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Tuning topological superconductivity within the t-J-U model of twisted bilayer cuprates
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We carry out a theoretical study of unconventional superconductivity in twisted bilayer cuprates (TBCs) as
a function of electron density and layer twist angle. The bilayer t-J-U model is employed and analyzed within
the framework of a generalized variational wave function approach in the statistically consistent Gutzwiller
formulation. The constructed phase diagram encompasses both a gapless d-wave state (reflecting the pairing
symmetry of untwisted copper-oxides) and gapped d + eiϕd phase that breaks spontaneously time reversal
symmetry (TRS) and is characterized by a nontrivial Chern number. We find that the d + eiϕd state occupies
a nonconvex butterfly-shaped region in the doping versus twist-angle plane and demonstrate the presence of
a reentrant TRS-breaking phase on the underdoped side of the phase diagram. This circumstance supports the
emergence of topological superconductivity for fine-tuned twist angles in TBC away from 45◦. Our analysis
of the microscopically derived Landau free-energy functional points toward sensitivity of the superconducting
order parameter to small perturbations close to the topological state boundary.
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I. INTRODUCTION

Strong electronic correlations in condensed-matter materi-
als are the driving force of a number of unique phenomena,
among them high-temperature (SC), the pseudogap state, and
non-Fermi liquid behavior. Unambiguous microscopic clarifi-
cation of those and related effects is challenging and remains
one of the major endeavors in condensed matter physics
(cf. Ref. [1] for review). Successful execution of this task re-
lies on the supply of diversified experimental data for a broad
range of parameters and energy scales to provide the testing
ground for contemporary theoretical models. A paradigm for
an ad hoc engineering of highly tunable strongly correlated
electron systems, offering such an insight, appeared following
experimental realization of unconventional superconductivity
and Mott insulating states in twisted bilayer graphene [2,3].
In this case, the interlayer twist-angle serves as the parameter
providing control over electronic bandwidth, and thus allows
us to drive the otherwise moderately correlated system into
the strongly correlated regime. Analogous tunable strongly
correlated states have also been reported for twisted transition
metal dichalcogenides [4].

Recent progress in fabrication of high-temperature SC
Bi2Sr2CaCu2O8+x (Bi-2212) thin films [5,6] and monolayers,
[7] with properties comparable to the bulk crystals, opens pos-
sibilities to explore physics of strong electronic correlations
in two dimensions. Specifically, introducing a twist between
the copper-oxide SC layers has been proposed to stabilize
high-temperature d + eiϕd SC with nonzero phase ϕ between
layer order parameters that spontaneously breaks time reversal
symmetry (TRS) and hosts nontrivial topology [8]. This might
be regarded as generalization of pure d + id pairing and a
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concrete realization of the earlier proposals of TRS-breaking
SC in Josephson junctions, composed of superconductors with
distinct pairing symmetries (e.g., dx2−y2 and dxy) [9]. Subse-
quent theoretical studies of the Hubbard [10] and t-J-model
[11] on twisted bilayer square lattice support this scenario,
yet the resultant SC phase diagrams vary substantially, de-
pending on the microscopic Hamiltonian and approximation
employed, encompassing topological SC with large Chern
numbers (C = 2, 4, 8) or a topologically trivial state (C =
0). An experimental search for possible formation of TRS-
breaking SC in Bi-2212 [12–15] and Bi2Sr2−xLaxCuO6+y

(Bi-2201) [16] provides ambiguous evidence regarding d + id
pairing and points toward the prevalence of an isotropic pair-
ing component. Systematic characterization of the SC across
the phase diagram of twisted bilayer cuprates (TBCs) is thus
desired.

We carry out analysis of unconventional SC for TBCs in
a broad range of twist angle and hole doping, from an un-
derdoped to overdoped regime. A generalized t-J-U model
on twisted square lattice is employed. This Hamiltonian
incorporates both on-site Coulomb repulsion and antiferro-
magnetic exchange on equal footing, and has been previously
utilized for a quantitative description of equilibrium and
dynamic properties of untwisted materials [1]. The analy-
sis is carried out within the framework of the statistically
consistent Gutzwiller approximation (SGA), constituting a
finite-temperature extension of the variational wave-function
scheme that is applicable to large supercells, emerging in
moiré systems. The obtained doping versus twist-angle phase
diagram encompasses both plain gapless d-wave and topolog-
ical TRS breaking d + eiϕd SC. Those states are separated
by a series of quantum phase transitions concealed within the
high-Tc SC dome inherited from the untwisted cuprates.

The d + eiϕd state is stabilized in a narrow layer twist
angle regime around θ = 45◦, in agreement with former the-
oretical studies [8,10]. However, we reveal reentrant d +
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eiϕd SC emerging as a function of the layer twist angle in
underdoped systems. Multiple characteristics of the SC state
are analyzed throughout the high-Tc phase diagram, including
the SC order parameter, equilibrium value of SC relative phase
factor between the layers, and energy gap in the quasiparticle
spectrum. In particular, we demonstrate that the onset of d +
eiϕd SC is assisted by opening the energy gap, yet those two
quantities follow distinct doping dependence; for certain val-
ues of the layer twist angle, we identify a double-dome-shaped
gap as a function of electronic density (band filling). Finally,
we extend our analysis of equilibrium SC properties and study
the microscopically derived Landau free-energy functional,
which encodes information about the stiffness of paired state.
Close to the onset of TRS-breaking SC, free energy becomes
extremely flat as a function of the relative SC phase factor
between layers. This circumstance points toward sensitivity
of the d + eiϕd order parameter to small perturbations, such
as chemical disorder and interface imperfections, and might
rationalize the ambiguous structure of the SC order parameter
reported experimentally for twist angles close to ∼45◦.

The paper is organized as follows. In Sec. II, we introduce
the bilayer t-J-U model, and in Sec. III we discuss the symme-
try of the SC order parameter and define relevant quantities.
In Sec. IV, we present the results, encompassing SGA doping
versus twist angle phase diagram, as well as the analysis of
microscopically derived Landau free-energy landscape versus
d + eiϕd pairing amplitude. A summary and discussion is
given in Sec. V. Appendices A and B provide relevant de-
tails of our approach and multiple consistency checks of the
employed methodology.

II. MODEL AND METHOD

For certain (commensurate) twist angles, the twisted bi-
layer square lattice forms a periodic superstructure. Those
configurations are characterized by two integers, n and m,
such that the layer twist angle reads θ = 2 · arctan(m/n).
The number of copper atoms per unit cell reads then Ncell =
2 · (n2 + m2), with the factor of 2 reflecting the number of
layers. The resultant superstructure forms a square with lat-
tice spacing a = √

n2 + m2a0, where a0 denotes the in-plane
Cu-Cu distance. Hereafter, we set the total number of cop-
per sites to NCu ≈ 80 000 which, as we verified, is sufficient
to reliably represent the thermodynamic-limit situation. Note
that it is not possible to form periodic lattices with exactly
NCu ≡ 80 000 sites for all considered twist angles, as the unit-
cell dimensions are irrational numbers, in general. In Table I,
we list the values of n and m addressed in the present paper,
as well as lattice sizes and other relevant parameters. The
unit cells of the resulting superstructures are illustrated in
Figs. 1(a)–1(e), with the exception of the trivial case without
a twist (θ = 0◦) and those marked as not included in Table I.
Blue and red circles represent Cu sites in layers A and B,
respectively, and links visualize hybridization between layers.
Copper sites in the left-bottom corner of the unit cell are
positioned exactly on top of each other so the blue circle is
not visible.

Remarkably, not all pairs of indices (n, m) result in new
superstructures. Layers at twist angle θ may be transformed
into those twisted by θ ′ = 90◦ − θ by appropriate spatial

TABLE I. Characteristics of the twisted square-lattice bilayer
for selected twist angles, θ . Commensurate configurations are de-
termined by two integers, n and m, such that θ = 2 · arctan(m/n).
Ncell is the number of atoms in the unit cell, and NCu denotes the total
number of Cu sites in the lattice (periodic boundary conditions are
imposed and lattice dimensions have been selected so NCu is close to
80 000). Superstructure lattice constant is also given, in the units of
the Cu-Cu distance a0. Inequivalent lattices used in the present paper
are marked in the last column as included. Those not included are
related by symmetry to other superlattices with smaller unit cells, as
discussed in the text.

n m Ncell NCu a/a0 θ (◦) 90◦ − θ (◦) Included

1 0 2 80 000 1.000 0.00 90.00 yes
2 1 10 79 210 2.236 53.13 36.87 yes
3 1 20 79 380 3.162 36.87 53.13 no
3 2 26 78 650 3.606 67.38 22.62 yes
4 1 34 78 336 4.123 28.07 61.93 yes
4 3 50 80 000 5.000 73.74 16.26 yes
5 1 52 79 092 5.099 22.62 67.38 no
5 2 58 79 402 5.385 43.60 46.40 yes

transformations and are thus physically equivalent in the
thermodynamic limit. Small finite-size and boundary condi-
tion effects arising in finite geometries are discussed below.
In effect, there is no need to explicitly consider lattices char-
acterized by n = 3, m = 1 and n = 5, m = 1 as those are
equivalent to n = 2, m = 1 and n = 3, m = 2 with smaller
supercells (those are marked as not included in Table I; we
use them only for test and benchmark purposes). The geo-
metric construction illustrating this equivalence is displayed
in Fig. 1(f). Blue and red coordinate axes correspond to the
square lattices in layers A and B, respectively. The layers
are rotated with respect to the original coordinate system
x̂-ŷ (dotted arrows) by +θ/2 (counter-clockwise) and −θ/2
(clockwise), so the relative angle between layers reads θ . By
carrying out a 45◦ counter-clockwise rotation around the out-
of-plane ẑ axis, followed by layer interchange, we effectively
exchange the angles θ and 90◦ − θ marked in Fig. 1(f). In
effect, with a limited number of superstructures, we are able
to densely cover the range of twist angles θ ∈ [0, 90◦] and ex-
plore the structure of doping-θ phase diagrams for correlated
lattice Hamiltonians on twisted square lattice.

We employ the t-J-U model [1,17], reformulated for the
TBC system. It may be regarded as a formal generaliza-
tion of Hubbard and t-J models, and encompasses both of
them as particular cases. The Hubbard model is not well-
suited for SGA and related (e.g., slave-boson) approximation
schemes due to lack of explicit exchange interactions. The
magnetic exchange processes emerge in subleading orders of
respective diagrammatic expansions [18], making the problem
intractable for large supercells addressed. In effect, low-
order approximation solutions obtained within those three
Hamiltonians may differ. The t-J and t-J-U models thus
provide a methodological advantage over the complementary
Hubbard-model description, allowing us to discuss the high-Tc

SC already at the saddle-point-solution level. On the other
hand, systematic variational wave function studies of both
the t-J and t-J-U models demonstrate that the t-J-U model
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FIG. 1. Top view of the unit cell for twisted-bilayer square lattice. Blue and red circles are copper sites in the lower- and upper-layers,
respectively, and links represent interlayer hybridization, Vi j , here given in the units of V0 [cf. Eq. (3)]. Only links corresponding to hybridization
Vi j � 0.5V0 are marked for clarity (magnitudes of Vi j/V0 are detailed in the legend). Note that the copper sites in neighboring layers in the
left-bottom corner of the unit cell are positioned exactly on top of each other, and blue circle is not visible. (a)–(e) correspond to twist angles
θ = 53.13◦, 67.38◦, 28.07◦, 73.74◦, and 43.60◦, respectively. (f) illustrates the symmetry of d + eiϕd superconducting order parameter in
twisted square lattice. Blue and red coordinate axes correspond to the layers, twisted by and angle ±θ/2 with respect to the original coordinate
frame (dotted axes). Phases of the layer order parameters ± exp(±iϕ/2) along the directions parallel to the axes are also marked, as explained
in the text. As follows from (f), system at twist angle θ may be transformed into that twisted by complementary θ ′ = 90◦ − θ by means of a
45◦ lattice rotation along the out-of-plane ẑ direction, combined with the interchange of A and B planes. The data for complementary angles
θ ′ = 36.87◦, 61.93◦, 16.26◦, and 46.40◦ are thus obtained by transforming those for supercells (a)–(e), and there is no need to consider them
explicitly.

yields a better global description of high-Tc cuprates across
their phase diagram than the t-J model [1]. In particular, the
t-J-U model reproduces quantitatively experimental doping
dependence of the effective masses and Fermi velocity [1],
as well as correctly accounting for certain subtle SC proper-
ties, including a crossover between BCS-like to non-BCS-like
regimes. The latter effect occurs at the single meV scale and
is characterized by the sign change of kinetic energy gain at
the SC transition [17,19,20]. Since the free-energy landscape
for TBC involves even smaller energy scales, we consider the
t-J-U model as an appropriate departure point for addressing
unconventional SC in those systems.

An attractive methodological feature of the t-J-U
Hamiltonian is that calculations in restricted (projected)
Hilbert space, with doubly occupied sites excluded, are not
necessary. This is because the large value of on-site Coulomb
repulsion to hopping ratio ∼20 essentially reduces the value
of doubly occupancy probability, d2. Typically, d2 � 10−2,
which is much smaller than the weak-coupling-limit value
d2 ∼ 0.2. Hence, the considered model reflects the principal

features of t-J model physics. Moreover, the presence of
the exchange term ∝ J also accounts for additional superex-
change channels beyond the Anderson kinetic exchange,
which is of too small a magnitude for the realistic values
of hopping and Coulomb interaction taken for the cuprates.
Nevertheless, even in the present strong-correlation regime
(U/|t | ∼ 20) and nonzero doping, the double occupancy prob-
ability is small but nonzero. The limit of the t-J model is
thus approached, but not formally reached [21]. This and other
aspects of the approach have been elaborated on at length in
our previous papers [1,1].

For each of the two layers, L = A, B, the respective t-J-U
Hamiltonians read

Ĥ(L)
t-J-U =

∑

〈i, j〉
i, j∈L

(ti j â
†
iσ â jσ + H.c.)+

∑

〈i, j〉
i, j∈L

Ji j ŜiŜ j + U
∑

i∈L

n̂i↓n̂i↑,

(1)

where âiσ (â†
iσ ) annihilate (create) electrons on lattice site i

(note that the operators are not projected as in the t-J model
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TABLE II. Summary of the bilayer t-J-U -model parameters em-
ployed in the present paper. Except for the value on nearest-neighbor
hopping, t , the energies are expressed in the units o |t |. The interlayer
distance and tunneling decay length [cf. Eq. (3)] are expressed in
terms of in-plane Cu-Cu distance, a0. The analysis has been carried
out for two values of J/|t | = 0.3 and 0.4.

Parameter Value Description

t −0.35 eV nearest-neighbor hopping
t ′/|t | 0.3 next-nearest-neighbor hopping
U/|t | 20 on-site Coulomb repulsion
J/|t | 0.3, 0.4 exchange interaction

V0/|t | −0.2 interlayer tunneling magnitude
d/a0 2.1 interlayer distance
r0/a0 0.5 tunneling decay length

kBT/|t | 10−6 temperature

[21]). In Eq. (1), 〈i, j〉 means that each pair of indices ap-
pears only once in the summation, whereas ti j and Ji j denote
hopping and exchange integrals, respectively. The Hubbard-
and t-J-model limits are retrieved for J = 0,U �= 0 and J �=
0,U → ∞, as discussed above. Hereafter, we retain only
hopping integrals between nearest and next-nearest neigh-
bors, t = −0.35 eV and t ′ = 0.3|t |, and the on-site Coulomb
repulsion is set to U = 20|t |. This means that the ratio
U/W is large, but not yet in the canonical t-J-model limit.
We consider two values of the antiferromagnetic nearest-
neighbor exchange, J = 0.3|t | and 0.4|t |, to assess how the
intralayer pairing affects the interlayer SC correlations. More-
over, in our calculations, we retain small finite temperature
T = 10−6|t |/kB, where kB denotes Boltzmann constant. Mi-
croscopic parameters in this range have been previously
employed to study high-Tc SC [17] and interlayer tunneling
effects [22] in untwisted (θ = 0◦) systems.

The layers, A and B, are subsequently twisted by an angle
θ ∈ [0◦, 90◦], as illustrated in Fig. 1, and coupled by interlayer
tunneling Vi j so the total system Hamiltonian takes the form

Ĥ =Ĥ(A)
t-J-U + Ĥ(B)

t-J-U +
∑

i∈B
j∈A,σ

(Vi j â
†
iσ â jσ + H.c.), (2)

whereas Vi j generally contains both isotropic and anisotropic
components [11,23], here we restrict to a model situation with
pure isotropic and exponentially decaying tunneling

Vi j = V0e− ||ri−r j ||−d

r0 , (3)

where ri denotes the position of lattice-site i, d is interlayer
distance, and r0 represents the characteristic decay length
of the interaction between layers. Equation (3) is written so
Vi j ≡ V0 whenever site i is positioned directly on top of site
j. In effect, V0 becomes a direct measure of the overall in-
terlayer hopping magnitude. Hereafter, for all calculations we
use V0 = −0.2|t |, d = 2.1a0, r0 = 0.5a0, with a0 being the
interlayer Cu-Cu distance. Moreover, to make the problem
tractable, we apply a cutoff to interlayer hybridization by
discarding all Vi j such that ||ri − r j || > 3.1a0. The model
parameters employed in the present paper are summarized in
Table II.

The model is analyzed within the framework of the varia-
tional wave-function approach in the SGA formulation. In its
plain form, the varietal method is based on optimization of the
energy functional

Evar ≡ 〈�var|Ĥ|�var〉
〈�var|�var〉 , (4)

where |�var〉 is a variational state accounting for strong
electronic correlations on copper sites. SGA provides an
extension of the latter to finite temperature and introduces
simplifications that makes the study of large lattices and su-
percells feasible. The methodological details are presented in
Appendix A.

III. SUPERCONDUCTIVITY AND ORDER PARAMETER

Untwisted high-Tc copper-oxides host dx2−y2 SC that is
compatible with square-lattice symmetry and allows the elec-
trons forming Cooper pairs to effectively avoid strong on-site
Coulomb interactions. The constituents comprising natural
building blocks for the SC order parameter of twisted bilayer
are thus two intralayer dx2−y2 -wave order parameters �

(A)
d ≡

〈�̂(A)
d 〉 and �

(B)
d ≡ 〈�̂(B)

d 〉, with their respective pairing
operators

�̂
(A)
d = 1

4NCu

∑

i∈A

(âi+x̂A↓âi↑ − âi+x̂A↑âi↓

− âiŷA↓âi↑ + âi+ŷA↑âi↓) (5)

and

�̂
(B)
d = 1

4NCu

∑

i∈B

(âi+x̂B↓âi↑ − âi+x̂B↑âi↓

− âi+ŷB↓âi↑ + âi+ŷB↑âi↓). (6)

In Eqs. (5) and (6), x̂A = (cos θ
2 , sin θ

2 , 0), ŷA = (− sin θ
2 ,

cos θ
2 , 0), x̂B = (cos θ

2 ,− sin θ
2 , 0), ŷB = (sin θ

2 , cos θ
2 , 0) are

the basis vectors for sublattices A and B, here expressed in the
units of the Cu-Cu in-plane distance. The above expressions
are normalized by NCu and an additional factor of 4 to take into
account four expectation values appearing in the summation.
We have found that, for twisted lattice structures displayed in
Figs. 1(a)–1(e), the initially imposed d-wave intralayer sym-
metry is preserved throughout SGA self-consistent procedure;
no admixture of extended s-wave components,

�̂(A)
s = 1

4NCu

∑

i∈A

(âi+x̂A↓âi↑ + âi+x̂A↑âi↓

+ âiŷA↓âi↑ + âi+ŷA↑âi↓), (7)

�̂(B)
s = 1

4NCu

∑

i∈B

(âi+x̂B↓âi↑ + âi+x̂B↑âi↓

+ âi+ŷB↓âi↑ + âi+ŷB↑âi↓), (8)

is observed, even for largest considered supercells.
The layer order parameters �

(A)
d and �

(B)
d are generally

complex numbers. Since the Hamiltonians for the two lay-
ers are equivalent [cf. Eq. (1)] and the hybridization Vi j

acts symmetrically on A and B layers, the order parameter
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amplitudes may be considered equal |�(A)
d | = |�(B)

d |, which
we have also verified numerically. In turn, the single parame-
ter �SC ≡ |�(A)

d | = |�(B)
d | is hereafter used as a dimensionless

measure of superconducting correlations. Moreover, the self-
consistently obtained relative phase ϕ ≡ arg(�(B)

d /�
(A)
d ) turns

out generally nontrivial, constituting a physically sound quan-
tity. The equilibrium value of ϕ different from 0◦ and 180◦
(modulo 360◦) implies spontaneous breakdown of TRS, and
admits nontrivial topology of the SC state. This is caused
by the circumstance that under time-reversal operation, the
phase is transformed as ϕ → −ϕ, leading to ground-state
degeneracy. With the help of global U (1) gauge transforma-
tion, layer order parameters may be generically brought to the
form �

(A)
d = |�(A)

d | exp(−iϕ/2) and �
(B)
d = |�(B)

d | exp(iϕ/2).
The directional dependence of the order-parameter phase is
marked in Fig. 1(f) next to the respective coordinate axes.
Within each of the layers, the phase factor changes signs
following spatial rotation by 90◦. The relative phase between
A- and B-layer order parameters is fixed at ϕ, which corre-
spond to the d + eiϕd SC.

The above considerations let us relate the order parameters
between the superstructures for complementary twist angles
(θ and θ ′ ≡ 90◦ − θ ), cf. Table I. For the system at the twist
angle θ whose free energy has degenerate minima at ±ϕ, one
can carry out the transformation to the θ ′ case following the
procedure described in Sec. II. As follows from Fig. 1(f), the
phase angles ±ϕ are then transformed into 180◦ ± ϕ. This
circumstance substantially reduces the computational cost of
evaluating phase diagrams and is utilized below.

IV. RESULTS

A. Identification of gapped and gapless states

Before detailed presentation of the obtained phase dia-
grams, in Fig. 2 we characterize the relevant aspects of SC for
two complementary twist angles, θ = 53.13◦ (blue symbols)
and θ = 36.87◦ = 90◦ − 53.13◦ (red symbols), cf. Table I.
The calculations have been carried out for the t-J-U model
Eq. (2) with J = 0.4|t | (left panels) and J = 0.3|t | (right
panels). The remaining model parameters are given in Sec. II.
From top to bottom, the panels detail electron-density depen-
dence of the SC order parameter �SC [Figs. 2(a) and 2(d)],
equilibrium SC relative phase ϕ [Figs. 2(b) and 2(e)], and
the energy gap defined as the minimum energy for creating
a particle-hole excitation [Figs. 2(c) and 2(f)]. For either se-
lection of J , the order parameter [Figs. 2(a) and 2(d)] takes
a typical domelike shape with a maximum close to 20% hole
doping. Remarkably, the SC phase angle ϕ [Figs. 2(b) and
2(e)] also forms a dome along the electron-density axis, yet
it encompasses only a fraction of the SC phase diagram.
The nontrivial value of ϕ �= 0◦, 180◦ (modulo 360◦) indicates
spontaneous TRS breakdown and emergence of topological
SC. The latter is characterized by a nonzero gap in the energy
spectrum [cf. Figs. 2(c) and 2(f)] and Chern number C = 4.
To obtain perfectly quantized Chern numbers, we employ an
efficient Brillouin-zone triangulation scheme [24] that yields
essentially roundoff-error limited results. Such accuracy is
needed to unambiguously characterize the weak SC state
topology close to the d + eiϕd dome boundary, as evidenced

(d
eg

)

FIG. 2. Electron-density (doping) dependence of the calculated
order parameter equilibrium value [(a), (d)], relative SC phase
between layers, ϕ [(b), (e)], and energy gap in the quasiparticle spec-
trum [(c), (f)] for two complementary twist angles θ = 53.13◦ (blue
symbols) and θ = 36.87◦ = 90◦ − 53.13◦ (red symbols). Those two
selections of θ correspond to different unit cells (n = 2, m = 1 and
n = 3, m = 1, respectively, cf. Table I), but are related by symmetry.
Quantitative agreement of the two independent simulation results
validates our supercell Hamiltonians and approach. (a)–(c) and
(d)–(f) correspond to antiferromagnetic exchange J = 0.4|t | and J =
0.3|t |, respectively. The remaining model parameters are detailed in
the text. Vertical green dashed lines mark the quantum phase tran-
sitions between gapless d-wave and gapped topological SC (TSC)
states. The TSC state is characterized by nontrivial Chern number
C = 4.

by fractional numerical values of Chern numbers reported
within other schemes [11]. On the other hand, for ϕ = 0◦
or 180◦, the SC state is gapless due to the nodal structure
inherited from the layer d-wave order parameters. In effect,
there are two hidden quantum phase transitions within the SC
dome, separating gapless and gapped topological SC (TSC)
states. One is located close to optimal doping and the other
appears in the overdoped regime; both are marked by dashed
vertical lines.

Figure 2 also provides a stringent test of our theoretical
framework. The displayed phase diagrams for complementary
angles θ = 53.13◦ and θ = 36.87◦ = 90◦ − 53.13◦ have been
obtained by independent simulations carried out for different
supercells (n = 2, m = 1 and n = 3, m = 1, cf. Table I). The
collapse of the order parameter and energy gaps indicates
physical equivalence of those configurations, as predicted on
symmetry grounds. Moreover, the self-consistently obtained
equilibrium values of ϕ for those twist angles are compatible
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FIG. 3. Summary of variational wave-function results for twisted square-lattice bilayer t-J-U model for J = 0.4|t | (top panels) and J =
0.3|t | (bottom panels). The remaining model parameters are detailed in the main text. (a), (e) The obtained doping versus twist-angle phase
diagrams, with gapless d-wave state marked by black crosses (numerically, gap < 10−2 eV), and gaped topological SC (Chern number C = 4).
For both values of antiferromagnetic exchange, butterfly-shaped gapped phase is obtained, indicating reentrant TRS-breaking d + eiϕd SC
on the underdoped side of the phase diagram. Exemplary constant-density lines, for which reentrant d + eiϕd SC is observed, are marked by
green arrows in (a) and (e). The remaining panels show doping dependence of relative SC phase between layers ϕ [(b), (f)], energy gap in the
quasiparticle spectrum [(c), (g)], and intraplane SC order parameter �SC [(d), (h)].

with the transformation rules introduced above [cf. Figs. 2(b)
and 2(e)]; the free energy minima at ±ϕ for twist angle θ

transforms into 180◦ ± ϕ at complementary angle 90◦ − θ .
Small quantitative differences observed at the boundaries of
SC domes originate from finite-size and boundary-condition
effects, as explained in Appendix B.

B. Doping versus twist angle phase diagrams

We now generalize the results of Fig. 2 and present
the complete doping versus twist-angle phase diagrams in
Fig. 3. Top and bottom panels correspond to antiferromag-
netic exchange J = 0.4|t | and 0.3|t |, respectively, with other
parameters remaining the same as those listed in Sec. II.
Black symbols in Figs. 2(a) and 2(e) mark the gapless SC
state (numerically, gap below 10−2 meV is regarded as zero)
and blue crosses represent gapped topological d + eiϕd state
with Chern number C = 4. Missing symbols for some com-
binations of θ and density indicate that we were unable to
reach the absolute precision of 10−10 for the correlation func-
tions, required to reliably determine order-parameter relative
phase, ϕ (cf. the discussion of the computational aspects in
Appendix B). The most distinctive feature of the phase di-
agrams, displayed in Figs. 2(a) and 2(e), is the nonconvex
butterfly-shaped region of the TRS-breaking d + eiϕd state
for both considered values of J . The nonconvexity manifests
itself as a reentrant behavior of topological SC as a function
of bilayer twist angle above optimal doping. Green arrows
in Figs. 2(a) and 2(e) mark exemplary constant-density paths
inside the phase diagram along which reentrance is observed.
Whereas realization of topological SC in the θ ∼ 45◦ region is

obstructed by detailed angular structure of interlayer tunnel-
ing [11,23], the d + eiϕd state might emerge for twist angles
in the reentrant-SC range θ ∼ 20-30◦ sufficiently close to half
filling.

The remaining part of Fig. 3 details the doping dependence
of relevant SC-state characteristics across the phase diagram.
Figures 3(b) and 3(f) show the equilibrium SC phase angle
between layers, ϕ. The range of densities, for which nontrivial
ϕ is obtained, shrinks and shifts toward half filling with de-
creasing θ . Figures 3(c) and 3(g) detail the corresponding gaps
in the quasiparticle spectrum, varying in the range 0–8 meV.
The gapped state overlaps with the regime of TRS breaking
d + eiϕd SC. Interestingly though, the relation between en-
ergy gaps and ϕ is not straightforward as those two quantities
exhibit a qualitatively different doping dependence for spe-
cific combination of microscopic parameters. This is clearly
seen for θ = 28.1◦ and J = 0.3|t | [green symbols in Figs. 3(f)
and 3(g)]. Whereas ϕ forms a single dome as function of
electron density, the corresponding energy gap splits into two
overlapping domes centered at n ≈ 0.75 and n ≈ 0.80. To a
lesser degree, such a dip in energy gap is also observed at
θ = 43.6◦. With the use of finite-size scaling, we have verified
that the dip in the energy gap for θ = 28.1◦ is not a numerical
artifact and thus is of physical significance. Indeed, in Fig. 4
we compare the doping dependence of SC characteristics for
θ = 28.1◦ and two lattice sizes, NCu = 78 336 (blue symbols)
and NCu = 319 906 (red symbols). All relevant quantities: Or-
der parameter �SC (a), phase angle ϕ (b), and energy gaps
(c) overlap for different values of NCu. In particular, two-dome
structure is robust against finite-size scaling, supporting our
conclusion. Finally, Figs. 3(d) and 3(h) of the phase diagram
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FIG. 4. Electronic-density dependence of the principal SC state
characteristics, obtained for J = 0.3|t | and layer twist angle θ =
28.07◦. The remaining microscopic model parameters are the same
as those used to generate phase diagrams of Fig. 3. Blue and red
curves correspond to the total number of Cu sites NCu = 78 336
and 319 906, respectively. Vertical dashed lines mark quantum phase
transitions between gapped and gapless states inside the SC dome.
All the displayed quantities qualitatively agree for different lattice
sizes, i.e., SC order parameter �SC (a), relative SC phase ϕ (b), and
energy gap (c). In particular, the two-dome structure of energy gap
in (c) is robust against finite-size scaling, indicating that it is not a
numerical artifact.

detail the interlayer d-wave order parameter, �SC, forming
a typical superconducting dome. Variation of the twist angle
only weakly affects the magnitude of SC correlations within
the layers, as those are mostly inherited form the untwisted
materials. From the comparison of panels (d) and (h) with
panels (a) and (e) of Fig. 3, it becomes apparent that the
boundary of reentrant topological SC is positioned close to
optimal doping.

C. Landau free-energy functional and robustness of topological
superconductivity

We now address the hierarchy of energy scales related
to SC transition in twisted bilayers, which goes beyond the
equilibrium analysis summarized in Figs. 2 and 3. For the
parent (untwisted) system, the relevant quantity is conden-
sation energy, �FSC, defined as the difference between the
normal- and paired-state free energies per Cu site, �FSC ≡
FN − FSC. It should be emphasized that there is a degree of
arbitrariness to the theoretical treatment of �FSC for a high-
temperature superconductor as the normal-state free energy,
FN , may be identified with either the pseudogap phase or

FIG. 5. Condensation energy �FSC for bilayer t-J-U model as
a function of electron density per copper site for (a) θ = 0◦ and
(b) θ = 53.13◦. Antiferromagnetic exchange is set to J = 0.3|t | and
the remaining parameters are provided in the main text. The magni-
tude of �FSC varies in single meV range.

correlated Fermi liquid. Here we adopt that latter convention
and assume that FN corresponds to the renormalized Fermi
liquid, since a pure pseudogap without coexistent SC is not
easily described within the present variational scheme. Those
aspects, as well as a possible relation between pseudogap and
SC, have been addressed previously in the context of gos-
samer SC within a Gutzwiller-type approach [25]. In effect,
the thus defined �FSC combines contributions attributed to
both SC and pseudogap states on the underdoped side of the
phase diagram. A monotonic increase of �FSC is therefore ex-
pected as half filling is approached, in contrast to the domelike
behavior reported based on thermodynamic measurements
[26,27]. In Fig. 5, we display calculated �FSC as a func-
tion of electronic density per Cu atom for two selected layer
twist angles, θ = 0◦ and θ = 53.13◦. In either case, �FSC

varies within the meV range. Remarkably, �FSC � 1 meV in
the overdoped regime, where no pseudogap contribution is
present. This is somewhat larger, but within the same order
of magnitude as estimates from specific heat measurements
for Bi2212 [20,26].

In the case of bilayer, the free energy in the SC state
may be regarded as a function of an additional parameter,
i.e., relative phase ϕ. Variation of the Landau free energy
F (ϕ) for ϕ ∈ [0, 360◦] defines the second energy scale �F ′

SC.
Below, we demonstrate that those two scales obey strict hi-
erarchy �F ′

SC � �FSC. This renders topological SC fragile
against small perturbations (e.g., those induced by disorder)
and makes realization of the homogeneous d + eiϕd state
challenging. A methodological remark is in order at this point.
Strictly speaking, the thermodynamic system free energy F is
not a functional of either �SC or ϕ. To determine �F ′

SC, one
thus needs to evaluate the Landau free-energy functional F (ϕ)
as a Legendre transform of the generalized free energy F (J) in
the presence of background currents J coupled linearly to the
bilayer d + eiϕd order parameter. This procedure is detailed
in Appendix B.

In Fig. 6, we plot the Landau free-energy functional, F (ϕ),
for fixed θ = 53.13◦ and various selections of electron density
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(deg)

FIG. 6. Landau free-energy functional, F (ϕ), as a function of rel-
ative phase SC between, ϕ. The layer twist angle is set to θ = 53.13◦,
and values of antiferromagnetic exchange J and electron density
n are detailed inside the panels. The remaining parameters are given
in the main text. Blue points represent F (ϕ) evaluated for back-
ground field magnitude J0 = 0.003|t | (cf. Appendix B for details).
Dashed red vertical lines represent the exact equilibrium values of
phase ϕ, obtained by self-consistent SGA calculation. Insets detail
F (ϕ) close to the minima, and demonstrate that the SGA value of
ϕ indeed corresponds to its minimum. Note that the Landau free-
energy functional varies at the µeV scale and thus requires a careful
numerical analysis to achieve reliable results.

and exchange coupling J , covering the phase diagrams dis-
played in Fig. 3. Left and right panels correspond to J = 0.3|t |
and 0.4|t |, respectively. The unspecified model parameters are
the same as those given in Sec. II. Points are obtained from
SGA calculation and lines are guides to the eye. Insets inside
the panels show the close-up view of F (ϕ) close to minimum,
and dashed vertical lines mark the value of ϕ obtained by
self-consistent calculation without external currents (and thus
representing the true equilibrium solution).

We note that the minimum of F (ϕ) coincides with the
self-consistently obtained value of SC relative phase, ϕ. This
demonstrates that F (ϕ) represents the appropriate thermo-
dynamic potential and further validates our approach. For

n = 0.65, F (ϕ) attains minimum close to ϕ = 180◦, cf.
Figs. 6(a) and 6(b). At intermediate densities (n = 0.70-0.75),
Landau free energy is minimized by nontrivial values of ϕ

[Figs. 6(b)–6(e)]. Finally, close to half-filling n � 0.8, min-
imum shifts back toward ϕ = 180◦ [Figs. 6(f) and 6(g)].
This behavior reflects the domelike structures observed in
Figs. 3(b) and 3(f). Remarkably though, the variation of F (ϕ)
in the range ϕ ∈ [0, 360◦] does not exceed 60 µeV which is
two orders of magnitude smaller than typical condensation en-
ergy for the t-J-U model in the high-Tc copper-oxide regime.
We have thus established �F ′

SC � �FSC.

V. SUMMARY

We have studied the phase diagram of the t-J-U model
on twisted square lattice, as a function of both hole doping
and twist angle. The symmetry considerations allow us to
establish a relationship between the solutions for complemen-
tary twist angles θ and 90◦ − θ , which has been utilized to
construct a complete superconducting phase diagram using
a limited number of supercells. The latter mapping is exact
in the thermodynamic limit, but controllable finite-size and
boundary-condition effects are observed for finite lattices.

The phase diagram comprises both the gapless d-wave
state and gapped TRS breaking topological d + eiϕd phase.
We have found that d + eiϕd state occupies a nonconvex
butterfly-shaped region in the density versus twist-angle phase
diagram, resulting in reentrance of d + eiϕd pairing as a func-
tion of twist angle θ close to half filling. One of the footprints
of the SC state for nontrivial values of ϕ (i.e., ϕ �= 0◦, 180◦) is
the emergence of a gap in the quasiparticle energy spectrum,
yet the gap magnitude is not related to SC phase angle ϕ in
a straightforward manner. In particular, we have identified a
multidome structure of energy gaps for certain values of layer
twist angles.

The microscopically derived Landau free-energy func-
tional exhibits a small variation as a function of the
order-parameter relative phase, ϕ. In effect, the order param-
eter is susceptible to small perturbations. We have explicitly
demonstrated that finite-size effects and boundary condition
effects appear close to the TRS-breaking SC onset, where the
free-energy landscape is particularly flat. This might rational-
ize reported difficulties with realization of the homogeneous
d + eiϕd state close to twist angle θ = 45◦.
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APPENDIX A: STATISTICALLY-CONSISTENT
GUTZWILLER APPROACH WITH ON-SITE SC PAIRING

The statistically consistent variational (Gutzwiller-type)
approximation has been formulated and extensively analyzed
elsewhere, see Refs. [1,28] and references therein. Here we
summarize a specific variant of the latter that incorporates
on-site SC pairing. This is needed to properly account for
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the order-parameter symmetry in lattices with large unit cells,
such as those emerging in twisted square-lattice systems.

The basic object within the SGA is variational energy
functional

Evar = 〈�var|Ĥ|�var〉
〈�var|�var〉 , (A1)

where variational wave function is expressed as |�var〉 ≡
P̂|�0〉. Here |�0〉 denotes a Slater-determinant state and P̂
is the so-called correlator (an operator introducing correla-
tions into the uncorrelated wave function |�0〉). We adopt the
correlator in the form of a lattice product P̂ ≡ ∏

i P̂i, where

P̂i ≡ λ0
i |0〉i i〈0| +

∑

σ=↑,↓
λσ

i |σ 〉i i〈σ | + λd
i |d〉i i〈d|. (A2)

In Eq. (A2), the projection operators onto the local basis states
(|0〉i, |↑〉i, |↓〉i, and |d〉i ≡ |↑↓〉i) are multiplied by parameters
λ0

i , λ
↑
i , λ

↓
i , and λd

i . Both the λ parameters and uncorrelated
state |�0〉 are variational objects that need to be determined
by minimization of the functional Evar. In particular, |�0〉
encodes broken-symmetry states, including unconventional
SC. Moreover, additional conditions on the λ parameters are
needed to make the variational problem tractable, namely,

〈�0|P̂2
i |�0〉 = 1, (A3)

〈�0|P̂in̂i↑P̂i|�0〉 = 〈�0|n̂i↑|�0〉, (A4)

〈�0|P̂in̂i↓P̂i|�0〉 = 〈�0|n̂i↓|�0〉, (A5)

where n̂iσ ≡ â†
iσ âiσ is the particle-number operator. In effect,

the number of λ parameters is reduced from four to one
per site; without loss of generality, one can select λd

i as the
remaining one.

For specified microscopic Hamiltonian, Ĥ, the functional
Eq. (A1) may be evaluated using Wick’s theorem. Formally,
variational energy becomes then a functional two-point expec-
tation values of the form 〈�0|â†

iσ â jσ ′ |�0〉, 〈�0|â†
iσ â†

jσ ′ |�0〉,
〈�0|âiσ â jσ ′ |�0〉, and correlator parameters. For brevity of
notation, we denote the set of all two-point correlation func-
tion of this form as P = (P1, P2, . . .) and dub them lines,
whereas variational parameters are collectively marked as λ =
(λ1, λ2, . . .), where the indices enumerate all relevant degrees
of freedom. Moreover, we introduce an analogous notation
for the bilinear operators P̂ ≡ (P̂1, P̂2, . . .) composed of the
operator products â†

iσ â jσ ′ , â†
iσ â†

jσ ′ , âiσ â jσ ′ that are related to

the corresponding lines as 〈�0|P̂γ |�0〉 ≡ Pγ .
In effect, one can write Evar ≡ Evar (P,λ). Practical meth-

ods of evaluating the functional Eq. (A1) include variational
Monte Carlo or specialized diagrammatic expansions in real
space (diagrammatic expansion of the Guztwiller wave func-
tion) [29,30]. Here, we adopt the latter approach and retain
only the leading-order diagrams (those that dominate in the
large lattice-coordination-number limit). This results in the
SGA [31].

We now proceed to formulation of our approach. Vari-
ational method amounts to minimization of the functional
Evar ≡ Evar (P,λ) with respect to both P and λ, with the
additional constraints of fixed electron density and Pγ ≡
〈�0|P̂γ |�0〉. The last condition ensures that the values of lines

are compatible with some wave function that belongs to the
underlying variational space. We employ a generalization of
the plain variational method to finite temperature based on the
free-energy functional

F (P,λ, ρ, μ) = − 1

β
ln Tr exp(−βĤeff ), (A6)

where

Ĥeff (P,λ, ρ, μ) ≡ Evar (P,λ) +
∑

γ

ργ · (P̂γ − Pγ )

− μ(N̂ − Ne) (A7)

is the effective Hamiltonian describing the dynamics of cor-
related Fermi quasiparticles. In Eq. (A7), ργ are Lagrange

(deg)

FIG. 7. Dependence of the Landau free-energy functional on
the relative superconducting phase between layers, ϕ, for various
selections of background current magnitude J0 (cf. Appendix B for
definition). The electronic density and exchange coupling are set to
n = 0.65, J = 0.4|t | (a), n = 0.70, J = 0.4|t | (b), and n = 0.65, J =
0.3|t | (c). The remaining parameters are the same as those used in the
main text. Vertical dashed lines mark the self-consistently calculated
SGA values for J0 ≡ 0, representing true equilibrium solution. In the
regime of large J and robust d + eiϕd SC, the equilibrium value is
already reached for J0 = 0.003|t |. However, for the smaller values
of J and close to the topological phase boundary (c), the effective
potential becomes practically flat (cf. the energy scale) and then
much smaller values J0 are required.
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multipliers ensuring that the values of lines are compatible
with thermodynamic expectation values, i.e.,

Pγ = 〈P̂γ 〉 ≡ TrP̂γ e−βĤeff

Tre−βĤeff
. (A8)

Moreover, the Lagrange multiplier μ is used to impose that the
expectation value of the total particle number operator, 〈N̂〉, is
equal to target electron number Ne.

The system free energy F is determined as a stationary
point of the free-energy functional over all fields that yield

∂F
∂Pγ

= ∂Evar (P,λ)

∂Pγ

− ργ ≡ 0, (A9)

∂F
∂λγ

= ∂Evar (P,λ)

∂λγ

≡ 0, (A10)

∂F
∂ργ

= 〈P̂γ 〉 − Pγ ≡ 0, (A11)

∂F
∂μ

= 〈N̂〉 − Ne ≡ 0. (A12)

In effect, we arrive at

F = F (P̃, λ̃, ρ̃, μ̃), (A13)

where P̃, λ̃, ρ̃, and μ̃ denote equilibrium (saddle-point) values
of the lines, correlator parameters, and Lagrange multipliers.
Equations (A9)–(A12) are solved by self-consistent iteration.
Due to substantial computational cost involved for large su-
percells and slow asymptotic convergence for the d + eiϕd
SC state in the strong-coupling limit, we have modified the
usual self-consistent loop by employing Anderson accelera-
tion scheme [32].

Equivalence of the thermal variational problem based on
Eq. (A6) and plain zero-temperature calculation may be es-
tablished by recasting Eq. (A13) in a different form

F = Evar (P̃, λ̃) − T S, (A14)

where the entropy reads

S = −kB

∑

α

[ñα ln ñα + (1 − ñα ) ln(1 − ñα )]. (A15)

In Eq. (A15), the summation index α enumerates eigenstates
of the effective Hamiltonian, Ĥeff , and ñα denotes their equi-
librium occupation numbers. By taking T → 0, the problem
is thus reduced to optimization of the plain energy functional,
and the thermal expectation values reduce to ground-state
averages.

APPENDIX B: LANDAU FREE-ENERGY FUNCTIONAL
AND FINITE-SIZE EFFECTS

The free energy, F , is a function of temperature and
microscopic model parameters (including hopping integrals,
Coulomb repulsion, and antiferromagnetic exchange), but
does not depend on the superconducting order parameter,
cf. Eq. (A13). To analyze the evolution of the energetic land-
scape as a function of twist angle, one thus needs to carry
out the Legendre transform of F and evaluate the effective
potential with respect to auxiliary currents coupled to the
d + eiϕd order parameter. We follow the condensed-matter
convention, and hereafter refer to it as the Landau free-energy
functional.

First, we define the extended Hamiltonian

Ĥ′(J) ≡ Ĥ − J†�̂ − �̂
†
J, (B1)

where J ≡ (J (A), J (B) )T is a two-component complex external
pairing field and �̂ ≡ (�̂(A), �̂(B) )T is the d + eiϕd SC op-
erator for twisted bilayer [cf. Eqs. (5)-(6)]. The superscript
T indicates transposition. For compactness, we write Ĥ(J)
rather than Ĥ(J, J†), keeping in mind that J is complex and Ĥ
depends both on J and J†, so it remains manifestly Hermitian,
cf. Eq. (B1). The same shorthand notation is employed for all
functionals introduced below.

(d
eg

)

FIG. 8. Illustration of the finite-size effects on topological superconducting state in twisted cuprates for twist angle θ = 53.13◦ and J =
0.3|t |. The remaining model parameters are listed in Sec. II of the main text. (a)–(e) Doping dependence of the relative order parameter
phase ϕ for various total system sizes spanning two orders of magnitude (employed number of copper sited, NCu, is detailed inside the
panels). (f)–(j) Corresponding values of energy gap. Starting from NCu ∼ 80 000 superconductivity with gaps >1 meV stabilizes and reflects
thermodynamic-limit behavior, but small finite-size effects are still visible in the sub-meV energy range.
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One can now repeat the procedure described in
Appendix A for the extended Hamiltonian Ĥ′(J) and evaluate
the corresponding free energy F ′(J) as a function of pairing
field, J. The expectation value of the order parameter depends
on J and may be expressed as

� ≡ −∂F ′(J)

∂J†
, (B2)

�† ≡ −∂F ′(J)

∂J
, (B3)

The Landau free energy is defined as

F (�) ≡ F ′[J(�)] + J†(�)� + �†J(�), (B4)

where the dependence of background currents on the order
parameter, J(�) and J†(�), is obtained by inverting Eqs. (B2)
and (B3).

As is apparent from Eq. (B4), the Landau free energy is a
functional a complex two-component field, �, which syields
four real degrees of freedom. Since evaluation of F (�) is a
numerically expensive task, we now propose a way to reduce
the number of free parameters from four to one. First, it should
be noted that F (�) is invariant with respect to a global gauge
transformation � → exp(iφ)�. In turn, the global phase an-
gle φ might be outright eliminated so only three nontrivial
degrees of freedom in the order-parameter � remain. Without
loss of generality, one can select the layer SC amplitudes
|�(A)| and |�(B)|, and relative phase, ϕ = arctan(�(B)/�(A) ).
The final simplification is based on the circumstance that there
the energy scales related to the SC transition and variation
of relative phase ϕ are well separated and may be analyzed
independently (cf. discussion in Sec. IV C). We thus fix the
pairing amplitudes |�(A)| and |�(B)| by imposing two con-
straints on the amplitudes of background currents in Eqs. (B2)
and (B3), namely, |J (A)| = J0 and |J (B)| = J0 with J0 being a
small positive number. Strictly speaking, the SC amplitudes
attain their equilibrium values for J0 → 0 or, equivalently,
J = 0. Indeed, by combining Eqs. (A9), (A10), and (B4), one
can verify that

∂F (�)

∂�† = J, (B5)

so the necessary condition for the Landau free-energy mini-
mum ∂F (�)

∂�† = 0 is equivalent to vanishing of the background
currents, J. However, keeping a small finite J0 improves per-
formance and ensures stability of solutions in a broad range
of ϕ, so we typically retain a nonzero value of J0 in our
calculations while evaluating F (�). Based on numerical ex-
periments, we have found that J0 = 0.003|t | is sufficiently
small not to alter the equilibrium value of ϕ for most micro-
scopic parameter configurations considered, and allows us to
efficiently map the free-energy landscape as a function of SC
relative phase angle.

In Fig. 7, we analyze the scaling of F (ϕ) as a function of
J0 for selected values of electron density and antiferromag-
netic exchange coupling, J , detailed above the panels. All
other parameters are listed in Sec. II of the main text. The
vertical dashed lines show the values of relative SC phase
ϕ, obtained for self-consistent iteration with J0 = 0 and thus
reflecting the equilibrium state. As is apparent from Fig. 7(a)
for J0 = 0.01|t |, the functional F (ϕ) attains its minimum at
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FIG. 9. Finite-size scaling of topological superconducting domes
for antiferromagnetic exchange J = 0.3|t |; the remaining model pa-
rameters are the same as those listed in Sec. II of the main text. (a),
(b) Dependence of the order-parameter phase angle ϕ and energy on
the total number of copper atoms, NCu, for the twist angle θ = 53.13◦

and electron concentration n = 0.81. Dashed vertical lines mark the
system size (≈80 000 Cu sites) used to generate the phase diagrams
presented in the main text. (c)–(h) An analogous scaling carried out
for twist angle θ = 28.07◦ and doping levels n = 0.76, 0.78, and 0.80
[encompassing the uncommon double superconducting dome seen in
Fig. 3(g) for this value of θ ]. The finite-size scaling proves that the
results displayed in Fig. 3 accurately represent the thermodynamic
limit situation. The twin-dome behavior is thus not an artifact, but
reflects the physics of bulk twisted bilayer system [cf. Fig. 3(g) and
panels (d), (f), and (g) of the present figure].

nontrivial angle ϕ ≈ 165◦ (blue curve) that differs from true
equilibrium value ϕ ≈ 159◦ (vertical red line). By reducing
J0 to 0.003|t |, the minimum of the Landau free energy shifts
to its equilibrium position. This shows that J0 � 0.003|t |
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already provides a reliable representation of the J0 → 0 limit
situation. Parenthetically, the scaling presented in Fig. 7(a)
corresponds to the lower boundary, the topological d + eiϕd
state for θ = 53.13◦ and J = 0.4|t | [cf. the dome for comple-
mentary angle 36.87◦ in the phase diagram of Figs. 3(b) and
3(c)]. In Fig. 7(b), we show an analogous scaling deep inside
the dome formed by the topological SC state. In this case,
we conclude that, already for J0 = 0.01|t |, the exact position
of the Landau free-energy minimum (i.e., that obtained by
self-consistent iteration for J0 = 0) is accurately determined,
and the Landau free-energy minimum is deeper than the corre-
sponding one close to the onset of the gapped state [Fig. 7(a)].
We also note that the exact value of the relative SC phase ϕ is
highly sensitive to even a small change of J0 on the boundary
of the topological state and becomes fairly robust with the
increase of the energy gap. In Fig. 7(c), we demonstrate an
extreme case of such a fragile topological state for a fine-
tuned set of parameters close to the d + eiϕd dome boundary
(n = 0.65|t | and J = 0.3|t |). Here J0 as low as 0.0001|t | is
needed to match the self-consistently obtained relative phase.
The situation presented in Fig. 7(c) is not common and occurs
only in regime of very weak topological SC. The free energy
landscape is then particularly flat (variation of F (ϕ) within the
range of neV), contrary to typical cases displayed in Figs. 7(a)
and 7(b), where F (ϕ) varies at the µeV scale.

The above consideration allow us to draw a few general
conclusions. First, due to the flatness of the free-energy land-
scape, topological SC is expected to by highly sensitive to
boundary conditions and finite-size effects at the topological
state boundary, even for relatively large lattices. This is clearly
seen in Figs. 3(b), 3(c), 3(f) and 3(g), where the equilibrium
phase and energy gap becomes noisy at the SC dome corners.
However, deep within the d + eiϕd state, no noise is observed.
Below we carry out a systematic finite-size scaling to further
explore those effects. Second, reliable evaluation of equilib-
rium relative phase ϕ requires high numerical accuracy. In the
present paper, we have set the target absolute precision for
the dimensionless two-point correlation functions to 10−10 to
achieve this goal. With the number of integral equations to be
solved self-consistently, exceeding 103 for largest considered
supercells (θ = 43.6◦), this makes the problem computa-
tionally challenging. In particular, for certain densities and

θ = 43.6◦ in the phase diagrams of Figs. 3(a) and 3(e), we
were unable to obtain the SGA solution with the target ac-
curacy of 10−10 (missing points). This happens, in particular,
at small doping, where the correlation effects increase as the
metal to insulator transition is approached.

Now we address in detail the finite-size effects by fo-
cusing on layer twist angle θ = 53.13◦ and J = 0.3|t |. The
remaining model parameters are presented in Sec. II of the
main text. Figure 8 shows the electron-density-dependence of
the relative SC phase ϕ [Figs. 8(a)–8(e)] and energy gap in
the quasiparticle spectrum [Figs. 8(f)–8(j)], for various lattice
sizes increasing from left to right. The exact number of copper
sites in the system, NCu, is listed inside the panels and spans
two orders of magnitude (from 12 250 to 1 274 490). The elec-
tron densities cover the lower end of the topological d + eiϕd
state, where finite-size effects are expected to be particularly
relevant, cf. the discussion in Appendix. B. As follows from
Fig. 8, both ϕ and the energy gap fluctuate substantially as a
function of electron concentration for the smallest lattice sizes
considered. The underlying reason is flatness of the Landau
free-energy functional, so even fairly weak finite-size effects
may affect the equilibrium value of relative SC phase. Above
NCu ∼ 80 000, both ϕ and gaps start to stabilize, also in the
sub-meV range. We thus consider NCu as a threshold value that
may be regarded as a representation of the thermodynamic-
limit situation. The results reported in the main text have been
obtained with lattices containing NCu ≈ 80 000 sites.

To further investigate saturation of the topological SC char-
acteristics with increasing lattice size, in Fig. 9 we carry out
finite size-scaling for J = 0.3|t |, and twist angles θ = 53.13◦
and θ = 28.07◦, across the d + eiϕd SC dome. The relevant
parameters are listed above the panels, and those unspeci-
fied are given in Sec. II of the main text. Dashed vertical
lines mark the lattice sizes NCu ≈ 80 000, used to generate
the phase diagram of Fig. 3. The finite-size scaled quanti-
ties exhibit saturation above NCu ≈ 80 000. We also point out
that the results displayed in Figs. 9(d), 9(f) and 9(h) provide
robust evidence for the existence of the two-dome structure
[cf. green curve in Fig. 3(g)]. Indeed, the saturated value of
the energy gap initially decreases from ≈4 meV to ≈1 meV
as electron density changes from n = 0.76 to n = 0.78, and
then increases again to ≈4 meV at n = 0.80.
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