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Adiabatic phase pumping in S/F/S hybrids with noncoplanar magnetization
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We study the distinctive features of the phase-pumping effect in Josephson transport through a three-layered
ferromagnet F1/F/F2 with noncoplanar magnetization. Using Gor’kov and Bogoliubov–de Gennes formalisms
we go beyond the quasiclassical approximation and analyze the dependence of the spontaneous Josephson phase
ψ on the exchange field h in the F layer and details of magnetization profile. The pumping of the Josephson
phase can be generated by the mutual rotation of magnetizations in F1 and F2 layers resulting in the nontrivial
phase gain at the rotation period (Berry phase). The increase in h is shown to cause changes in the topology of
the phase evolution: the gain of the Josephson phase at the pumping period switches from 0 to 2π . We study
the scenario of these switchings originating from the interplay between several competing local minima of the
free energy of the junction versus the superconducting phase difference. Our analysis provides the basis for the
search of experimental setup realizing the phase-pumping phenomenon.
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I. INTRODUCTION

The phenomenon of quantum pumping in different meso-
scopic systems attracts the interest of both experimentalists
and theoreticians for several decades (see, for example,
Refs. [1–4] and references therein). One of the first sugges-
tions of adiabatic charge-pumping mechanisms was made by
Thouless in his seminal paper [5] where he considered the dy-
namics of quantum particles in the moving periodic potential.
Being rather general, the idea of adiabatic pumping can be
naturally applied not only for a charge variable but also for
other physical quantities. In particular, the superconducting
Josephson-type systems are known to provide an interest-
ing possibility to realize the Thouless-pumping scenario for
the superconducting phase variable [6], which is dual to the
electric charge (see [7] and references therein). To create a
driving potential for the superconducting phase we need to
consider the systems, which allow the continuous tuning of
the equilibrium Josephson phase between the superconducting
electrodes. This possibility can be realized in so-called ϕ0

junctions possessing an unconventional current phase rela-
tion Is(ϕ) = Ic sin(ϕ − ϕ0) and revealing, thus, a spontaneous
phase difference ϕ0 �= {0, π} in the ground state. The ap-
pearance of a nonzero spontaneous phase is possible only for
Josephson systems with broken time-reversal and inversion
symmetries [8]. Being integrated into the superconducting
loop such ϕ0 junction should produce spontaneous elec-
tric current [9–13]. This anomalous Josephson effect arises
in a variety of systems involving unconventional supercon-
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ductors [14–17], topological insulators [18–20], Josephson
junctions consisting of conventional superconductors sep-
arated by magnetic normal metal [8,21–23], quantum dot
[24–26] or semiconductor nanowire with strong spin-orbit
interaction [27–34]. In most cases the spontaneous phase can
be tuned by varying a certain parameter, however, the typ-
ical range of such tuning appears to be strongly restricted.
For instance, in a large class of Josephson systems with the
spin-orbit interaction the spontaneous phase can be tuned by
changing the direction of the exchange (or Zeeman) field h
with the characteristic variation range of the anomalous phase
restricted by the value ∼αhL which is typically small (here α

is the spin-orbit constant and L is the junction length). Restric-
tions on the possible range of the anomalous phase can also be
posed by the system design. Prominent examples include the
superconductor/ferromagnet/superconductor (S/F/S) Joseph-
son junctions with varying thickness of the F layer (see
Refs. [35,36] and references therein), long Josephson junc-
tions with current injectors acting as an effective source of
the phase jumps along the junction (see, e.g., Refs. [37–39])
as well as curved nanowire junctions [31–34]. Despite the
possibility of engineering any value of the spontaneous phase
in such systems, it is extremely hard to tune this phase after
the system is fabricated.

The continuous tuning of the spontaneous phase can be re-
alized in the Josephson junction with a weak link consisting of
half-metal (HM) [40–43] and surrounded by two conventional
ferromagnets F1 and F2. To stress this difference between con-
ventional ϕ0 junctions and structures where the spontaneous
phase can be tuned in the whole range between 0 and 2π

we will refer to the latter systems as ψ junctions. The key
ingredient for such tuning is the noncoplanar magnetization
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FIG. 1. Schematic picture of the parameter space for
S/F1/F/F2/S Josephson junctions with noncoplanar magnetization.
Here ψ is the spontaneous Josephson phase and χ is the angle
between projections of the exchange fields in F1 and F2 to the plane
perpendicular to the exchange field in F. Red (black) line shows a
nontrivial (trivial) trajectory characterized by the nontrivial (trivial)
gain of the superconducting phase at the rotation period.

distribution which provides a phase bias for equal-spin Cooper
pairs determined by the mutual orientations of magnetic mo-
ments in F1 and F2 layers. The pumping of the Josephson
phase can be generated by the mutual rotation of magneti-
zations in side ferromagnets resulting in the nontrivial phase
gain at the rotation period [6,44–49] (see the thick red line
in Fig. 1). Several important results regarding the behavior of
the spontaneous phase in Josephson systems with noncoplanar
magnetization were obtained in Ref. [6] within the framework
of the circuit theory. In particular, it was demonstrated that for
the S/F1/HM/F2/S structure an equilibrium superconduct-
ing phase difference is not small and continuously depends
on the magnetic configuration. For S/F1/F/F2/S system it
was shown that the interference of the contributions from
equal-spin Cooper pairs to the Josephson current can cause
0-π transition upon the change in the magnetic configura-
tion. It is important to note that the circuit theory analysis
in Ref. [6] relies on the quasiclassical approximation (which
is applicable only for small exchange field values) and is
relevant only for rather long diffusive junctions, so that the
length of the junction greatly exceeds the spatial scale of
the spin-singlet and short-ranged spin-triplet superconducting
correlations. One can naturally expect that for rather short
junctions the behavior of the spontaneous phase can be qual-
itatively different from the one offered by a circuit theory.
Indeed, in this case one cannot exclude the contributions to
the Josephson current from the spin-singlet and short-ranged
spin-triplet Cooper pairs. Being sensitive to the magnitude of
the spin polarization in the central F layer, these additional
contributions can, in turn, affect the current-phase relation of
the junction and the value of the anomalous phase. There are
several important questions that remain open for both clean
and diffusive Josephson systems with noncoplanar magnetiza-
tion. These questions relate to the behavior of the ground-state
superconducting phase difference upon the change in a mag-
netic configuration in S/F1/F/F2/S junctions for arbitrary
ratio of the Fermi energy and the exchange field h in the cen-
tral F layer. Keeping in mind that the phase pumping effect is
absent for h = 0, one can naturally expect that the increase in
h should cause changes in the topology of the phase evolution:
the gain of the Josephson phase at the pumping period should

FIG. 2. Sketch of the Josephson junction consisting of two su-
perconducting ferromagnets (SFs) of atomic thickness separated by
atomically thin half-metallic (HM) layer. The spin quantization axis
in half-metal coincides with the z axis. The layers are coupled by the
transfer integrals t .

switch from 0 to 2π (see Fig. 1). The analysis of the above
problems is known to require a theoretical approach, which
goes beyond the standard quasiclassical approximation in the
ferromagnet (for details see Ref. [50]).

In this paper we fill these gaps and develop a theory of
the anomalous Josephson effect in S/F1/F/F2/S junctions
beyond the quasiclassical approximation. For such structures
we demonstrate the possibility to create ψ junction in which
the Josephson phase can be tuned by varying the direction of
magnetization in F1 or F2 layer, e.g., under the effect of exter-
nal magnetic field. To highlight the main qualitative features
of the ψ junctions we first consider a model of atomically
thin SF/HM/SF Josephson junction (see Fig. 2), where the
leads consists of ferromagnetic superconductors (SF) with
the built-in exchange field, the electron motion in the plane of
the layers is assumed to be ballistic, while the electron transfer
across the structure is associated with the tunneling processes.
Using the combination of the microscopical Gor’kov formal-
ism and tight-binding model we calculate the critical current
and spontaneous Josephson phase ψ of the junction. Although
such model does not account the interference effects coming
from the finite thickness of the layers, it allows the exact
analytical solution which does not rely on any sort of qua-
siclassical approaches or numerical modeling. The results of
calculations clearly show that noncoplanarity in the magnetic
configuration causes the generation of ψ junction where the
spontaneous phase ψ equals to the angle between projections
of the exchange fields in the SF layers to the plane perpen-
dicular to the exchange field of the central half-metallic layer.
Specifically, sin(ψ ) = nh · (n1 × n2)/| sin θ1 sin θ2| where n1,
n2, and nh are the unit vectors along the exchange field in
the F1, F2, and half-metallic F layer, respectively, while θ1

and θ2 are the angles between the vectors n1, n2, and the spin
quantization axis nh in the half-metal.

We then consider clean three-dimensional S/F1/F/F2/S
junctions with a finite thickness of the central layer and non-
coplanar magnetization distribution. For simplicity, the effects
of the finite thickness of the side ferromagnets F1 and F2
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are neglected. Correspondingly, their role in the Josephson
transport is reduced to the spin-active boundary conditions
for the quasiparticle wave function. Several properties of sim-
ilar hybrid structures were addressed in Refs. [51,52]. The
current-phase relation and the behavior of the supercurrent at
zero superconducting phase difference (the so-called anoma-
lous current) as a function of hybrid structure parameters
were analyzed in Ref. [51] for the one-dimensional S/F/S
Josephson junctions with the spin-active interfaces. Extensive
analysis of various characteristics of clean three-dimensional
S/F1/F/F2/S junctions including the current-phase relation,
the anomalous current, the spatial profiles of the pair ampli-
tude, and the density of states was performed in Ref. [52].
The focus of this work is on the behavior of the spontaneous
superconducting phase difference ψ and the distinctive fea-
tures of the phase-pumping effect. The calculations of the
Josephson transport are carried out within the framework of
the theoretical approach used in Ref. [53]. For this purpose,
we derive the Bogoliubov–de Gennes (BdG) equations for the
hybrid structure and then express the supercurrent in terms of
the determinant of the matching condition matrix. Such an ap-
proach is known to be equivalent to the standard one [54] and
is suitable for the Josephson junctions of arbitrary length. It is
shown that if the exchange field h in F layer exceeds the Fermi
energy (F is a half-metal) the spontaneous phase ψ is propor-
tional to the angle between projections of the exchange fields
in F1 and F2 to the plane perpendicular to the exchange field in
F. It is demonstrated that when decreasing the h value below
the Fermi energy the free energy of the junction as a function
of the superconducting phase has two competing local minima
resulting in jumpwise changes of the spontaneous phase ψ

upon magnetization rotation accompanied with the hysteresis
phenomena. Further decrease in h is shown to induce several
changes in the topology of the phase evolution: the gain of
the Josephson phase at the rotation period switches between
0 to 2π (compare black and red trajectories in Fig. 1). It is
demonstrated that the tunability of the spontaneous phase as a
function of the relative orientation of the magnetic moments
in three ferromagnetic layers can persist up to rather small
exchange fields in the central one. Our numerical results also
reveal rather complex behavior of the ground-state supercon-
ducting phase difference as a function of the structure param-
eters. In particular, in our simulations performed for short
ballistic junctions we observe a prominent role of the size
quantization effects in the behavior of the spontaneous phase,
which manifest themselves through oscillatory and/or the
jumpwise behavior of the anomalous phase upon the change in
the exchange field or the junction length. All the results of our
numerical simulations are clarified by the analytical expres-
sion for the current-phase relation, which has been derived for
the case of a large mismatch between the Fermi velocities in
the superconducting leads and in the central ferromagnet.

The paper has the following structure. In Sec. II using the
exact solution of Gor’kov equations we analyze the current-
phase relation of the atomically thin SF/HM/SF junction.
Section III is devoted to the analysis of the behavior of
the ground-state superconducting phase difference and the
phase-pumping phenomenon for clean S/F1/F/F2/S Joseph-
son junctions with a finite thickness of the central layer. In
Sec. IV we summarize our results.

II. SF/HM/SF JOSEPHSON JUNCTION
OF ATOMIC THICKNESS

In this section we analyze the current-phase relation of
the Josephson junction based on the SF1/HM/SF2 structure
of atomic thickness. Our goal here is to find the exact so-
lutions of the Gor’kov equations beyond the quasiclassical
approximation and establish the generic conditions required
for the formation of the Josephson ψ junction. The sys-
tem geometry is schematically shown in Fig. 2. The y axis
is chosen perpendicular to the layers’ interfaces. The spin
quantization axis in the HM layer coincides with the z axis,
while the exchange field h j in the SF j layer forms the an-
gle θ j with the z axis and the angle χ j with the x axis in
the xy plane: h j = h(sin θ j cos χ j, sin θ j sin χ j, cos θ j ), where
j = 1, 2. We assume the electron motion to be characterized
by the momentum p in the plane of each layer while the
quasiparticle transfer perpendicular to the layers is described
by the tight-binding model. The transfer integral t between
SF j and HM layers is assumed to be much smaller than the
critical temperature Tc. Also, we restrict ourselves to the limit
of coherent interlayer tunneling which conserves the in-plane
electron momentum. The in-plane quasiparticle motion in the
SF layers is described by the energy spectrum ξ (p), while
the energy spectrum in the half-metal is spin dependent: ξ↑ =
ξ (p) and ξ↓ = +∞. The gap functions are 	1 = 	0eiϕ/2 and
	2 = 	0e−iϕ/2. We follow the approach of [55] and introduce
the electron annihilation operators φ, ζ , and η in the SF1, HM,
and SF2 layers, respectively. Then the system Hamiltonian can
be written in the following form:

Ĥ = Ĥ0 + ĤBCS + Ĥt , (1)

where the operator

Ĥ0 =
∑

p;α,β={↑,↓}

(
Â(1)

αβφ†
αφβ + P̂αβζ †

α ζβ + Â(2)
αβη†

αηβ

)
(2)

describes the electron motion in the isolated layers (α and β

are the spin indexes), the contribution

ĤBCS =
∑

p

(	∗
1φ−p,↓φp,↑ + 	1φ

†
p,↑φ

†
−p,↓

+ 	∗
2η−p,↓ηp,↑ + 	2η

†
p,↑η

†
−p,↓) (3)

stands for the s-wave superconducting coupling inside the
junction electrodes, the operator

Ĥt =
∑

n,p,α={↑,↓}
t (φ†

p,αζp,α + ζ †
p,αφpα )

+ t (ζ †
p,αηp,α + η†

p,αζpα ) (4)

reflects the coherent electron tunneling between the layers,
and the matrices Â( j) and P̂ are defined as

Â( j) =
(

ξ (p) − h cos θ j −he−iχ j sin θ j

−heiχ j sin θ j ξ (p) + h cos θ j

)
, (5)

P̂ =
(

ξ (p) 0
0 +∞

)
. (6)

The appearance of the spontaneous ground-state Joseph-
son phase ψ and its direct relation to the relative orientation
of the exchange fields in SF1 and SF2 layers (namely, ψ =
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χ2 − χ1) straightly follows from the form of the Hamiltonian
(1). Indeed, below we show that it is possible to make the si-
multaneous phase transformation of all annihilation operators
which does not change the form of the Hamiltonian (1) but
makes two modifications. First, this transformation effectively
rotates the exchange field vectors in the xy plane in a way
that the angle between their projection to this plane becomes
zero. Second, it produces an additional phase shift ψ between
the superconducting electrodes of the Josephson junction. The
appearance of this spontaneous phase reflects the anomalous
Josephson effect.

The generic phase transformation of all annihilation oper-
ators reads as φα = φ̃αeiκα , ζα = ζ̃αeiμα , ηα = η̃αeiνα , where
κα , μα , and να are certain constants. Since we assume the
full spin polarization of electrons inside the half-metal the
spin-down component of the corresponding annihilation op-
erator ζ↓ = 0 and, thus, the part Ĥt of the Hamiltonian
does not change, if we take κ1 = μ1 and μ1 = ν1. More-
over, if in addition we choose κ2 − κ1 = χ1 and ν2 − ν1 =
χ2 the part Ĥ0 remains the same as in Eq. (30), but with
the modified form of the matrix Â j : Â j → Ã j = ξ (p)σ0 −
h cos θ jσz − h sin θ jσx. The form of the transformation for
the matrix Â j makes the problems equivalent to the case of
the exchange fields lying in the xz plane. Also, the described
transformation of Â j is accompanied by the corresponding
modification of the order-parameter values 	1 and 	2 in the
superconducting part HBCS of the Hamiltonian: 	1 → 	̃1 =
	1e−i(κ1+κ2 ) and 	2 → 	̃2 = 	2e−i(ν1+ν2 ). Since the ex-
change field lying in the xz plane does not affect the Josephson
phase, we find Arg(	̃1) − Arg(	̃2) = ϕ + χ2 − χ1. From
this expression one sees that even for ϕ = 0 the superconduct-
ing leads effectively acquire the announced phase difference

ψ = χ2 − χ1, (7)

which corresponds to the current-phase relation

I = Ic sin (ϕ + ψ ). (8)

Note that in the case when the exchange field in the central
layer is comparable or less than Fermi energy (instead of
half-metal we have a conventional ferromagnet) one cannot
perform the above procedure. Indeed, since in this case ζ↓ �=
0, one should also put κ2 = μ2 = ν2 to leave the operator Ĥt

unchanged. But in this case it is impossible to choose κ2 −
κ1 = χ1 and ν2 − ν1 = χ2. Thus, the formation of the ψ junc-
tion with the spontaneous ground-state phase defined only by
the mutual orientation of magnetic moments in ferromagnetic
layers requires the material with the full spin polarization. The
emergence of the spontaneous phase in S/F1/F/F2/S systems
where the spin polarization in the central ferromagnetic layer
is not full is treated in detail in Sec. III.

After establishing the appearance of the spontaneous
Josephson phase we now turn to the analysis of the critical
current Ic for the SF/HM/SF junction. The value Ic depends
on the angle θ between the magnetizations in the SF layers
and the spin quantization axis in half-metal (without loss of
generality we assume θ1 = θ2 = θ ) and is nonzero for θ �= 0,
π . To show this, let us calculate this current. The above
analysis shows that Ic for the Josephson junction under con-

(a)

(b)

FIG. 3. (a) The sketch of infinite multilayered structure consist-
ing of alternating superconducting ferromagnets and half-metals of
atomic thickness. The layers are coupled by the transfer integrals t ,
while the gap varies from one unit cell n to another as 	n = 	0eikn.
This structure is equivalent to the one shown in (b), where supercon-
ducting layers are coupled by the effective parameter T .

sideration is the same as the critical current for SF/HM/SF
structure with the exchange fields of the SF layers both lying
in the xz plane and forming the angle θ with z axis. To calcu-
late the Josephson energy of the later junction we consider
the infinite multilayered structure consisting of alternating
atomically thin SF (the exchange field is h = h cos θ ẑ +
h sin θ x̂) and HM (the spin quantization axis coincides with
the z axis) layers and the gap varying from one unit cell to
another as 	n = 	0eikn [see Fig. 3(a)]. Introducing the effec-
tive coupling constant T between the superconducting layers
[see Fig. 3(b)] we can write the superconducting contribution
to the free energy for such SF/HM structure in the vicinity of
the superconducting transition temperature as

Fs =
∑

n

[τN (0)|	n|2 + T N (0)(	n	
∗
n+1 + 	n+1	

∗
n )]

= 	0
2N (0)(τ + 2T cos k)N, (9)

where τ = (T − Tc0)/Tc0, Tc0 is the critical temperature in the
absence of the proximity effect (t = 0) and the exchange field
(h = 0), N (0) is the electron density of states at the Fermi
level, and N is the number of superconducting layers.

From Eq. (9) one sees that the Josephson energy of a single
junction with the phase difference ϕ between the supercon-
ducting leads reads as

EJ = 	2
0N (0)(τ + T cos ϕ). (10)

Thus, we drive to the expression for the critical current:

Ic = −4π	2
0N (0)T
�0

. (11)

The coupling parameter T entering Eq. (11) can be expressed
via the critical temperatures T 0

c and T π
c for 0 phase (k = 0)

and π phase (k = π ) of SF/HM superlattice, respectively.
Indeed, in the superconducting transition we have Fs = 0 and
τc = −2T cos k. As the result, the coupling parameter T
reads as 4T = (T π

c − T 0
c )/Tc0.

Our next step is to find T π
c and T 0

c using the micro-
scopical Gor’kov formalism. To that end, we will write the
system of matrix Gor’kov equations, find the anomalous
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Green function solving this system, and calculate Tc using the
self-consistency equation.

The Hamiltonian of the SF/HM superlattice has the form

Ĥ = Ĥ0 + ĤBCS + Ĥt , (12)

where the three operators describe the electron motion in the
plane of the layers, superconducting pairing in the supercon-
ducting layers and tunneling between the layers, respectively:

Ĥ0 =
∑

n;p;β,γ={↑,↓}
(Ĉβγ φ

†
n,p,βφn,p,γ + P̂βγ ζ

†
n,p,βζn,p,γ ), (13)

ĤBCS =
∑

p

(	∗φn,−p,↓φn,p,↑ + 	φ
†
n,p,↑φ

†
n,−p,↓), (14)

Ĥt = t
∑

n,p,β={↑,↓}
(ζ †

n,p,βψn−1,p,β + ζ
†
n−1,p,βφn,p,β )

+ (φ†
n,p,βζn,p,β + ζ

†
n,p,βφn,p,β ). (15)

Here φ and ζ are the electron annihilation operators in the SF
and HM layers, respectively, n is the number of a unit cell, and
the matrix Ĉ is defined as

Ĉ =
(

ξ (p) − h cos θ −h sin θ

−h sin θ ξ (p) + h cos θ

)
. (16)

Since the multilayered system is periodic in space, we can
introduce the Fourier components of the annihilation opera-
tors

φn,p,β =
∫ π

−π

dq

2π
eiqnφq,p,β , ζn,p,β =

∫ π

−π

dq

2π
eiqnζq,p,β ,

(17)

and write the Hamiltonians (12)–(15) in the Fourier represen-
tation:

Ĥ0 =
∑

q;p;β,γ={↑,↓}
(Ĉβγ φ

†
q,p,βφq,p,γ + P̂βγ ζ

†
q,p,βζq,p,γ ), (18)

ĤBCS = 	0

∑
q,p

(φk−q,−p,↓φq,p,↑ + 	φ
†
q,p,↑φ

†
k−q,−p,↓), (19)

Ĥt =
∑

q,p,β={↑,↓}
(T (q)φ†

q,p,βζq,p,β + T ∗(q)ζ †
q,p,βφq,p,β ), (20)

where T (q) = 2teiq/2 cos(q/2).
Next we introduce the set of imaginary-time Green func-

tions:

F †
αβ (p, q; τ1, τ2) = 〈Tτ φ

†
−q,−p,α (τ1)φ†

k+q,p,β
(τ2)〉,

Gαβ (p, q; τ1, τ2) = −〈Tτ φq,p,α (τ1)φ†
q,p,β (τ2)〉,

F ζ†
αβ (p, q; τ1, τ2) = 〈Tτψ

†
−q,−p,α (τ1)φ†

k+q,p,β
(τ2)〉,

Eαβ (p, q; τ1, τ2) = −〈Tτ ζq,p,α (τ1)ζ †
q,p,β (τ2)〉.

The resulting system of the matrix Gor’kov equations in the
frequency representation takes the following form:

(iωn − Ĉ)Ĝ + 	0IF̂ † + T (k + q)Ê = 1̂, (21)

(iωn + Ĉ)F̂ † − 	0IĜ − T (q)F̂ ζ† = 0, (22)

(iωn − P̂)Ê + T ∗(k + q)Ĝ = 0, (23)

(iωn + P̂)F̂ ζ† − T ∗(q)F̂ † = 0, (24)

where ωn = πT (2n + 1) are the fermion Matsubara frequen-
cies and Î = iσy. Solving the system of equations (21) in the
lowest order over the gap potential we find the anomalous
Green function:

F̂ † = 	0[(iωn + Ĉ) − |T (q)|2(iωn + P̂)−1]−1 Î

× [(iωn − Ĉ) − |T (k + q)|2(iωn − P̂)−1]−1. (25)

The critical temperature Tc can be expressed via F̂ †
↑↓ using

the self-consistency equation

ln

(
Tc0

Tc

)
= Tc

∞∑
n=−∞

[∫ +∞

−∞
dξ

∫ π

−π

dq

2π

F̂ †
↑↓

	0
+ π

ωn

]
, (26)

where Tc0 is the critical temperature in the absence of proxim-
ity effect (t = 0) and the exchange field (h = 0).

Restricting ourselves for the case of small values of the pa-
rameter t (which corresponds to the situation |Tc − Tc0| � Tc0)
we perform the power expansion of (25) over this param-
eter. Next we substitute this expansion into Eq. (26) and
obtain rather cumbersome equation for Tc (for details see Ap-
pendix A). Solving this equation, we can represent the critical
temperature as Tc = α − β cos k [see Eqs. (A7)–(A9)], where

β =
∑
n>0

π T̃ 2
c0t4h2

(
h4 + 35h2ω̃2

n + 70ω̃4
n

)
sin2 θ

W ω̃n
(
ω̃2

n + h2
)3(

4ω̃2
n + h2

)2 . (27)

Here ω̃n = π T̃c0(2n + 1), T̃c0 is the critical temperature in the
absence of the proximity effect (t = 0) and

W = 1 −
∑
n>0

4π T̃c0h2ω̃n(
ω̃2

n + h2
)2 > 0. (28)

As a result, we can easily calculate the desired dif-
ference (T π

c − T 0
c ) = 2β and the critical current Ic =

2π	2
0N (0)β/(�0Tc0). As expected, we obtain Ic ∝ sin2 θ .

III. S/F1/F/F2/S JUNCTIONS WITH A FINITE
THICKNESS OF THE F LAYER

In this section we analyze the behavior of the spontaneous
ground-state phase difference in clean S/F1/F/F2/S Joseph-
son junctions with a finite thickness of the central layer L.
Using the solutions of the Bogoliubov–de Gennes equations,
we describe the crossover from the regime of half-metallic F
layer to the case when the exchange field in the F layer is
small compared to the Fermi energy. To simplify the calcu-
lations we treat the F1 and F2 layers as spin-active interfaces
between the superconducting leads and the central ferromag-
net. Note that the model which treats the side ferromagnetic
layers as spin-active interfaces was used in a number of works
[44–47,56] (see also Refs. [57,58] and references therein). We
also assume that these interfaces are characterized by the finite
potential barrier which partially damps the electron transfer
between the layers.

A. Geometry and basic equations

The geometry of the system is schematically shown in
Fig. 4. The superconducting gap is taken in the form 	 =
	0eiϕ/2 in the left electrode and 	 = 	0e−iϕ/2 in the right
one. We introduce the z axis along the exchange field h in the
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FIG. 4. Schematic picture of the considered S/F1/F/F2/S
Josephson junctions with the spin-active interfaces. The exchange
field h in the central ferromagnet F is perpendicular to the layers
while the exchange field vectors h1 and h2 at the spin-active inter-
faces are parallel to the layers [see Eq. (33)].

central ferromagnet F which is assumed to be perpendicular
to the plane of the layers. The Hamiltonian of the hybrid
structure reads as [59,60]

Ĥ = Ĥ0 + Ĥex + ĤBCS, (29)

where

Ĥ0 =
∫

ψ†
α (r)

[
−∇ 1

2m(r)
∇ − μ(r) + U (r)

]
ψα (r)d3r,

(30)

and the potential U (r) is nonzero only at the interfaces be-
tween the F layer and superconducting leads:

U (r) = U1δ(z + L/2) + U2δ(z − L/2). (31)

The spin-dependent part of the single-particle Hamiltonian
has the form

Ĥex =
∫

ψ†
α (r)[h(r) · σ̂]αβψβ (r)d3r (32)

with

h(r) = h1(n1σ̂)δ(z + L/2) + h2(n2σ̂ )δ(z − L/2)

+ hσ̂z[�(z + L/2) − �(z − L/2)] (33)

and the unit vector

n j = (sin θ j cos χ j, sin θ j sin χ j, cos θ j ) (34)

directed along the exchange field vector in the jth interface.
The term

ĤBCS =
∫

[ψ†
α (r)	(r)(iσ̂y)αβψ

†
β (r) + H.c.]d3r (35)

stands for the superconducting pairing inside the supercon-
ducting layers. In the above expressions ψ†

α (ψα) is the
fermionic creation (annihilation) operator, α, β =↑,↓ de-
note spin degrees of freedom (summation over repeated spin
indices is implied), σ̂i (i = x, y, z) are the Pauli matrices
acting in the spin space, m(r) is the effective mass pro-
file, and μ(r) denotes the difference between the chemical
potential and the bottom of the electron energy band. To

derive the Bogoliubov–de Gennes equations, we perform the
standard Bogoliubov transformation ψα (r) = ∑

n[unα (r)γn +
v∗

nα (r)γ †
n ], where γ †

n (γn) is the quasiparticle creation (anni-
hilation) operator, unα (r) and vnα (r) are the electron and hole
components of the quasiparticle wave function. The resulting
equations take the form

ȞBdG(r)�(r) = E�(r), (36a)

ȞBdG(r) = τ̌z

[
−∇ 1

2m(r)
∇ − μ(r) + U (r)

]
+ h(r)σ̂ + τ̌xRe	(r) − τ̌yIm	(r), (36b)

where �(r) = [u↑(r), u↓(r), v↓(r),−v↑(r)]T and τ̌i (i = x,
y, z) are the Pauli matrices acting in the electron-hole space.

For the calculations of the Josephson transport we follow
the approach used in Ref. [53]. This approach is based on
the fact that the normal Matsubara Green’s function of the
system, which defines the supercurrent though the junction,
can be expressed in terms of the determinant of the matching
condition matrix for Eqs. (36) at E = iωn. Note that for the
considered S/F/S junctions with spin-active interfaces the gen-
eral expression for the Josephson current represents a trivial
generalization of the one in Ref. [53]. Before going into de-
tails, let us briefly outline the key points of the procedure. As
a first step, we derive the solutions of Eqs. (36) at the Matsub-
ara frequencies in the whole system. Matching the resulting
solutions at the interfaces, we derive the scattering matrices
and the solvability condition matrix. Finally, the determinant
of the solvability condition matrix is used to compute the
Josephson current.

Below we list the appropriate solutions of Eqs. (36) at E =
iωn derived under the assumption of the in-plane translational
symmetry for the stepwise m(z) and μ(z) profiles. In what fol-
lows we assume the identical electron band structure in both
superconducting leads. In the left superconductor (z < −L/2)
the quasiparticle wave function reads as

�I = eip||reκ(z+L/2)

[
eips (z+L/2)

(
A+

e−iϕ/2a+A+

)

+ e−ips (z+L/2)

(
A−

e−iϕ/2a−A−

)]
. (37)

Here p‖ is the conserved in-plane momentum,

a±(ωn) =
iωn ± i

√
ω2

n + 	2
0

	0
, (38)

κ = ms

√
ω2

n + 	2
0/ps, ps =

√
2msμs − p2

‖ , ms is the effective
mass for the electrons in superconducting leads, and μs is the
difference between the chemical potential and the bottom of
the electron energy band in the S layers. In the central ferro-
magnet (−L/2 < z < L/2) the solution of BdG equations can
be written as follows:

�II = eip||r
(

Q̂(z)B+ + Q̂(−z)B−
ˆ̄Q(z)B̄+ + ˆ̄Q(−z)B̄−

)
, (39)

where

Q̂(z) = diag(eip↑z, eip↓z ), (40a)

ˆ̄Q(z) = diag(eip̄↑z, eip̄↓z ), (40b)
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p↑,↓ =
√

2m f (iωn ∓ h + μ f ) − p2
‖, (40c)

p̄↑,↓(iωn, h) = p↑,↓(−iωn,−h), m f denotes the effective
mass for the electrons in the central ferromagnet, and μ f is
the difference between the chemical potential and the bottom
of the electron energy band in the central layer at h = 0.
For a finite h the bottom of the lower and higher spin-split
subband in the F layer is located at −(μ f + h) and −(μ f − h),
respectively. Finally, in the right superconductor (z > L/2) the
quasiparticle wave function has the form

�III = eip‖re−κ(z−L/2)

{
eips (z−L/2)

(
C+

eiϕ/2a−C+

)

+ e−ips (z−L/2)

(
C−

eiϕ/2a+C−

)}
. (41)

In the above solutions A±, B±, B̄±, and C± are 2×1 column
vectors in the spin space, which should be determined from
the matching conditions for the quasiparticle wave function at
the S/F interfaces (z = ±L/2). It is straightforward to show
that the corresponding matching conditions for the considered
model (36),(

B+
B̄+

)
= Ǩ1

(
B−
B̄−

)
,

(
B−
B̄−

)
= Ǩ2

(
B+
B̄+

)
, (42)

yield the following expressions for the scattering matrices,
which couple the electron and hole waves in the central fer-
romagnet:

Ǩ j = −Q̌(L/2)(W̌j + Ǩ )−1(W̌j − Ǩ )Q̌(L/2). (43)

Here

W̌j = gτ̌z + iZ0, j + iZ j τ̌zn j σ̂ − f [τ̌x sin(ϕ j ) + τ̌y cos(ϕ j )],

(44a)

g = ωn√
ω2

n + 	2
0

, (44b)

f = 	0√
ω2

n + 	2
0

, (44c)

Q̌ and Ǩ are diagonal matrices with the following struc-
ture in the electron-hole space X̌ = diag(X̂ , ˆ̄X ), K̂ =
(ms/m f )diag(p↑/ps, p↓/ps), Z0, j = 2msUj/ps, and Zj =
2msh j/ps. The current-phase relation I (ϕ) can be obtained
from the determinant of the matching condition matrix

Is(ϕ) = −2eAT
∑
ωn>0

∫
d2p‖
(2π )2

∂

∂ϕ
ln |P|, (45a)

P (iωn, p‖, ϕ) = det|1 − Ǩ1Ǩ2|, (45b)

where A is the cross-section area of the central ferromagnet.
We calculate the spontaneous superconducting phase differ-
ence by minimizing the free energy of the junction, which up
to a phase-independent constant is given by

F (ϕ) = −AT
∑
ωn>0

∫
d2p‖
(2π )2

ln |P|. (46)

The resulting equations (43), (45), and (46) form the basis
for our analytical analysis and numerical simulations of the
Josephson transport.

B. Analytical results for the current-phase relation:
Qualitative consideration

Here we provide some analytical results, which clarify the
behavior of the current-phase relation and the spontaneous su-
perconducting phase difference. Note that the major challenge
for obtaining a closed-form expression for the current-phase
relation stems from the fact that the spin-active interfaces
couple the quasiparticle states in the central ferromagnet from
both spin-split subbands. Some analytical progress can be
made when typical Fermi velocities in the central F layer are
much smaller than the ones in the normal-metal state of the
superconducting leads. In this case, one can consider the ve-
locity ratio matrix Ǩ in Eq. (43) as a perturbation and expand
the determinant of the solvability condition matrix P up to
the second-order terms. Choosing, for simplicity, equal barrier
strength parameters Z0,1 = Z0,2 = Z0, Z1 = Z2 = Z , we arrive
at a sinusoidal current-phase relation of the following form:

Is(ϕ) = (I+
↑↓ + I−

↑↓) sin(ϕ) + I↑↑ sin(ϕ − χ ) + I↓↓ sin(ϕ + χ ), (47a)

I+
↑↓ = 4eAT Re

∑
ωn>0

∫
d2p‖
(2π )2

f 2[w2 − 4g2Z2 cos(θ1) cos(θ2)]

γ (w2 + 4g2Z2)2

[
p↑ p̄↑

sin(p↑L) sin( p̄↑L)
+ p↓ p̄↓

sin(p↓L) sin( p̄↓L)

]
, (47b)

I−
↑↓ = 4eAT Re

∑
ωn>0

∫
d2p‖
(2π )2

−4iwgZ f 2 cos(θ+) cos(θ−)

γ (w2 + 4g2Z2)2

[
p↑ p̄↑

sin(p↑L) sin( p̄↑L)
− p↓ p̄↓

sin(p↓L) sin( p̄↓L)

]
, (47c)

I↑↑ = −4eAT Re
∑
ωn>0

∫
d2p‖
(2π )2

4g2 f 2Z2 sin(θ1) sin(θ2)

γ (w2 + 4g2Z2)2

p↑ p̄↓
sin(p↑L) sin( p̄↓L)

, (47d)

I↓↓ = −4eAT Re
∑
ωn>0

∫
d2p‖
(2π )2

4g2 f 2Z2 sin(θ1) sin(θ2)

γ (w2 + 4g2Z2)2

p↓ p̄↑
sin(p↓L) sin( p̄↑L)

. (47e)

Here w = 1 + Z2
0 − Z2, θ± = (θ1 ± θ2)/2, χ = χ1 − χ2,

and γ = m2
f p2

s/m2
s . The first two terms proportional to sin(ϕ)

in the right-hand side of Eq. (47a) describe the contribution
to the Josephson transport from the spin-singlet and the spin-
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FIG. 5. Typical current-phase relation Is(ϕ) and F (ϕ) plots for χ = 0, π/4, π/2, 3π/4, and π . Panels (a), (c), and (e) [(b), (d), and (f)]
correspond to h/μ f = 1, 0.8, and 0.6, respectively. The supercurrent is given in the units e	0N , where N = Ak2

F /π , A is the cross-section area
of the junction, and kF is the Fermi momentum in the normal-metal state of the superconductors. Circles denote the superconducting phase
difference at which the free energy of the junction reaches its minimal value (the anomalous phase ψ). Phase-independent energy offsets were
introduced in (b), (d), and (f) for better visualization. We choose L = 0.02ξ to produce the plots, where ξ = h̄kF /ms	0 is the superconducting
coherence length.

triplet Cooper pairs with zero spin projection on the direction
of the exchange field h/|h|. The remaining terms ∝I↑↑ and I↓↓
contain the contributions to the supercurrent from the parallel
spin-triplet pairs | ↑↑〉 and | ↓↓〉, respectively.

Equations (47) provide several valuable insights into the
physics of the anomalous Josephson effect in S/F1/F/F2/S
hybrid structures. First, one can see that the above expres-
sions capture the crossover from the S/F1/F/F2/S to the
S/F1/HM/F2/S type junctions upon the increase in the ex-
change field in the central ferromagnet. Indeed, for h > μ f

the contributions to the Josephson current from the higher
spin-split subband in the central ferromagnet ∝1/ sin(p↑L),
1/ sin( p̄↓L) exhibit an exponential decay and one is left with
a single contribution from the lower spin-split subband

IS/F/HM/F/S(ϕ) = I↓↓ sin(ϕ + χ ). (48)

Correspondingly, in the half-metallic regime the anomalous
phase ψ is a linear function of the misorientation angle χ =
χ1 − χ2. Second, in the limit h → 0 we get I↑↑ = I↓↓, which
implies that the total contribution of the parallel spin-triplet
Cooper pairs to the Josephson transport ∝cos(χ ) sin(ϕ).
Within this limit and for rather strong spin-active barriers
one can expect that the variations of χ should cause 0-π
transitions due to contributions of the parallel spin-triplet
Cooper pairs. Note that this result is in qualitative agreement
with the results of the circuit theory [6]. Third, the functional
form of the current-phase relation (47) suggests quite com-
plex behavior of the spontaneous phase difference within the
parameter range h < μ f . It is clear that in the general case
the anomalous phase is determined by the competition of all
the above contributions. The important point in the subsequent
analysis is that these contributions are of different magnitude
and exhibit different behavior with respect to the supercon-
ducting phase difference ϕ. In particular, the first two terms
proportional to sin(ϕ) in the right-hand side of Eq. (47a) favor

the spontaneous phase ψ = 0 or π whereas the remaining
terms are responsible for the tunability of ψ as a function
of χ . Corresponding critical currents I±

↑↓, I↑↑, and I↓↓ can,
in turn, exhibit a singular behavior when p↑,↓L = πn (n =
1, 2, 3, . . . ). One can naturally expect that such jumpwise
behavior of the critical currents should result in the jumpwise
changes and/or oscillations of the spontaneous superconduct-
ing phase difference ψ upon the change in the band structure
parameters μ f and h of the central ferromagnet as well as the
junction length L. It is important to note that even though the
validity of Eqs. (47) breaks down near the resonances, our
analytical results also provide qualitative explanation for ψ (h)
curves observed in our numerical simulations.

C. Numerical simulations

We proceed with the discussion of the results of numerical
simulations. Our focus is on the behavior of the anomalous
phase ψ as a function of the exchange field in the central
ferromagnet h and the misorientation angle χ . For simplicity,
we consider the case of equal barrier strength parameters
Z0,1 = Z0,2 = Z0, Z1 = Z2 = Z and take θ1 = θ2 = π/2. Our
numerical results are obtained for the following parameter
set: T = 0.1	0, μs/	0 = 103, μ f /	0 = 5 × 102, ms = m f ,
Z0 = 0, and Z = 0.5. Typical current-phase relations Is(ϕ)
along with the corresponding F (ϕ) curves for χ = 0, π/4,
π/2, 3π/4, π and several exchange fields h/μ f = 1, 0.8,
and 0.6 are shown in Fig. 5. Circles in Fig. 5 denote the
superconducting phase difference, at which the free energy
of the junction reaches its minimal value (the anomalous
phase ψ). In the half-metallic regime h/μ f = 1 [see Figs. 5(a)
and 5(b)] the corresponding Is(ϕ) curves are sinusoidal and
the spontaneous phase ψ ≈ π − χ . The decrease in h [see
Figs. 5(c)–5(f)] leads to deviations of the spontaneous phase
from π − χ and the appearance of the superconducting diode
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FIG. 6. (b) Typical plots of the ground-state superconducting phase difference ψ versus the misorientation angle χ for h/μ f = 1, 0.8, 0.6,
0.4, and 0.2. Corresponding F (ϕ) dependencies for h/μ f = 0.4, χ/π = −0.4, −0.3 and h = 0.2μ f , χ/π = 0.2, 0.3 are shown in (a) and (c),
respectively. For convenience we introduced phase-independent energy offsets in (a) and (c). We choose L = 0.02ξ to produce the plots.

effect in the system Ic+ �= Ic−, where Ic+ = maxϕ Is(ϕ) and
Ic− = | minϕ Is(ϕ)|. Note that a nonreciprocal superconduct-
ing transport is a common feature of the considered Josephson
junctions with noncoplanar magnetization distribution and
h < μ f [51,52]. The results in Figs. 5(c) and 5(e) clearly
demonstrate that both the magnitude of the diode effect as
well as the preferential direction, for which the Josephson
junction can carry larger supercurrent, are governed by the
misorientation angle χ .

Let us now discuss the tunability of the ground-state su-
perconducting phase difference as a function of the hybrid
structure parameters. We show several ψ (χ ) plots for h/μ f =
1, 0.8, 0.6, 0.4, and 0.2 in Fig. 6(b). One can see that in the
half-metallic regime for h/μ f = 1, the corresponding ψ (χ )
dependence is, indeed, linear ψ = π − χ . As it has been
explained previously, such behavior originates from the fact
that the supercurrent is carried only by the parallel spin-triplet
Cooper pairs from the lower spin-split subband in the central
ferromagnet. It is interesting to note that the tunability of the
anomalous phase can persist up to rather small values of the
exchange field h. Moreover, Fig. 6(a) also demonstrates that
within the parameter range h < μ f , the spontaneous phase

difference can exhibit sudden jumps at certain χ values due to
the competition between two local minima of the free energy
of the contact versus the superconducting phase difference
[see Figs. 6(a) and 6(c)]. The results demonstrate that for the
considered Josephson junctions with noncoplanar magnetic
texture, the variations of the misorientation angle in the case
h < μ f can induce the first-order phase transitions between
the states with different anomalous phases accompanied with
the hysteresis phenomena. Typical behavior of the ground-
state superconducting phase difference within the full range
of the exchange fields for χ = π/4, π/2, and 3π/4 are shown
in Fig. 7. The results in Figs. 7(a), 7(b), and 7(c) are obtained
for various lengths of the junction L/ξ = 0.02, 0.05, and 0.1,
respectively. Let us, first, discuss the plots in Fig. 7(a). One
can see that for χ = π/4 the spontaneous phase jumps at
h ≈ 0.05μ f and then exhibits several oscillations upon the
increase in the exchange field. At h ≈ μ f the anomalous
phase saturates at π − χ . Except the case of rather weak
exchange fields, the behavior of the spontaneous phase for
χ = 3π/4 is qualitatively similar to the above discussed one.
For χ = π/2 we observe that the spontaneous phase exhibits
both oscillations and the jumps. It is important to note that

FIG. 7. Typical plots of the ground-state ψ (h) dependencies within the full range of the exchange fields for χ = π/4, π/2, and 3π/4.
(a)–(c) Correspond to L/ξ = 0.02, 0.05, and 0.1, respectively.
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FIG. 8. Surface plot of the ground-state superconducting phase
difference ψ versus χ and h for L = 0.02ξs.

the number of oscillations on ψ (h) curves in Fig. 7(a) is of
order Nf = k f L/π , where k f is the Fermi momentum in the
central layer at h = 0. Indeed, for our choice of the hybrid
structure parameters Nf ∼ 10, which allows us to associate
the oscillations of the anomalous phase with the size quan-
tization effects in the central F layer. The results for longer
junctions L/ξ = 0.05 and 0.1 [Figs. 7(b) and 7(c)] reveal the
increase in the number of oscillations upon the increase in the
junction length. One can see that the number of oscillations of
the anomalous phase in Figs. 7(b) and 7(c) is of order k f L/π .
The resulting exchange-field behavior of the anomalous phase
is in a good qualitative agreement with the results of Eq. (47).

Our main results regarding the behavior of the ground-state
superconducting phase difference are summarized in Fig. 8,
where we show the surface plot of the anomalous phase ψ

versus the exchange field h and the misorientation angle χ .
Qualitatively, the observed behavior of the anomalous phase
reflects the interplay between several physical phenomena
such as the spin-filtering effect, the size quantization effect in
ballistic junctions with rather thin ferromagnet, and a tunabil-
ity of the spin-triplet supercurrent by the relative orientation
of the magnetic moments in three ferromagnetic layers.

Finally, we analyze the features of the phase-pumping
phenomenon for different exchange fields h in the central
ferromagnet. For this purpose we perform the calculations
of the superconducting phase difference corresponding to
both global and local minima of the free energy. The results
presented in Fig. 9 show the detailed evolution in the be-
havior of the system upon the increase in h. In particular,
the plots for h = 0.01μ f [shown by black lines in Fig. 9(a)]
reveal two states of the system, one of which is stable within
the whole range of misorientation angles. The other one is
metastable and can be realized only within a certain χ range.
So, in this case the mutual rotation of magnetization in F1

and F2 layers corresponds to a topologically trivial trajectory
of the system in the parameter space (ψ, χ ) (see, e.g., the
black solid line in Fig. 1) with the superconducting phase
difference trapped near zero. For h = 0.03μ f [see the red
lines in Fig. 9(a)] there appear stable states both near 0 and
π within certain χ ranges. Thus, the topologically trivial
evolution of the superconducting phase upon the magneti-
zation rotation can be accompanied with thermally activated
jumps of the spontaneous phase. The probability of the latter
process ∝exp(−δF/T ) is mainly determined by the relation
between the energy barrier for the decay of a metastable state

FIG. 9. Typical dependencies of the superconducting phase difference ψ on the misorientation angle χ for several exchange fields h in the
central ferromagnet. Thick (thin) lines show the results corresponding to the global (local) minimum of the junction free energy. The results
for χ ∈ [−π, 0] are obtained via inversion relative to the point (ψ, χ ) = (π, 0). We take h/μ f = 0.01 and 0.03 in (a), 0.06 and 0.09 in (b),
0.11 and 0.12 in (c), 0.14 and 0.15 in (d), 0.2 and 0.25 in (e), 0.35 and 0.45 in (f), 0.5 and 0.6 in (g), 0.7 and 0.8 in (h). We choose L = 0.02ξ

to produce the plots.
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δF and temperature T . Corresponding energy barrier depends
on the magnetization orientation and various structure pa-
rameters such as the strengths of spin-active interfaces and
the exchange field in the central ferromagnet. Our numerical
simulations performed for T = 0.1	0 and arbitrary exchange
field in the central ferromagnet yield typical energy barri-
ers δF/N	0 ∼ 0.01–0.1 [see, e.g., the dashed-dotted line in
Fig. 6(c)]. Here N = Ak2

F /π , A is the cross-section area of
the central ferromagnet, and kF is the Fermi momentum in the
normal-metal state of the superconducting leads. In a typical
experimental situation N is large and the condition δF/T � 1
is realized. Thus, we expect that the thermally activated jumps
of the superconducting phase difference can be important only
in the near vicinity of end points of metastable branches.
For h/μ f = 0.06, 0.09, and 0.11 [see Fig. 9(b) and the black
lines in Fig. 9(c)] the system exhibits a similar behavior as in
Fig. 9(a) except that the superconducting phase difference can
be trapped near π . Corresponding plots for h/μ f = 0.12 [see
the red lines in Fig. 9(c)] reveal the change in the topology
of the phase evolution and the appearance of the phase pump-
ing: the gain of the Josephson phase at the pumping period
switches to 2π . The presence of the jump of the ground-state
phase difference and the metastable states in the vicinity of
the jump implies that the nontrivial phase evolution should be
accompanied with the hysteresis phenomena. The results for
h/μ f = 0.15 [shown by the red lines in Fig. 9(c)] illustrate the
transition into the topologically trivial state. We observe an-
other transition into the state with a nontrivial phase evolution
at h ≈ 0.2μ f [see the black lines in Fig. 9(e)]. Figures 9(f)–
9(h) demonstrate that a nontrivial gain of the superconducting
phase at the rotation period persists upon further increase in
h, the χ regions corresponding to metastable states shrink and
disappear for rather large h [see, e.g., the results for h/μ f =
0.45 in Fig. 9(f)]. Therefore, we find that for rather large
exchange fields in the central ferromagnet the magnetization
rotation corresponds to a continuous topologically nontrivial
trajectory of the system in the parameter space (ψ, χ ) (see,
e.g., the red solid line in Fig. 1) and the continuous phase
pumping whereas for smaller fields the corresponding trajec-
tories are discontinuous.

IV. CONCLUSION

To sum up, we have studied the anomalous Josephson
effect in S/F1/F/F2/S systems with noncoplanar magnetic
moments in ferromagnetic layers with arbitrary ratio between
the exchange field in the F layer and the Fermi energy.

As a first step, considering SF1/half-metal/SF2 Josephson
junctions of atomic thickness in the frames of Gor’kov formal-
ism we have demonstrated that the spontaneous ground-state
phase difference ψ arising in such systems coincides with
the angle between projections of magnetic moments in the
SF1 and SF2 layers to the plane perpendicular to the spin
quantization axis in half-metal. Interestingly, this feature of
ψ junctions gives rise to the Berry phase effects. Indeed, the
rotation of magnetic moment, e.g., in the SF1 layer, should
produce the accumulation of the ground-state phase 2π after
the full precession period which may result in the interesting
possibility of magnetic flux pumping in superconducting loop
[49]. Also, using the exact solution of Gor’kov equations for

the Green functions we have calculated the critical current in
the current-phase relation and establish its dependence on the
magnetic moment direction in SF1 and SF2 layers. To perform
the desired tuning of the magnetic moment direction in exper-
iments one may use, e.g., an external in-plane magnetic field
which adiabatically rotates the magnetic moment in one of
the F layers. Previously this technique was successfully used
to control the noncollinear magnetic states in multilayered
superconducting spin-valve structures [61–64]. An alternative
mechanism implies irradiation of the ferromagnetic layer by
the circularly or/and rotating linearly polarized electromag-
netic wave which could induce the precession of the magnetic
moment (to realize this scenario the overlap geometry of the
Josepshon junction is more suitable [49]).

Then we analyzed the behavior of the ground-state su-
perconducting phase difference and the features of the
phase-pumping effect in S/F1/F/F2/S junctions upon the de-
crease in the exchange field in the F layer from the values
comparable with the Fermi energy (the limit of half-metal)
down to the ones of the order of the critical temperature
of the superconducting phase transition. To do this we have
performed calculations of the Josephson transport for clean
S/F1/F/F2/S systems with the finite F-layer thickness. For a
half-metallic central layer it has been shown that the sponta-
neous phase is a linear function of the misorientation angle
ψ = π − χ . As the exchange field decreases we have found
that the considered Josephson systems are characterized by a
nonlinear ψ (χ ) dependence and can feature two competing
local minima in the free energy of the junction vs the su-
perconducting phase difference. This competition leads to a
bistable behavior of the system, which manifests itself through
the jumpwise changes of the spontaneous phase upon the
variation in the misorientation angle accompanied with the
hysteresis phenomena. We have demonstrated that further
decrease in h can induce several changes in the topology of
the phase evolution: the gain of the Josephson phase at the
rotation period switches between 0 to 2π . Also, we have found
that the spontaneous phase can exhibit oscillating and/or the
jumpwise behavior as a function of the exchange field.

The ψ junctions incorporated into superconducting circuits
provide a possibility to switch between the superconduct-
ing states with different vorticities without the application
of external magnetic field [49]. The direct coupling between
superconducting phase difference and orientation of the mag-
netic moment open a way to generate a magnetic moment
precession by superconducting current in ψ junction similar
to that predicted for ϕ0 junction [65]. We believe that the ψ

junction may be a very interesting building block for super-
conducting spintronics.

Now there are several experimental evidences of the
Josephson current through the half-metal ferromagnets
[42,43,66–68]. Most probably, this long-ranged triplet su-
percurrent could be generated by the noncollinear surface
magnetization at the interface with a half-metal. In such
a case, the model with spin-active interfaces considered in
Sec. III seems to be quite adequate for the description of the
experiments [42,43,66–68]. The noncollinear surface magne-
tization should be the same at both ends of the junctions and
then we should have ψ = π , i.e., the π -junction realization.
This may be directly verified by incorporating Josephson
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junction with a half-metal in a closed superconducting loop
(similar to the experiments [10]). Note that recently a super-
conducting quantum interference device was used to detect
the transitions between 0 and π states in S/F/S junctions with
composite ferromagnetic layer [69,70]. This experimental
technique and the fabricated setups provide a perfect play-
ground to verify the effects predicted in this paper and we
hope that our results will stimulate the corresponding activity.
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APPENDIX A: CRITICAL TEMPERATURE OF SF/HM SUPERLATTICE

Assuming t to be small, we perform the power expansion of (25) up to the fourth order:

F̂ †

	0
= X+ ÎX− + |T (k + q)|2X+ ÎX−Y−X− + |T (q)|2X+Y+X+ ÎX− + |T (q)|4X+Y+X+Y+X+ ÎX−

+ |T (k + q)|4X+ ÎX−Y−X−Y−X− + |T (q)|2|T (k + q)|2X+Y+X+ ÎX−Y−X−, (A1)

where X± = (iωn ± Ĉ)−1, Y± = (iωn ± P̂)−1. Then we calculate the following expressions entering Eq. (26):

∞∑
n=−∞

∫ +∞

−∞
dξ

∫ π

−π

dq

2π
X+ ÎX− = −

∑
n>0

2πωn

ω2
n + h2

Î, (A2)

∞∑
n=−∞

∫ +∞

−∞
dξ

∫ π

−π

dq

2π
[|T (k + q)|2X+ ÎX−Y−X− + |T (q)|2X+Y+X+IX−] =

∑
n>0

4πt2ωn
(
ω2

n − 2h2
)

(
ω2

n + h2
)2(

4ω2
n + h2

) Î, (A3)

∞∑
n=−∞

∫ +∞

−∞
dξ

∫ π

−π

dq

2π

[|T (q)|4X+Y+X+Y+X+ ÎX− + |T (k + q)|4X+ ÎX−Y−X−Y−X−
]

= −3πt4

8

∑
n>0

[
4
(
h4 − 9h2ω2

n + 2ω4
n

)
ωn

(
ω2

n + h2
)3(

4ω2
n + h2

) − 2h2
(
h6 + 7h4ω2

n − 46h2ω4
n − 16ω6

n

)
ω3

n

(
ω2

n + h2
)3(

4ω2
n + h2

)2 cos2 θ

]
Î, (A4)

∞∑
n=−∞

∫ +∞

−∞
dξ

∫ π

−π

dq

2π
[|T (q)|2|T (k + q)|2X+Y+X+ + ÎX−Y−X−] = t4

(
1 + cos k

2

) ∑
n>0

π
(
h4 + 35h2ω2

n + 70ω4
n

)
ωn

(
ω2

n + h2
)3(

4ω2
n + h2

)2 sin2 θ Î.

(A5)

We substitute the above expressions into the self-consistency equation (26) and obtain

ln

(
Tc

Tc0

)
= −2πTc

∑
n>0

[
h2

ωn
(
ω2

n + h2
) + 2t2ωn

(
ω2

n − 2h2
)

(
ω2

n + h2
)2(

4ω2
n + h2

) − 3t4
(
h2 − 2ω2

n

)2(
4ω4

n − 9h2ω2
n − h4

)
8ω3

n

(
ω2

n + h2
)3(

4ω2
n + h2

)2

+ t4h2
(
328ω6

n + 278h2ω4
n − 17h4ω2

n − 3h6
)

8ω3
n

(
ω2

n + h2
)3(

4ω2
n + h2

)3 sin2 θ + t4h2
(
h4 + 35h2ω2

n + 70ω4
n

)
cos k

4ωn
(
ω2

n + h2
)3(

4ω2
n + h2

)2 sin2 θ

]
. (A6)

Finally, representing the critical temperature in the form

Tc = T̃c0(1 + at2 + bt4), (A7)

we calculate a and b using (A6) and obtain

a = − 1

W

∑
n>0

4π T̃c0ω̃n
(
ω̃2

n − 2h2
)

(
ω̃2

n + h2
)2(

4ω̃2
n + h2

) , (A8)
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b = 2π T̃c0

W

∑
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1 −

∑
n>0

4π T̃c0h2ω̃n
(
3ω̃2

n + h2
)

(
ω̃2

n + h2
)3
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+ a
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n>0

16π T̃c0ω̃n
(
2ω̃6

n − 10ω̃4
nh2 − 2ω̃2

nh4 + h6
)

(
ω̃2

n + h2
)3(

4ω̃2
n + h2

)2 , (A9)

where ω̃n = π T̃c0(2n + 1). Since h � ω̃n, W > 0 and the critical temperature is higher for the π phase.

APPENDIX B: DETAILS OF NUMERICAL CALCULATIONS

Here we provide the details of numerical simulations. Our starting point is the expression for the free energy (46). The
determinant of the matching condition matrix P is defined by Eq. (45b) and the scattering matrices Ki (i = 1, 2) are given
in Eq. (43). As a first step, we calculate the matrix product Ǩ1(ωn, p‖)Ǩ2(ωn, p‖) for a certain Matsubara frequency and the
in-plane momentum:

Ǩ1Ǩ2 = Q̌(L/2)(W̌1 + Ǩ )−1(W̌1 − Ǩ )Q̌(L)(W̌2 + Ǩ )−1(W̌2 − Ǩ )Q̌(L/2). (B1)

For the case θ1 = θ2 = π/2 considered in the main text we have n j σ̂ = cos(χ j )σ̂x + sin(χ j )σ̂y, and the matrix products can be
reduced to the form

(W̌j + Ǩ )−1(W̌j − Ǩ ) = �̌ j[(g + iZ j σ̂x )τ̌z + iZ0, j + Ǩ − f τ̌y]−1[(g + iZ j σ̂x )τ̌z + iZ0, j − Ǩ − f τ̌y]�̌†
j . (B2)

Here we introduced the unitary matrices �̌ j = ei(ϕ j τ̌z−χ j σ̂z )/2, the values ϕ1 and ϕ2 stand for the phase of the superconducting
order parameter in the left and right lead, respectively. We find the inverse matrix entering Eq. (B2) analytically and then derive
the expression for the matrix product

�̌
†
j (W̌j + Ǩ )−1(W̌j − Ǩ )�̌ j =

[
1 − 2ŴT

j (iZ0, j − g − iZ j σ̂x + ˆ̄K )K̂ 2i f ŴT
j

ˆ̄K

−2i f Ŵ j K̂ 1 − 2Ŵ j (iZ0, j + g + iZσ̂x + K̂ ) ˆ̄K

]
, (B3)

where

Ŵ j = − 1

η j

(
w j − iZ0, j s↓↓ + gδ↓↓ − K↓K̄↓ −iZ j (2g + δ↑↓)

−iZ j (2g + δ↓↑) w − iZ0, j s↑↑ + gδ↑↑ − K↑K̄↑

)
, (B4a)

η j = [w j − iZ0, j s↑↑ + gδ↑↑ − K↑K̄↑][w − iZ0, j s↓↓ + gδ↓↓ − K↓K̄↓] + Z2
j (2g + δ↑↓)(2g + δ↓↑), (B4b)

w j = 1 + Z2
0 − Z2, sσσ ′ = Kσ + K̄σ ′ , δσσ ′ = Kσ − K̄σ ′ , and σ, σ ′ = ↑,↓ are the spin indices. The determinant of the solv-

ability condition matrix P (iωn, p||) [see Eq. (45b)] is calculated numerically using the above expressions (B1), (B3), and (B4).
The next steps are the integration of log |P (iωn, p||)| with respect to the parallel momentum for a certain Matsubara frequency
and then the summation over the Matsubara frequencies. The dominant contribution to the momentum integrals stems from the
states with |p‖| < pFs, where pFs is the Fermi momentum in the normal-metal state of the superconducting lead. Note that some
care is needed for numerical evaluation of the wave numbers p↑,↓(iωn), p̄↑,↓(iωn) defined by Eq. (40c). In Eqs. (45a) and (46)
the summation is carried out over positive Matsubara frequencies. In our numerical calculations we choose the branch cut of the
complex square root to be along the negative real axis. For this particular choice one should couple the electronic states with
the wave numbers pσ in the ferromagnet with the hole states with the wave numbers −p̄σ [see Eqs. (39) and (40)] because in
the opposite case the kinematic phase factors of the hole excitations eip̄σ L quickly diverge upon the increase in the Matsubara
frequency. This problem is resolved by the replacement p̄σ → −p̄σ in numerical code. As a result, we obtain the free energy of
the junction F (46) as a function of the superconducting phase difference ϕ. Finally, we compute the derivative ∂F/∂ϕ, which
gives us the current-phase relation (45a).
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