 =
∫

d3 p
(2π )3

∫ β

0
dτψ†

p (τ )[∂τ + H0(p)]ψp(τ ), (1)

and ψp(τ ) = (cp, 3
2
, cp, 1

2
, cp,− 1

2
, cp,− 3

2
)T is the four-

component Grassmann field, β = 1/kBT is the inverse of
temperature T , kB is the Boltzmann constant, and τ represents
imaginary time. The single-particle normal state Luttinger

2469-9950/2023/108(22)/224514(10) 224514-1 ©2023 American Physical Society

https://orcid.org/0000-0003-4918-0746
https://orcid.org/0000-0001-5496-8330
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.224514&domain=pdf&date_stamp=2023-12-19
https://doi.org/10.1103/PhysRevB.108.224514


MAJID KHEIRKHAH AND IGOR F. HERBUT PHYSICAL REVIEW B 108, 224514 (2023)

Hamiltonian reads

H0(p) = (p2 − μ)14×4 + λ

5∑
a=1

da(p)γa, (2)

where p = (p1, p2, p3) is the momentum, λ measures the
strength of spin-orbit coupling and is a real “band-inversion
parameter,” and μ is the chemical potential. The five Hermi-
tian matrices γa obey the Clifford algebra {γa, γb} = 2δab and
will here be chosen to be γ1 = σ1 ⊗ 12×2, γ2 = σ3 ⊗ σ3, γ3 =
σ3 ⊗ σ1, γ4 = σ3 ⊗ σ2, γ5 = σ2 ⊗ 12×2, where σi i = 1, 2, 3
are the usual Pauli matrices. The five real (l = 2) spherical
harmonics di(p) are defined as

d1(p) =
√

3

2

(
p2

x − p2
y

)
, d2(p) = 1

2

(
3p2

z − p2
)
,

d3(p) =
√

3px pz, d4(p) =
√

3py pz, d5(p) =
√

3px py.

We assumed full rotational symmetry, since often the ad-
ditional terms that reduce the rotational symmetry to cubic
symmetry are weak [16], as well as for reasons of simplicity.
In addition, it is known that one effect of long-range Coulomb
interaction is to make the single-particle dispersion progres-
sively more isotropic with lowering of the energy [21–25].

The eigenvalues of the Luttinger Hamiltonian read as

E±(p) = p2(1 ± λ) − μ, (3)

and exhibit a quadratic touching point of all four dispersion
bands at p = 0, that is the zone center. Away from the zone
center the fourfold degeneracy is reduced to twofold when
λ �= 0. The remaining degeneracy is due to the presence of
both inversion and time reversal. The time-reversal operator in
our representation is given by T = γ45K, where γ45 = iγ4γ5,
and K denotes the complex conjugation [5]. When the Lut-
tinger parameter |λ| > 1, two of the bands are dispersing
upwards and the other two downwards, and the bands become
“inverted”. Here we will be interested in the opposite limit
of |λ| < 1 when both pairs of bands are dispersing the same
way [for simplicity chosen to be upward in Fig. 1(a)], and
all four bands intersect the assumed finite chemical potential
[Fig. 1(b)]. When λ = 0, the degeneracy is fourfold at all mo-
menta and the Hamiltonian becomes fully SU(4) symmetric.

III. PAIRING INTERACTION

We assume next the interacting part of the action Sint to be
given by a simple model

Sint = −g
∫

d3x
∫ β

0
dτ [ψ†

x (τ )ψx(τ )]2, (4)

FIG. 1. (a) Schematic band structure of the Luttinger Hamilto-
nian for 0 < λ < 1 where the two upward doubly degenerate bands
cross at the p = 0 point. (b) The two-dimensional projection of the
two three-dimensional Fermi surfaces, with the quasiparticles with
the third component of the spin either ±1/2 (black line) or ±3/2
(red line).

with g > 0 and x = (x1, x2, x3) as a coordinate, which cor-
responds to the density-density attractive contact interaction.
The interaction term is clearly invariant under ψ → Uψ , with
U ∈ SU(4). We omitted the second independent contact term
that would reduce the symmetry of Sint to SO(3) [23]. This
way the only reduction of SU(4) in the action comes from the
kinetic energy term when the spin-orbit parameter λ is finite.

One may use the Fierz identity [5,26] and decompose
the above interaction into s- and d-wave pairing channels:
4[ψ†

x (τ )ψx(τ )]2 = Ls + Ld , where

Ls = [ψ†
x (τ )γ45ψ

∗
x (τ )]

[
ψT

x (τ )γ45ψx(τ )
]
, (5)

Ld =
5∑

a=1

[ψ†
x (τ )γaγ45ψ

∗
x (τ )]

[
ψT

x (τ )γ45γaψx(τ )
]
. (6)

Ls is the s-wave pairing term, with the s-wave as a singlet
under the rotational SO(3) symmetry. Ld is the d-wave pairing
term [5] with five d-wave components, which under rotational
SO(3) transform as a symmetric irreducible tensor [9]. In
our simple model both terms evidently come with the same
pairing interaction −g/4.

One may define all six complex order parameters together
as

�a = g

4

〈
ψT

p (ω)γ45Aaψ−p(−ω)
〉
, (7)

with the matrices Aa = {i14×4, γ1, γ2, . . . , γ5} for a =
0, 1, . . . , 5. Note the imaginary unit included in the definition
of the first (s-wave) component. The six components may be
understood as specifying the antisymmetric four-dimensional
matrix order parameter, which in our notation can be written
as

φ =
5∑

a=0

�aAaγ45 =

⎛
⎜⎜⎝

0 −�5 − i�1 �4 + i�3 �0 − i�2

�5 + i�1 0 −�0 − i�2 �4 − i�3

−�4 − i�3 �0 + i�2 0 �5 − i�1

−�0 + i�2 −�4 + i�3 −�5 + i�1 0

⎞
⎟⎟⎠. (8)

Under the SU(4) transformation ψ → Uψ the matrix
φ transforms as φ → U TφU , and therefore remains
antisymmetric. Six complex components, the s-wave

and the five d-waves together, transform therefore as
the irrep “6” of the SU(4), i.e., as the antisymmetric
tensor.
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The Lie group SU(4) represents, on the other hand, the
spin version of the SO(6) [20]. Indeed, one can think of the
Lie algebra of SO(6) as being closed by the five matrices
γ1, γ2, . . . , γ5, and the remaining ten γab = iγaγb, a < b, with
the former set being a vector under the latter set, which
alone closes the Lie algebra SO(5). The antisymmetric tensor
irrep must therefore correspond to some irrep of SO(6). It
is straightforward to check that with the s-wave component
defined as above, that is with the imaginary unit included,
the SU(4) transformations generated by γa for a = 1, 2, ..., 5
rotate in the “0a” plane, whereas those generated by γab rotate
in the “ab” plane (see Appendix A). In other words, the order
parameter as defined above is a simple vector under SO(6).

IV. GINZBURG-LANDAU THEORY

A. SU(4) limit when λ = 0

We now proceed to integrate out the Luttinger fermions and
derive the Ginzburg-Landau free energy for the superconduct-
ing order parameters. We do this first for λ = 0, up to quartic
terms, and assuming the order parameter to be uniform. The
SU(4) and the standard particle-number U(1) symmetries dic-
tate the form of the Ginzburg-Landau free energy in general
to be

F (φ) = a tr(φφ†) + b1[tr(φφ†)]2 + b2 tr(φφ†φφ†)

= 4a�†� + (16b1 + 8b2)(�†�)2 − 4b2|�T�|2, (9)

where � = (�0,�1, ...,�5). The coefficients a, b1, and b2 to
the leading order at low temperatures are found to be

a = 1

g
− N (μ, 0)

2

(
log

�

T
+ C

)
, (10)

b1 = 0, (11)

b2 = ζN (μ, 0)

2T 2
, (12)

where N (μ, 0) = √
μ/π2 is the density of states at the Fermi

level for λ = 0, ζ = 0.2131 is a constant, � is the usual
ultraviolet cutoff, and the constant C = log(2eγ /π ) (see Ap-
pendixes B and C). In the weak coupling limit g 	 1, the
coefficient a changes sign at the critical temperature

Tc = �e− 2
gN (μ,0) . (13)

Since the coefficient b2 is positive the resulting supercon-
ducting order maximizes the last term in Eq. (9), which means
that, modulo an overall phase � = |�|n̂, with n̂ as a real
six-component unit vector n̂Tn̂ = 1, and |�| = √−a/(2b2)
for a < 0. The ground state is invariant under SO(5) transfor-
mations that leave the unit vector n̂ invariant. It is also easy to
check that the quasiparticle spectrum has a full isotropic gap
|�|.

B. Time-reversal symmetry

Under time reversal the fermion field transform as ψ →
γ45ψ

∗, and ψT → ψ†γ T
45. Since γ T

45 = −γ45, one readily finds
that under time reversal

�a → s�∗
a, (14)

with the sign s = + for a = 0, and s = − for a = 1, 2, ..., 5.
The difference in the transformation property between the
s- and d-wave components stems from the imaginary unit
that was included in the definition of �0, and which was
necessary for the six-component � to be a vector under
SO(6). This means that if the six-component superconducting
order parameter has both the s-wave and some of the d-
wave components finite the time-reversal symmetry is broken;
otherwise, it is not. The free energy of the superconducting
configuration, however, in either case is the same.

C. λ �= 0

Let us now allow a finite but small spin-orbit parameter λ

and rederive the Ginzburg-Landau free energy by integrating
out the fermions. The symmetry is now only the standard
rotational SO(3), so the six-dimensional irrep of SU(4) is
broken into s-wave singlet �s = �0 and d-wave quintuplet
�d = (�1, ...,�5), which are two distinct irreps of SO(3).
The Ginzburg-Landau free energy up to the quartic terms now
reads

F (�s,�d ) = a1|�s|2 + a2�
†
d�d + q1|�s|4 + q2(�†

d�d )2

+ q3

∣∣�T
d �d

∣∣2 + q4|�s|2�†
d�d

+ q5
(
�∗2

s �T
d �d + �2

s �
†
d�

∗
d

)
+ q6�

∗
s tr(M2M∗) + q∗

6�str(M∗2M )

+ q7tr(MM∗MM∗), (15)

where we found it convenient to group the five-component �d

into a three-dimensional symmetric traceless matrix M, as

M =
5∑

i=1

�iMi, (16)

and Mi (i = 1, 2, . . . , 5) are five real symmetric traceless 3 ×
3 Gell-Mann matrices that provide a basis (see Appendix D).
The matrix M transforms then as a symmetric irreducible
tensor under SO(3), M → OTMO, with O in the fundamen-
tal representation. Equation (15) represents the most general
fourth-order expression that is invariant under SO(3) and com-
mon global gauge transformation of the s- and d-wave order
parameters.

The quadratic coefficient for the s-wave remains essentially
unchanged (see Appendix D):

a1 = 4

g
− 2N (μ, λ)

(
log

�

T
+ C

)
, (17)

where only the density of states at the Fermi level is modified
into

N (μ, λ) =
∑
η=±

Nη(μ, λ) =
√

μ

2π2

∑
η=±

1

(1 + ηλ)3/2
. (18)

For the d-wave components, on the other hand, we find the
quadratic coefficient to be

a2 = a1 + 8ζ

5
N (μ, 0)

(
λμ

T

)2

+ O((λμ)4), (19)

to the leading order in small parameter λ, the relevant crite-
rion being defined as λμ/T 	 1 (Appendix D). When λ = 0,
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we thus recover a2 = a1. Remarkably, at finite λ, one finds
a2 > a1 for all temperatures, and therefore at the critical tem-
perature

T s
c = �e− 2

gN (μ,λ) , (20)

only the s-wave component condenses.
Furthermore, the Ginzburg-Landau coefficient q7 = 0 ex-

actly at all values of λ. To the zeroth order in λ (i.e., when
λ = 0) by matching Eqs. (9) and (15) we also find that q6 = 0,
and that (Appendix D)

4b2 = q1 = q2

2
= −q3 = q4

4
= −q5. (21)

Right below T s
c , �s = √−a1/(2q1), and may be chosen real,

and �d = 0. We find that the cubic coefficient q6 ∼ λ3 and
thus negligible [27]. Since to the leading order in small λ

the coefficient q3 is still negative, the resulting d-wave order
parameter �d is also real: �d = eiθ (�1, ...,�5) with �i real,
and θ as an overall phase relative to the phase of the s-wave.
The d-wave order parameter then becomes finite when its
effective quadratic coefficient

ad = a2 + (q4 + 2q5 cos 2θ )�2
s , (22)

multiplying �
†
d�d for nonzero �s in Eq. (15) changes sign.

To the leading (second) order in λ we therefore find that ad is
lowest for θ = 0, when it becomes

ad = 8

5

[
ζN (μ, 0) + 2κa1

ζ

](
λμ

T

)2

, (23)

where κ = 0.0155 is a constant (see Appendix E). The
quadratic coefficient ad therefore becomes negative at T =
T d

c , with the d-wave transition temperature at small parameter
λ given by (see Appendix E)

T d
c

T s
c

= e− ζ2

4κ = 0.4807. (24)

At this d-wave transition within the s-wave state the remaining
SO(5) symmetry of the Ginzburg-Landau free energy for d-
wave components is thus reduced to further to the SO(4).

V. SUMMARY AND DISCUSSION

To summarize, we considered the Luttinger fermions in
the limit of weak spin-orbit, band-inverting Luttinger pa-
rameter, interacting via featureless contact attraction. In this
limit the theory becomes almost SU(4) symmetric, and the
s-wave and the d-wave components of the superconducting
order parameter together form the six-dimensional irreducible
representation. We derived the Ginzburg-Landau free energy
both in the limit of vanishing and of weak band-inverting
Luttinger parameter, and found that in the latter case the su-
perconducting state at low temperatures has a dominant is and
a subdominant d component, thus breaking the time reversal.
In the strict SU(4) limit the superconducting state breaks the
symmetry to the SO(5).

Complex order parameter that transforms as an antisym-
metric tensor under the group SU(N) has, to the best of our
knowledge, so far received only minimal attention in literature
[28–31]. One-loop renormalization group study [31] finds, for

example, only a runaway flow, and suggests that the Ginzburg-
Landau free energy in Eq. (9) leads to the weak first order
transition once the order parameter fluctuations are included
[32]. It would be interesting to see if this conclusion would
survive higher-order calculations.

We may examine the validity of the criterion for weak-
ness of the Luttinger parameter λ in our calculation, namely
λμ/T < 1, in real semiconductors. Assuming λ ≈ 0.1, and
|μ| ≈ 0.01 eV as crude order-of-magnitude estimates, would
imply Tc > 10K for our criterion to be satisfied near the crit-
ical temperature, for example. In diamond, for instance, the
effective value of λ would be somewhat higher [16], Tc ≈ 4K
and thus lower [17], and the value of |μ| for doped holes
less certain [17], but likely to be also higher. Altogether, in
diamond at least it seems likely that assuming λμ/Tc > 1 to
be more appropriate, and although the Luttinger parameter λ

itself may be reasonably small, taking into account the energy
scales relevant to superconductivity the actual perturbation
parameter is not. The coefficients of the Ginzburg-Landau
free energy can, on the other hand, in principle be evaluated
for all values of λ, and the interplay of s- and d-wave order
parameters studied that way outside of the perturbative regime
considered here. If one assumes the opposite limit λμ/T � 1,
we expect the d-wave critical temperature to likely vanish,
and the superconducting state to end up being purely s-wave.
This is because the s-wave, once it develops below its critical
temperature, suppresses the d-wave components via the quar-
tic term proportional to, presumably positive, coefficient q4 in
Eq. (15). What is needed to be in the relevant parameter range
for the time-reversal broken state we found is therefore a sys-
tem with higher Tc and low carrier concentration at the same
time, which is difficult to achieve [33]. We hope the present
work will further stimulate the search for superconductivity in
lightly doped semiconductors.
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APPENDIX A: SO(6) ROTATIONS

We showed that in the SU(4) � SO(6) limit, we can define
φ as an antisymmetric matrix φ = −φT, which transform as
φ → UφU T [see Eq. (8) in the main text]. Also,

U = ei
∑15

n=1 hnθn , (A1)

where hn represent 15 Hermitian traceless generators of
SU(4). They can be chosen to be γ1, γ2,..., γ5 and iγiγ j for
i �= j. In this Appendix, we show that the γi is the generator
of the rotations in “0i” plane while iγiγ j is a generator of the
rotations in the “i j” plane. Let us show the former explicitly
only for h1 = γ1, since the other choices are analogous. In this
case, we define

X = UφU T = eiθ1γ1

(
i�0γ45 +

5∑
a=1

�aγaγ45

)
[eiθ1γ1 ]T.

(A2)
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Note that γ1, γ2, and γ3 are real and Hermitian and hence
symmetric while γ4 and γ5 are pure imaginary and Hermitian
and hence antisymmetric. Therefore,

X = eiθ1γ1

(
i�0γ45 +

5∑
a=1

�aγaγ45

)
eiθ1γ1

= ei2θ1γ1 (i�0γ45 + �1γ1γ45) +
5∑

a=2

�aγaγ45

=
5∑

a=2

�aγaγ45 + i(�0 cos 2θ1 + �1 sin 2θ1)γ45

+ (�1 cos 2θ1 − �0 sin 2θ1)γ1γ45, (A3)

where we used that γ 2
1 = 14×4. This can be viewed as

⎛
⎜⎜⎜⎜⎜⎜⎝

�0

�1

�2

�3

�4

�5

⎞
⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎝

�0 cos 2θ1 + �1 sin 2θ1

−�0 sin 2θ1 + �1 cos 2θ1

�2

�3

�4

�5

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A4)

and interpreted as a rotation in the “01” plane. One can simi-
larly show that all other γi generate rotations in the “0i” plane.

Let us now take iγ1γ2 as a generator. In this case, we define

Y = UφU T

= e−θγ1γ2

(
i�0γ45 +

5∑
a=1

�aγaγ45

)
[e−θγ1γ2 ]T

= e−θγ1γ2

(
i�0γ45 +

5∑
a=1

�aγaγ45

)
eθγ1γ2

= i�0γ45 +
5∑

a=3

�aγaγ45 + e−2θγ1γ2 (�1γ1 + �2γ2)γ45

= i�0γ45 +
5∑

a=3

�aγaγ45 + (cos 2θ − γ1γ2 sin 2θ )

× (�1γ1 + �2γ2)γ45, (A5)

where we used the anticommutation γ1γ2 = −γ2γ1 in the
second line. This can be written as⎛

⎜⎜⎜⎜⎜⎜⎝

�0

�1

�2

�3

�4

�5

⎞
⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎝

�0

�1 cos 2θ − �2 sin 2θ

�1 sin 2θ + �2 cos 2θ

�3

�4

�5

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A6)

which clearly is a rotation in the “12” plane. In exactly the
same way one can show that γi j = iγiγ j generates a rotation
in the “i j” plane.

APPENDIX B: ONE-LOOP INTEGRALS AND THE
DERIVATION OF THE GINZBURG-LANDAU

FREE ENERGY

After performing the standard Hubbard-Stratonovich de-
composition on the interaction part of the Lagrangian, we get
the free energy of the superconducting state per volume as

fsc = �†�

g
− 1

β
ln

∫
D[ψ̄, ψ]e−(S0+Sint ), (B1)

where ψp(ω) is the Grassmann fermionic field, and ωn =
(2n + 1)π/β is the fermionic Matsubara frequency for n ∈ Z.
The noninteracting S0 and interacting Sint actions are given by

S0 =
∑

n

∫
d3 p

(2π )3
ψ†

p (ω)[iωn + H0(p)]ψp(ω),

Sint =
∑
n,a

∫
d3 p

(2π )3

[
�∗

a ψT
p (ω)γ45Aaψ−p(−ω) + h.c.

]
,

where

�a = g
〈
ψT

p (ω)γ45Aaψ−p(−ω)
〉
, (B2)

is the uniform order parameter, γ45 = iγ4γ5 is the unitary part
of the time-reversal operator, and Aa are 4 × 4 matrices. By
integrating out the fermionic field, we get

fsc = �†�

g
− 1

β
ln

[
〈e−Sint 〉0,con

∫
D[ψ̄, ψ]e−S0

]

= �†�

g
− 1

β
ln

(
1 +

〈
S2

int

〉
0,con

2!
+

〈
S4

int

〉
0,con

4!
+ . . .

)
+ f0,

where f0 = − 1
β

ln
∫
D[ψ̄, ψ]e−S0 is the normal-state free en-

ergy per volume and 〈. . . 〉0,con is the expectation value with
respect to S0 over the connected diagrams. Therefore,

F (�) = fsc − f0 ≈ �†�

g
− 1

2!β

∑
n

∫
d3 p

(2π )3

〈
S2

int

〉
0,con

− 1

4!β

∑
n

∫
d3 p

(2π )3

〈
S4

int

〉
0,con + . . . ,

where we used log(1 + x) ≈ x since the superconducting or-
der parameter �a is small close to the critical temperature,
so Sint can be treated as a perturbation. After performing the
one-loop integral and keeping the fourth-order terms in �, we
obtain

F (�) = �†�

g
− 2

β

∑
n

∫
tr[G0(−Q)A†

aG0(Q)Ab]�a�
∗
b

+ 4

β

∑
n

∫
tr[G0(−Q)A†

aG0(Q)AbG0(−Q)A†
c

× G0(Q)Ad ]�a�
∗
b�c�

∗
d , (B3)

where we introduced Q = (p, ωn) for brevity and em-
ployed γ45GT(Q)γ45 = G(Q). Therefore, we get F (�) =
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F2(�) + F4(�) where

F2(�) = �†�

g
+

∑
a,b

Kab�a�
∗
b, (B4)

F4(�) =
∑

a,b,c,d

Kabcd�a�
∗
b�c�

∗
d , (B5)

and

Kab = − 2

β

∞∑
n=−∞

∫
d3 p

(2π )3
tr
[
G0(−Q)A†

aG0(Q)Ab
]
, (B6)

Kabcd = 4

β

∞∑
n=−∞

∫
d3 p

(2π )3
tr[G0(−Q)A†

aG0(Q)

×AbG0(−Q)A†
cG0(Q)Ad ]. (B7)

The free propagator is defined as

G0(Q) = [iωn14×4 − H0(p)]−1, (B8)

where 14×4 is 4 × 4 unit matrix. It therefore reads

G0(Q) = (iωn − p2 + μ)14×4 + λda(p)γa

(iωn − p2 + μ)2 − λ2 p4
. (B9)

APPENDIX C: CALCULATION OF THE
GINZBURG-LANDAU COEFFICIENTS IN THE

SU(4) LIMIT WHEN λ = 0

In the SU(4) limit, the mean-field Ginzburg-Landau free
energy given by Eq. (9) in the main text can be rewritten as
F (�) = F2(�) + F4(�) where

F2(�) = 4a�†�, (C1)

F4(�) = (16b1 + 8b2)(�†�)2 − 4b2|�T�|2. (C2)

To determine the three unknown coefficients a, b1, and
b2, we use two distinct normalized configurations �s,d

1 =
(1, 0, 0, 0, 0, 0) and �s,d

2 = 1√
2
(1, i, 0, 0, 0, 0), and insert

them in Eqs. (C1) and (C2) as well as Eqs. (B4) and (B5).
This results in three linearly independent equations

4

g
− 2T

∑
n

∫
d3 p

(2π )3

4

(p2 − μ)2 + ω2
n

= F2
(
�s,d

1

) = 4a,

4T
∑

n

∫
d3 p

(2π )3

4[
(p2 − μ)2 + ω2

n

]2 = F4
(
�s,d

1

) = 16b1 + 4b2,

4T
∑

n

∫
d3 p

(2π )3

8[
(p2 − μ)2 + ω2

n

]2 = F4(�s,d
2 ) = 16b1 + 8b2.

Solving these equations then yields

a = 1

g
− 2T

∞∑
n=−∞

∫
d3 p

(2π )3

1

(p2 − μ)2 + ω2
n

, (C3)

b1 = 0, (C4)

b2 = 4T
∞∑

n=−∞

∫
d3 p

(2π )3

1[
(p2 − μ)2 + ω2

n

]2 . (C5)

To simplify Eqs. (C3) and (C5) further, we first introduce ξ =
p2 − μ and then use∫

d3 p
(2π )3

= 1

4

∫ �

−�

N (μ, 0)dξ . (C6)

Performing the finite temperature Matsubara summation and
then introducing x = ξ/T gives

a = 1

g
− N (μ, 0)

2

∫ �/T

0

dx

x
tanh

x

2
, (C7)

b2 = N (μ, 0)

2T 2

∫ �/T

0

sinh x − x

x3(1 + cosh x)
dx. (C8)

At low temperatures, the upper limit of both integrals is large
so we approximate it as �/T → ∞. The first integral diverges
logarithmically at low temperatures and after integration by

parts one finds

a = 1

g
− N (μ, 0)

2

(
log

�

T
+ C

)
, (C9)

b2 = ζN (μ, 0)

2T 2
c

, (C10)

where

ζ =
∫ ∞

0

sinh x − x

x3(1 + cosh x)
dx = 0.2131, (C11)

C = −1

2

∫ ∞

0
log(x) sech2

(
x

2

)
dx = log

2eγ

π
, (C12)

and γ = 0.5772 is known as Euler’s constant. Equations (C9)
and (C10) correspond to Eqs. (10) and (12) in the main text,
respectively.

APPENDIX D: CALCULATION OF THE
GINZBURG-LANDAU COEFFICIENTS WHEN λ �= 0

In this case, we have to treat s- and d-wave order parame-
ters as two distinct objects. The Ginzburg-Landau free energy
up to quartic order given by Eq. (15) in the main text can be
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rewritten as

F (�s,�d ) = F2(�s,�d ) + F4(�s,�d ), (D1)

where

F2(�s,�d ) = a1|�s|2 + a2�
†
d�d , (D2)

F4(�s,�d ) = q1|�s|4 + q2(�†
d�d )2

+q3|�T
d �d |2 + q4|�s|2�†

d�d

+q5
(
�∗2

s �T
d �d + �2

s �
†
d�

∗
d

)

+q6�
∗
s tr(M2M∗) + q∗

6�str(M∗2M )

+q7tr(MM∗MM∗). (D3)

Here,

M =
5∑

a=1

�aMa, (D4)

where the five Gell-Mann matrices

M1 =

⎛
⎜⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟⎠, M2 = 1√

3

⎛
⎜⎝

−1 0 0

0 −1 0

0 0 2

⎞
⎟⎠, M3 =

⎛
⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎠, M4 =

⎛
⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎠, M5 =

⎛
⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎠,

(D5)
provide a basis of three-dimensional real traceless symmetric matrices.

In order to calculate a1 and a2, we define �1 = (1, 0, 0, 0, 0) and employ Eqs. (B4) and (D2). This yields two linearly
independent equations F2(1, 0) = a1 and F2(0,�1) = a2. Solving these equations gives

a1 = 4

g
− 8T

∞∑
n=−∞

∫
d3 p

(2π )3

λ2 p4 + (p2 − μ)2 + ω2
n[

(p2(1 + λ) − μ)2 + ω2
n

][
(p2(1 − λ) − μ)2 + ω2

n

] , (D6)

a2 = 4

g
− 8T

∞∑
n=−∞

∫
d3 p

(2π )3

−3

5
λ2 p4 + (p2 − μ)2 + ω2

n[
(p2(1 + λ) − μ)2 + ω2

n

][
(p2(1 − λ) − μ)2 + ω2

n

] . (D7)

If we define ξ± = p2(1 ± λ) − μ, the integrand of Eq. (D6)
can be written as

λ2 p4 + (p2 − μ)2 + ω2
n(

ξ 2+ + ω2
n

)(
ξ 2− + ω2

n

) = 1

2

ξ 2
+ + ξ 2

− + 2ω2
n(

ξ 2+ + ω2
n

)(
ξ 2− + ω2

n

)
= 1

2

[
1

ξ 2+ + ω2
n

+ 1

ξ 2− + ω2
n

]
. (D8)

By using

∫
d3 p

(2π )3
= 1

2

∫ �

−�

Nη(μ, λ)dξη, (D9)

where Nη(μ, λ) is defined by Eq. (18) in the main text, we get

a1 = 4

g
− 2TN (μ, λ)

∑
n

∫ �

−�

dξ

ξ 2 + ω2
n

.

After performing the Matsubara summation, we get

a1 = 4

g
− 2N (μ, λ)

∫ �/T

0

dx

x
tanh

x

2
, (D10)

where we introduced x = ξ/T after performing the Matsubara
summation. Calculating the integral by parts yields

a1 = 4

g
− 2N (μ, λ)

(
log

�

T
+ C

)
. (D11)

Furthermore, to simplify Eq. (D7), we write it as

a2 = a1 + 64T

5

∑
n

∫
d3 p

(2π )3

λ2 p4(
ξ 2+ + ω2

n

)(
ξ 2− + ω2

n

) , (D12)

so a2 > a1 at finite λ for all temperatures. For small λ, the
integrand can be expanded around λ = 0 as

a2 = a1 + 64T

5

∑
n

∫
d3 p

(2π )3

(λμ)2

(ξ 2 + ω2
n )2

+ O((λμ)4),

where we approximate p2 ≈ μ. After performing the Matsub-
ara summation we get

a2 = a1 + 8ζ

5
N (μ, 0)

(
λμ

T

)2

+ O((λμ)4), (D13)

which is Eq. (19) in the main text.
In order to calculate the seven quartic coefficients qi,

we introduce three more distinct normalized d-wave con-
figurations �2 = 1√

2
(1, i, 0, 0, 0), �3 = 1√

2
(1, 0, i, 0, 0), and
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�4 = i√
2
(1, 0, 1, 0, 0). Substitute them in Eqs. (B5) and (D3)

results in

F4(1, 0) = q1,

F4(0,�1) = q2 + q3 + 2q7,

F4(0,�2) = q2 + 4

3
q7,

F4(0,�3) = q2 + 2q7,

F4(1,�1) = q1 + q2 + q3 + q4 + 2q5 + 2q7,

F4(1,�2) = q1 + q2 + q4 + 4

3
q7,

F4(1,�4) = q1 + q2 + q3 + q4 − 2q5

+ 3i

2
√

2
(q6 − q∗

6 ) + 2q7.

After solving these equations for the seven unknown qi, one
finds

qi = 16T
∞∑

n=−∞

∫
d3 p

(2π )3

cqi
1 λ4 p8 + cqi

2 λ3 p6(p2 − μ) + λ2 p4
[
cqi

3 (p2 − μ)2 + cqi
4 ω2

n

] + cqi

5

[
(p2 − μ)2 + ω2

n

]2

[
(p2(1 + λ) − μ)2 + ω2

n

]2[
(p2(1 − λ) − μ)2 + ω2

n

]2 , (D14)

where the values of cqi
i are given in Table I for i = 1, 2, . . . , 5.

Note that the coefficient q6 ∼ λ3, from the last row in the
table.

APPENDIX E: SECOND PHASE TRANSITION FROM
s-WAVE TO TIME-REVERSAL BREAKING is + d-WAVE

SUPERCONDUCTING PHASE

For T < T s
c , the d-wave order parameter becomes finite

when its effective quadratic coefficient

ad = a2 + (q4 + 2q5 cos 2θ )�2
s

= a2 − a1

2q1
(q4 + 2q5 cos 2θ ), (E1)

changes sign. In order to simplify ad , we find that to the lead-
ing order in λ the denominator of Eq. (D14) can be expanded
as

1

(ξ 2+ + ω2)2(ξ 2− + ω2)2

≈ 1

(ξ 2 + ω2)4

[
1 + 4(ξ 2 − ω2)

(ξ 2 + ω2)2
(λp2)2 + O((λp2)4)

]
,

(E2)

TABLE I. The values of cqi
1 , cqi

2 , . . . , cqi
5 corresponding to each qi

in Eq. (D14) for i = 1, 2, . . . , 6 at λ �= 0.

where ξ± = p2(1 ± λ) − μ and ξ = p2 − μ. Therefore, we
can approximate q1, q4, and q5 as

qi ≈ cqi

5 q10 + 16T
∑

n

∫
d3 p

(2π )3

[
cqi

3 (p2 − μ)2 + cqi
4 ω2

n

(ξ 2 + ω2
n )4

+ 4cqi

5 (ξ 2 − ω2)

(ξ 2 + ω2)4

]
(λμ)2, (E3)

where we used p2 ≈ μ, and define q10 = q1(λ = 0). Note that
performing the integral close to the Fermi surfaces for the term
whose coefficient is cqi

2 inside the integrand of Eq. (D14) gives
zero as the corresponding integrand is odd with respect to ξ .
Also, the integral over the second line of Eq. (E3) becomes
zero at T = 0, so it is parametrically smaller at small temper-
atures, so we neglect it. Therefore, we obtain

q4 + 2q5

2q1
≈ 1 − 16r

5
(λμ)2, (E4)

where we set θ = 0 to make ad minimal, and defined the ratio

r =
(

T
∑

n

∫ �

−�

dξ

(ξ 2 + ω2
n )3

)(
T

∑
n

∫ �

−�

dξ

(ξ 2 + ω2
n )2

)−1

.

Simplifying this further gives

q4 + 2q5

2q1
≈ 1 − 16

5

(
λμ

T

)2(
κ

ζ

)
, (E5)

at low temperatures where

κ = 2T 5
∑

n

∫ �

−�

dξ

(ξ 2 + ω2
n )3

=
∫ ∞

0

3(sinh x − x) − x2 tanh x
2

4x5(1 + cosh x)
dx = 0.0155, (E6)

and

ζ = 2T 3
∑

n

∫ �

−�

dξ

(ξ 2 + ω2
n )2

= 0.2131, (E7)

as already defined by Eq. (C11). Substituting Eq. (E5) in the
second line of Eq. (E1) at θ = 0 yields

ad = a2 − a1 + 16a1

5

(
λμ

T

)2(
κ

ζ

)
. (E8)
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By employing Eq. (D13), we finally get

ad = 8

5

[
ζN (μ, 0) + 2κa1

ζ

](
λμ

T

)2

, (E9)

which is Eq. (23) in the main text. Substituting Eq. (D11) for
a1 and then using the fact that below T s

c

4

g
= 2N (μ, λ)

(
log

�

T s
c

+ C

)
, (E10)

we get

ad = 8

5
N (μ, 0)

[
ζ + 4κ

ζ
log

(
T

T s
c

)](
λμ

T

)2

, (E11)

to the leading order in λ. After even further simplification, we
find that ad changes sign at T d

c where

T d
c

T s
c

= e− ζ2

4κ = 0.4807, (E12)

which is Eq. (24) in the main text.
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