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The ferromagnetic-metal–superconductor heterostructure with spin-orbit coupling is a promising candidate
for topological superconductivity. Inspired by recent experimental progress in layered van der Waals metal–
superconductor heterostructures, we study the interplay between the interface Rashba hopping and the intrinsic
Dresselhaus spin-orbit coupling and demonstrate rich topological phases with five distinct Chern numbers.
In particular, we find a topological state with the Chern number as large as four in a range of parameter space.
We calculate the Berry curvatures that construct the Chern numbers and show that these Berry curvatures induce
anomalous thermal Hall transport of the superconducting quasiparticles. We reveal chiral edge states in the
topological phase and counterpropagating chiral edge states in the topologically trivial phase, and show that the
wave functions of these edge states mostly concentrate on the ferromagnetic metal layer of the heterostructure.
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I. INTRODUCTION

Topological superconductors with Majorana modes have
attracted much interest recently due to their possible applica-
tions in topological quantum computation [1–8]. The topology
of two-dimensional superconducting systems can be charac-
terized by the Chern number [2,9], which is the summation
of the momentum-space Berry curvature of the Bogoliubov–
de Gennes Hamiltonian [10–12]. For superconductors with
nonzero Chern number, the bulk-edge correspondence princi-
ple predicts chiral Majorana modes [11]. Moreover, Majorana
zero modes could exist in the presence of superconduct-
ing vortices for superconductors with odd Chern numbers
[9,10,13]. The pursuit of superconductors with nonzero Chern
number is one of the central tasks in the present study of
topological superconductivity [14–16].

Topological superconductors with nontrivial Chern num-
bers usually require chiral superconducting gap functions
[9,17–19]. The chiral superconducting gap was explored in
a few materials [20–28]. Recently, much effort was concen-
trated on achieving the effective chiral superconducting gap
in the designed heterostructures where conventional s-wave
superconductors were in close contact with metallic systems
such as topological insulators [29–34] and spin-orbit coupling
semiconductors [35,36]. On the interface of these heterostruc-
tures, the delicate combination of the superconductivity, the
spin-orbit coupling, and the Zeeman energy can bring topo-
logical superconducting states with nonzero Chern numbers
[16,18].
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In these heterostructures, spin-orbit coupling is the central
ingredient for topological superconductivity. Previous theoret-
ical proposals for the required spin-orbit coupling fall into two
distinct mechanisms. First, there can be intrinsic spin-orbit
coupling in the metal layer of the heterostructure, such as the
surface states of the three-dimensional topological insulator
and the spin-orbit coupling semiconductor. Then a proper
Zeeman energy can turn the system into the topological state
[29,35,37]. An alternative proposal involves a heterostructure
of a conventional superconductor and a half-metal [38–40].
The half-metallic layer has no intrinsic spin-orbit coupling.
Instead, there is Rashba spin-orbit hopping between the
half-metal and the conventional superconductor. The het-
erostructure will enter the topological superconducting phase
when the half-metal has an odd number of Fermi surfaces.

Recently, there has been considerable progress in
the experimental realization of heterostructures between
conventional superconductors and layered van der
Waals (vdW) ferromagnetic materials [41–45], such
as the Fe3GeTe2/superconductor hybrid systems [46],
CrO2/superconductor heterostructures [47,48], and
CrBr3/NbSe2 heterostructures [49–51]. In these van der
Waals heterostructures, a strong proximity effect can
induce superconductivity in the ferromagnetic layer [52,53],
even in the presence of a significant Zeeman field. More
interestingly, there can be the coexistence of intrinsic
spin-orbit coupling in the ferromagnetic-metal layer [54,55]
and extrinsic spin-orbit interlayer hopping between the
ferromagnetic metal and superconductor [39]. Therefore,
these ferromagnetic-metal–superconductor heterostructures
provide an interesting playground for investigating the
interplay between the two distinct mechanisms for achieving
topological superconductivity. In particular, one would
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FIG. 1. Schematics of the heterostructure constructed by ferro-
magnetic metal and s-wave superconductor. The ferromagnetic metal
layer has intrinsic Dresselhaus spin-orbit coupling denoted by the
tight-binding hopping parameter β. Meanwhile, there is an interlayer
Rashba spin-orbit hopping denoted by the tight-binding hopping pa-
rameter α1, while the spin-conserving interlayer hopping is denoted
by the tight-binding hopping parameter α0.

expect rich topological phases due to the competition
between the intrinsic Dresselhaus spin-orbit coupling in the
ferromagnetic metal and the Rashba spin-orbit interlayer
hopping.

In this work, we study a two-layer model for the
ferromagnetic-metal–superconductor heterostructure as
shown in Fig. 1. The ferromagnetic-metal layer has intrinsic
Dresselhaus spin-orbit coupling and Zeeman energy, while
the superconducting layer has an s-wave superconducting
gap. The interlayer hopping has both spin-conserving and
spin-flipping components. The spin-conserving hopping is
the conventional electron tunneling between two layers while
the spin-flipping hopping is the Rashba spin-orbit hopping
due to the inversion symmetry breaking on the interface
between the two layers. We calculate the phase diagrams
of the system with typical parameters and show topological
phases with five distinct Chern numbers. In particular, we
find a topological phase with the Chern number as large
as 4 when both the superconducting layer and the metallic
layer are nearly half filled. We calculate the Berry curvatures
that construct the Chern numbers and show that the Berry
curvatures induce an anomalous thermal Hall effect for
the superconducting quasiparticles. Finally, we study the
boundary states and show chiral modes for the topological
phases. Interestingly, we also find counterpropagating chiral
edge modes even in the topologically trivial phase. We find
that these counterpropagating chiral edge modes are protected
by a hidden chiral symmetry of the Hamiltonian. We exhibit
the wave functions of the edge modes and find that they
are concentrated on the ferromagnetic metal layer of the
system.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the ferromagnetic-metal and s-wave su-
perconductor two-layer model that is considered in the work,
and we show the phase diagram which exhibits topological
states with different Chern numbers. In Sec. III, we show the
Berry curvatures in the momentum space which construct the
Chern numbers and the anomalous thermal Hall conductivity
governed by these Berry curvatures. In Sec. IV, we demon-
strate the dispersion of the edge states with open boundary
conditions in one direction and show the real-space distri-
bution of the edge-state wave functions. Finally, we give a
summary in Sec. V.

II. MODEL AND PHASE DIAGRAM

In the designs of realistic topological superconducting
systems, one of the main theoretical proposals is the het-
erostructure of conventional superconductors and spin-orbit
coupling semiconductors. In these designs, the central in-
gredient is the spin-orbit coupling. To be specific, there are
two different methods to incorporate spin-orbit coupling into
the system. One proposal is to consider a semiconductor
with intrinsic spin-orbit coupling [29,35,37], then the direct
proximity of the superconducting pairing will induce topolog-
ical superconductivity with a proper Zeeman field. Another
proposal involves a half-metal without intrinsic spin-orbit
coupling. In contrast, the proximity of the superconducting
pairing must include a Rashba spin-orbit interlayer hopping
which flips the spin of the Cooper pair [39]. Here, we consider
a minimal model which takes account of both processes. This
minimal model is a double-layer square-lattice tight-binding
model, as shown in Fig. 1. The ferromagnetic metal layer is
described by the Hamiltonian

HFM = − t1
∑
〈i j〉α

c†
iαc jα + μ1

∑
iα

c†
iαciα

+ iβ
∑

〈i j〉αγ

c†
iα (σαγ × d i j )zc jγ

+ Mz

∑
i

(c†
i↑ci↑ − c†

i↓ci↓), (1)

where i and j are vectors which label the site of the square lat-
tice of this model and 〈i j〉 represents the nearest-neighboring
sites, t1 is the nearest-neighbor hopping energy, α and γ rep-
resent the spin index, μ1 is the chemical potential, Mz is the
effective Zeeman energy, β represents to the strength of Dres-
selhaus spin-orbit coupling, σ corresponds to Pauli matrices in
spin space, σαγ = (σαγ

x , σ
αγ
y , σ

αγ
z ), α =↑,↓ labels the spin of

the electron and the same for γ , di j is a unit vector which can
be written as [−(ix − jx ), iy − jy, 0]. The lattice constants are
set to unity.

The s-wave superconducting layer is described by the
Hamiltonian

HSC = −t2
∑
〈i j〉α

f †
iα f jα + μ2

∑
iα

f †
iα fiα + �

∑
i

f †
i↑ f †

i↓, (2)

where t2 is the nearest-neighbor hopping energy, μ2 is the
chemical potential, and � represents the superconducting or-
der parameter.

The two layers are coupled through electron hopping and
the Hamiltonian can be written as

HI = α0

∑
iα

f †
iαciα + iα1

∑
〈i j〉αγ

c†
iα (σαγ × d ′

i j )z f jγ , (3)

where α0 and α1 represent the hopping parameters for spin-flip
hopping and spin-conserving hopping when electrons hopping
across the interlayer, respectively, d ′

i j can be written as (ix −
jx, iy − jy, 0) and is the unit projection vector from j to i in
the x-y plane. Here we note that spin-flipping hopping only
exists for site i �= j due to the effective spin-orbit coupling
for hopping in the x and y directions, which is caused by the
inversion symmetry breaking in the direction perpendicular to
the interface of the two layers.

224513-2



TOPOLOGICAL SUPERCONDUCTIVITY WITH LARGE … PHYSICAL REVIEW B 108, 224513 (2023)

The total Hamiltonian for the model in real space can
be written as H = HFM + HSC + HI. It can be transformed
into the momentum space when we consider periodic bound-
ary conditions. In the presence of superconductivity, it is
more convenient to formulate the total Hamiltonian in the
Bogoliubov-de Gennes (BdG) form, which is written as

H = 1

2

∑
k

ψ
†
k HBdG(k)ψk, (4)

where we define the Nambu spinor operator ψ
†
k =

(c†
k↑, c†

k↓, f †
k↑, f †

k↓, c−k↑, c−k↓, f−k↑, f−k↓), and the mean-field
BdG Hamiltonian is written as

HBdG(k) = 1

2
ε1(k)τz(s0 + sz )σ0 + 1

2
ε2(k)τz(s0 − sz )σ0

+ 1

2
β sin kxτz(s0 + sz )σy+1

2
β sin kyτ0(s0 + sz )σx

+ α0τzsxσ0 − α1 sin kxτzsxσy + α1 sin kyτ0sxσx

+ 1

2
Mzτz(s0 + sz )σz − 1

2
�τy(s0 − sz )σy, (5)

where ε1(k) = −2t1(cos kx + cos ky) + μ1, ε2(k) =
−2t2(cos kx + cos ky) + μ2 and τ, s, σ are Pauli matrices
in the particle-hole, layer, and spin degrees of freedom,
respectively.

The topology of this two-layer system is characterized by
the BdG Hamiltonian HBdG(k), which is effectively a single-
particle Hamiltonian with particle-hole symmetry. The system
has a Zeeman energy which breaks the time-reversal symme-
try. As a result, the chiral symmetry of the system is also
broken, and the system belongs to the D class [11,56,57] in
the topological classification. The topological number is the
Chern number which is the summation of the Berry curvatures
in the momentum space


n
μυ (R) = i

∑
m �=n

〈m|∂H/∂Rμ|n〉〈n|∂H/∂Rυ |m〉
(Em − En)2

− (μ ↔ υ ).

(6)

The summation of the Berry curvatures of bands with negative
energies provides the Chern number of the system.

We calculate the Chern number of the BdG Hamilto-
nian and find that this two-layer system exhibits multiple
topological phases with different Chern numbers. This com-
plicated phase diagram comes from the competition between
the intralayer Dresselhaus spin-orbit coupling and the inter-
layer Rashba spin-orbit hopping. To reveal this competition,
we demonstrate phase diagrams for the Chern number with
four typical parameters in Fig. 2. We first demonstrate the
scenario where the Dresselhaus spin-orbit coupling domi-
nates the Rashba spin-orbit interlayer hopping. As shown in
Fig. 2(a), we find a phase diagram that qualitatively replicates
the phase diagram of the single-layer models, which was
studied in previous works [35,37,58]. There are three topo-
logical regions with two distinct Chern numbers of 1 and −2.
The phase boundary also closely resembles the single-layer
system. The gap of HBdG(k) closes at the momenta of ,
X (0, π ), (π, 0), M(π, π ) points. For the case of gap closing
at the  point, the intrinsic Dresselhaus spin-orbit coupling

FIG. 2. Topological phase diagrams with distinct Chern numbers
for four typical parameters. (a) The intrinsic Dresselhaus spin-orbit
coupling dominating regime with α1/t1 = 1/160 and β/t1 = 1/8.
(b) The interlayer Rashba spin-orbit hopping dominating regime
with α1/t1 = 1/8, β/t1 = 1/160. (c) The balanced regime with
α1/t1 = 1/8, β/t1 = 1/16. Other parameters are taken as �/t2 =
1/10, α0/t1 = 1/4, and μ2/t2 = 1. (d) The near half-filled regime
with μ2 = 0 while other parameters are taken the same as (c).

and interlayer Rashba spin-orbit hopping in HBdG are negligi-
ble. Then the secular equation for the gap-closing condition
det[HBdG()] = 0 is analytically solvable, and we can write
down the phase transition between the topologically trivial
phase and the topological phase with Chern number equal to
1 (the case when the Fermi surface is at the bottom of the
ferromagnet metal’s energy band) as

Mz1 =
√(

a1μ
2
1 + a2μ1 + a3

)
/a1, (7)

where a1 = 16t2
2 − 8t2μ2 + μ2

2 + �2, a2 = −2α2
0 (μ2 −

4t2) − 8t1a1, and a3 = α4
0 − 8α2

0t1(4t2 − μ2) + 16t2
1 a1.

Similarly, we can also solve the secular equation to obtain the
phase boundary between the topologically trivial phase and
the topological phase with the C = −2 (the gap closes at the
X points) as

Mz2 =
√(

b1μ
2
1 + b2μ1 + b3

)
/b1, (8)

where b1 = μ2
2 + �2, b2 = −2α2

0μ2, and b3 = α4
0 . We notice

that these expressions resemble the phase boundaries for the
single-layer system [35], although the parameters become
much more complicated due to the two-layer nature of the
model. The resemblance indicates that the two-layer nature
of the model does not bring much complexity because the
dominant ingredient is the intrinsic Dresselhaus spin-orbit
coupling. In Fig. 2(b), we demonstrate the scenario where
the Rashba spin-orbit interlayer hopping dominates the Dres-
selhaus spin-orbit coupling. In this scenario, the intrinsic
spin-orbit coupling of the ferromagnetic metal is negligible
and we simply come back to the half-metal/superconductor
model that was introduced in Ref. [39]. We find that the
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phase diagrams are similar to Fig. 2(a), except that the Chern
numbers have a sign reversal.

Now we come to the more complex and interesting sce-
nario where the Dresselhaus spin-orbit coupling and the
Rashba spin-orbit interlayer hopping are comparable. In this
case, the phase diagram exhibits complicated topological or-
dering as shown in Fig. 2(c). There are a number of phase
regions with distinct Chern numbers of ±1, ±2, and 0. Look-
ing at the boundary of the phase transition, we find that the
phase transition between topological states and trivial states
as shown in Eqs. (8) and (9) still exist. However, there are
additional phase transitions that enrich the phase diagram. In
particular, we find phase transitions between the topological
states of C = 1 and C = −1. This phase transition comes from
the competition between the Dresselhaus spin-orbit coupling
and the Rashba spin-orbit interlayer hopping. Let us reveal
this competition by looking closely at the single-particle
Hamiltonian of the two-layer system

H =
(

(ε1(k)σ0 + Mzσz + β(sin kyσx + sin kxσy) c.p.

α0σ0 + α1(sin kyσx + sin kxσy) ε2(k)σ0

)
,

(9)

where c.p. = α0σ0 + α1(sin kyσx − sin kxσy). This is a 4 × 4
matrix where the upper left 2 × 2 blocks describe the fer-
romagnetic metal and the lower right 2 × 2 block describes
the kinetic energy of the conventional superconductor. (The
superconducting order parameter � terms are in the upper
right and lower left 4 × 4 matrices.) In this 4 × 4 matrix,
we notice that the Dresselhaus spin-orbit coupling and the
Rashba spin-orbit interlayer hopping stay at different 2 × 2
blocks. However, they can be put together by diagonalizing
the ferromagnetic metal block with a unitary transformation

U =
(

e
iθ
2 n̂·σ̂ 0
0 σ0

)
, (10)

where θ = arctan(β
√

(sin k2
x + sin k2

y )/Mz ) and n̂ =
(− sin kx, sin ky, 0)/

√
sin k2

x + sin k2
y is a unit vector. After

this unitary transformation, the Hamiltonian is written as

H =
(

ε1(k)σ0 + Mz

cos θ
σz h12

h21 ε2(k)

)
, (11)

where

h12 =
(

α0 cos
θ

2
− 2iα1 sin

θ

2
sin kx sin ky/

√
sin k2

x + sin k2
y

)
σ0 +

(
α1 cos

θ

2
sin ky − iα0sin

θ

2
sin kx/

√
sin k2

x + sin k2
y

)
σx

−
(

α1 cos
θ

2
sin kx − iα0sin

θ

2
sin ky/

√
sin k2

x + sin k2
y

)
σy −

(
α1 sin

θ

2
(sin2 kx − sin2 ky)/

√
sin k2

x + sin k2
y

)
σz. (12)

We notice that both Dresselhaus spin-orbit coupling and the
Rashba spin-orbit interlayer hopping are now transformed to
the off-diagonal 2 × 2 block of the Hamiltonian. The model
is now equivalent to the half-metal/superconductor system
introduced by the authors of Ref. [39], where the spin-orbit
interlayer hopping is a combination of the Dresselhaus and
the Rashba terms. By simplifying the h12 in Eq.(11), we can
get the real and imaginary terms of the upper right part in h12,
respectively,

Re(h12) =
(

α1 cos
θ

2
+ α0 sin

θ

2

/√
sin k2

x + sin k2
y

)
sin ky,

Im(h12) =
(

α1 cos
θ

2
− α0 sin

θ

2

/√
sin k2

x + sin k2
y

)
sin kx.

(13)

Now it is clear that the off-diagonal elements of the h12

term are topologically equivalent to sin ky + i sin kx or sin ky −
i sin kx, depending on the relative sign of the two coefficients
in Eq. (14). For two distinct cases, the system corresponds to
effective p + ip and p − ip chiral topological superconduc-
tivity, and their corresponding Chern numbers are + and − 1,
respectively. The phase transition condition is the zero for the
imaginary part which is written as

tan
θ

2
= α1

α0

√
sin k2

x + sin k2
y . (14)

This function provides a rough analytical understanding of the
phase boundaries between C = 1 and C = −1 in Fig. 2(c),

which can be understood as the exact balance between the
intralayer Dresselhaus spin-orbit coupling and the interlayer
Rashba spin-orbit hopping.

Finally, we demonstrate topological phases with a Chern
number as large as 4, as shown in Fig. 2(d). This topological
phase with a large Chern number requires a delicate balancing
of the parameters. For example, the Fermi surfaces of both the
ferromagnetic metal and the superconductor have to overlap
near the nesting position. This large Chern number is a result
of the two-layer nature of the model. As we will show, it
requires all four bands of the system to be topological. There-
fore, it does not appear in the previous one-layer models [35].

III. BERRY CURVATURE

The topological phase diagram with different Chern num-
bers can be understood more clearly by checking the Berry
curvatures in the momentum space. For this purpose, we il-
lustrate Berry curvatures for typical Chern numbers in Fig. 3.
We first look at the Berry curvatures with C = ±1, where
one chiral Majorana mode is expected at the edge, and the
Majorana zero mode would appear in the presence of a su-
perconducting vortex. As shown in Figs. 3(a) and 3(b), The
Berry curvatures peak at a circle in the Brillouin zone. In
fact, these circles are exactly the Fermi surface of the ferro-
magnetic metal. Due to the relatively large Zeeman energy,
the two bands of the ferromagnetic metal split, and only
one of them intersects with the Fermi energy. The Dressel-
haus spin-orbit coupling or the Rashba spin-orbit interlayer
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FIG. 3. Momentum space Berry curvatures for typical parameters with six distinct Chern numbers. (a,b) Topological phase with C = −1
and C = 1, with the Berry curvatures concentrate around the single Fermi surface of the ferromagnetic metal layer. (c,d) Topological phase with
C = −2 and C = 2, with the Berry curvatures concentrated around the two Fermi surfaces of the ferromagnetic metal layer. (e) Topologically
trivial phase with C = 0, with nonvanishing Berry curvatures around the Fermi surfaces of the ferromagnetic layer. (f) Topological phase with
C = 4, with both the superconducting layer and the ferromagnetic metal layer being nearly half filled.

hopping modulates the Bogoliubov eigenstates around the
Fermi surfaces and induces Berry curvatures that sum to the
Chern number C = ±1. In Figs. 3(c) and 3(d), we show
the Berry curvatures corresponding to the Chern numbers
C = ±2. In these cases, the chemical potential is lifted so
that it touches both the energy bands of the ferromagnetic
metal, even though they energetically split by the Zeeman
energy. In this regime, the Berry curvatures also concentrate
around the two Fermi surfaces of the ferromagnetic metal.
We notice that the Fermi surfaces of the ferromagnetic metal
are near nesting, which resembles the results of the one-layer
model. While roughly one Fermi surface contributes a Chern
number of ±1, the total summation of the Berry curvatures
provides a Chern number of ±2. The Berry curvatures of the
topologically trivial state with C = 0 are shown in Fig. 3(e).
It is clear that the Berry curvatures are nonvanishing while
the summation is zero. Finally, we examine the topological
states with the large Chern number of C = 4. As shown in
Fig. 3(f), the Berry curvatures peak at the four Fermi surfaces
of the ferromagnetic metal and the superconductor. These four
Fermi surfaces are all near nesting, which causes complicated
interband coupling effects. We believe that this near-nesting
Fermi surface is the key ingredient to achieving the large
Chern numbers in this system.

The Berry curvatures are important to transport properties.
The anomalous thermal Hall conductivity is related to the
Berry curvatures through the formula [12,59–61]

κxy = 1

T

∑
n

∫
[dk](
nk )

∫ ∞

Enk

dηη2 f ′(η, T ), (15)

where f (Enk, T ) = 1/(eEnk/T + 1) is the Fermi-Dirac distri-
bution at temperature T ; f ′ is its derivative with respect to
Enk; Enk and 
nk are energy and the Berry curvature in mo-
mentum space with the energy band index n, respectively.
We show the temperature dependence of anomalous thermal
Hall conductivity with different Chern numbers in Fig. 4.
We find that the low-temperature limit of the thermal Hall
conductivity is determined by the Chern number and the uni-
versal value of κ0 = πk2

BT/6h̄. In the high-temperature limit,
the thermal Hall conductivity gradually decays to zero. We
particularly note that the thermal Hall conductivity is nonvan-
ishing even for zero Chern numbers. As shown in Fig. 4(a),
the thermal Hall conductivity is actually in the same order
as those for nonzero Chern numbers at finite temperatures.
The reason for the significant thermal Hall conductivity in
the topologically trivial regime is well understood from the
Berry curvature distribution shown in Fig. 3(e). The Berry
curvatures are comparable to the topologically nontrivial
regions even though their summation gives a zero Chern num-
ber. These transport signals are experimentally measurable
and would provide information for both the Chern num-
ber and the Berry curvatures of topological superconducting
systems.

IV. CHIRAL MAJORANA EDGE STATES

For open boundary systems, the bulk-edge correspondence
predicts the chiral Majorana modes in the class-D topologi-
cal states with nonzero Chern numbers [10,62]. To explicitly
demonstrate the chiral Majorana edge modes, we consider
the two-dimensional lattice with periodic boundary condition
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FIG. 4. Anomalous thermal Hall conductivity as a function of
temperature for four typical states with different Chern numbers.
(a) Topologically trivial state with C = 0. The zero-temperature
limit of the anomalous thermal Hall conductance is zero. (b)–
(d) Topological states with C = −1, 2, 4. The zero-temperature
limit of the anomalous thermal Hall conductance is Cκ0 with
κ0 = πk2

BT/6h̄.

in the x direction and open boundary condition along the y
direction. With this boundary condition, the momentum in
the x direction is still a valid quantum number. We numeri-
cally solve the Bogoliubov–de Gennes equation for this open

boundary system, and show the energy spectra as a function
of the momentum in the x direction, as shown in Fig. 5. For
the topological states with odd Chern numbers of C = ±1,
we find one Majorana edge mode which propagates along the
opposite direction at the different edges. In Fig. 5(a), the blue
edge localizes at the left boundary moving downwards with
velocity vy < 0, while the red edge state localizes at the right
boundary moving upwards with velocity vy > 0. In Fig. 5(b),
the chirality of the Majorana modes flips when the Chern
number changes sign.

For larger Chern numbers of C = 2, we find two chiral Ma-
jorana edge states propagating in the same direction, as shown
in Fig. 5(c). These two chiral Majorana modes are energeti-
cally split, therefore, they cannot be simply understood as part
of a single chiral Dirac mode. In Fig. 5(d), we show the edge
states for C = −2, it is obvious that the propagation direction
of edge states is reversed, consistent with the expectation from
the Chern number.

Finally, we analyze the results of topological trivial states.
For Chern number equal 0, the simple analysis would expect
the absence of edge states. This is indeed the case for most
topologically trivial states as shown in Fig. 5(e). However, in
the numerical solutions, we find unexpected edge states even
in the topological trivial region. As shown in Fig. 5(f), two
chiral edge modes are propagating along opposite directions
on the same edge. These edge states resemble the counter-
propagating chiral edge states that appeared in topological
insulators. They are stable with simple parameter modifi-
cations of the model, suggesting that they are not simply
accidental edge states. In fact, these edge states are topologi-
cally protected by a winding number. To reveal this winding
number more explicitly, we examine the one-dimensional

FIG. 5. Energy spectra of the system as a function of the x-direction momentum, with open boundary condition in the y-direction. The
blue (red) lines represent states on the left (right) edge, the black (grey) lines represent the states in the bulk, and the depth of the color
of the lines in the bulk suggests the density of states. �/t2 = 0.2, α0/t1 = 0.5, α1/t1 = 0.5, β/t1 = 0.125, μ2/t2 = 2 for all the calculations,
Mz/t1 = 0.19 for (a), (c), and (e), Mz/t1 = 0.1 for (b), Mz/t1 = 0.075 for (d), and Mz/t1 = 0.25 for (f). (a,b) Topological states with odd Chern
numbers C = −1 and C = 1, μ1/t1 = 1.9. One chiral majorana mode propagates along the opposite direction at a different edge in these
two situations. (c,d) Topological states with Chern numbers C = 2 and C = −2, μ1 = 0, and μ1/t1 = 0.25, respectively. Two chiral majorana
modes propagate along opposite direction at different edge in these two situations. (e,f) Topological trival states with Chern number C = 0.
(e) There is no edge state with μ1/t1 = 2.25, (f) there are counterpropagating chiral edge states with μ1/t1 = 0.75.

224513-6



TOPOLOGICAL SUPERCONDUCTIVITY WITH LARGE … PHYSICAL REVIEW B 108, 224513 (2023)

FIG. 6. Real-space wave-functions distribution of the zero-
energy chiral edge modes corresponding to the energy crossing point
at kx = 0. The red line represents the wave functions in the ferro-
magnetic metal layer, while the blue line corresponds to the wave
functions in the superconductor layer. Parameters are taken the same
as in Fig. 5(a).

Hamiltonian H (kx ) by setting ky = 0,

H (kx ) = 1
2ε1(kx )τz(s0 + sz )σ0 + 1

2ε2(kx )τz(s0 − sz )σ0

+ 1
2β sin kxτz(s0 + sz )σy + α0τzsxσ0

− α1 sin kxτzsxσy + 1
2 Mzτz(s0 + sz )σz

− 1
2�τy(s0 − sz )σy. (16)

This one-dimensional Hamiltonian has both particle-hole
symmetry and chiral symmetry. We can define the particle-
hole operator P̂ = τxs0σ0κ̂ , where κ̂ is the complex conju-
gation operator and the particle-hole symmetry is explicitly
written as H (kx ) = −P̂H (−kx )P̂†. The chiral operator is de-
fined as Ĉ = τxs0σ0 and the Chiral symmetry is written as
H (kx ) = −ĈH (kx )Ĉ−1. The combination of these two sym-
metry operations gives H (kx ) = H
(−kx ), which suggests
that the one-dimensional Hamiltonian H (kx ) belongs to class
BDI [57] in the tenfold way of Altland-Zirnbauer classifica-
tion. Then the winding number can be defined as [63,64]

w = 1

4π i

∫ π

−π

dkxTr[ĈH−1∂kx H]. (17)

We calculate the winding number for Fig. 5(f), and find that
w = 2 which is consistent with the number of edge states.
Similarly, we can calculate the one-dimensional Hamiltonian
H (ky) when studying the open boundary condition in the x-
direction.

Since we are studying the two-layer system, we would
like to examine the distribution of the wave functions of the
edge states. In Fig. 6, we show the real-space distribution
of the wave functions corresponding to the Chern number
C = −1. It can be seen that the wave functions are mainly
distributed at the edge of both the ferromagnetic metal layer
and superconductor layer along the open boundary direction
y. Moreover, the wave functions in this heterostructure are
mainly concentrated in the ferromagnetic-metal layer.

V. CONCLUSION

In summary, we studied a double-layer model consisting
of spin-orbit-coupling ferromagnetic-metal and s-wave super-
conductor. The ferromagnetic-metal layer has the intrinsic
Dresselhaus spin-orbit coupling, while the two layers have
the Rahsba spin-orbit interlayer hopping. We calculated the
Chern numbers of the system and demonstrated the phase
diagrams. We found topological phases with five different
Chern numbers. In particular, we found that the Chern number
can be as large as four if the parameters of the systems are well
controlled. We illustrated the Berry curvatures and showed
that there are nonvanishing Berry curvature distributions in
the momentum space even in the topologically trivial regime.
We calculated the thermal Hall conductivity governed by the
Berry curvatures. We revealed the chiral Majorana edge states
protected by Chern numbers and by the winding numbers. We
found that the wave functions of these edge states were mostly
distributed in the ferromagnetic-metal layer.
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224508 (2001).

[61] V. Cvetkovic and O. Vafek, Nat. Commun. 6, 6518 (2015).
[62] J. Wang, Q. Zhou, B. Lian, and S.-C. Zhang, Phys. Rev. B 92,

064520 (2015).
[63] M. Sato, Y. Tanaka, K. Yada, and T. Yokoyama, Phys. Rev. B

83, 224511 (2011).
[64] A. Ii, A. Yamakage, K. Yada, M. Sato, and Y. Tanaka, Phys.

Rev. B 86, 174512 (2012).

224513-8

https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1038/s41578-021-00336-6
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0953-8984/26/42/423201
https://doi.org/10.1038/29038
https://doi.org/10.1103/RevModPhys.75.657
https://doi.org/10.1103/RevModPhys.78.373
https://doi.org/10.1126/science.1103881
https://doi.org/10.1143/JPSJ.81.011009
https://doi.org/10.1126/science.aao1797
https://doi.org/10.1126/science.aan4596
https://doi.org/10.1038/nphys2208
https://doi.org/10.1103/PhysRevX.8.041041
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1126/science.1216466
https://doi.org/10.1103/PhysRevLett.112.217001
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevB.96.075107
https://doi.org/10.1103/PhysRevB.98.245413
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevB.82.214509
https://doi.org/10.1103/PhysRevB.81.220504
https://doi.org/10.1038/nphys831
https://doi.org/10.1103/PhysRevB.84.060510
https://doi.org/10.1103/PhysRevLett.112.096804
https://doi.org/10.1038/nature22391
https://doi.org/10.1038/nature22060
https://doi.org/10.1038/s41565-018-0186-z
https://doi.org/10.1038/s41563-018-0149-7
https://doi.org/10.1038/s41586-018-0626-9
https://doi.org/10.1038/s41467-023-37603-9
https://doi.org/10.1038/nature04499
https://doi.org/10.1063/5.0031443
https://doi.org/10.1038/s41586-020-2989-y
https://doi.org/10.1002/adma.202006850
https://doi.org/10.1021/acs.nanolett.1c03856
https://doi.org/10.1103/PhysRevB.92.014508
https://doi.org/10.1103/PhysRevB.98.134510
https://doi.org/10.1038/s41563-018-0132-3
https://doi.org/10.1021/acs.nanolett.9b01043
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/PhysRevB.82.134521
https://doi.org/10.1088/0022-3719/10/12/021
https://doi.org/10.1103/PhysRevB.64.224508
https://doi.org/10.1038/ncomms7518
https://doi.org/10.1103/PhysRevB.92.064520
https://doi.org/10.1103/PhysRevB.83.224511
https://doi.org/10.1103/PhysRevB.86.174512

