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Quantum bicritical point and phase separation in a frustrated Heisenberg ladder
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We use the density matrix renormalization group (DMRG) and a hard-core boson map to investigate the
quantum phase transitions present in the phase diagram of the frustrated Heisenberg ladder in a magnetic field.
The quantum bicritical point is observed at the end of a first-order transition line, which is at the meeting of
the two second-order transition lines that bound the fully polarized plateau. The characterization of the bicritical
point was made using a hard-core boson mapping of the low-energy excitations from the fully polarized phase
and through DMRG by studying the probability density of finding the rung spins in a singlet or a triplet state
with zero spin component along the magnetic field. In particular, we give conditions for the exchange couplings
for the presence of the first-order transition line and the bicritical point in the phase diagram. Moreover, we
unveil the phase-separated states for magnetization values inside the magnetization jump and, in particular, the
dependence on the system size of the energy curve as a function of magnetization. Finite-size scaling analysis of
the transverse spin correlation functions has been used to estimate the critical points of the Kosterlitz-Thouless
transitions from the fractional magnetization plateau m = 1/2 to the respective gapless Luttinger liquid phases
for some sets of parameters.
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I. INTRODUCTION

The theory of phase transitions, in the classical [1] and
quantum domains [2,3], provides a simple framework to un-
derstand the complex phenomenology of systems with many
interacting degrees of freedom. Paradigms of strongly corre-
lated states of matter and phase transitions are usually found
in models and compounds of magnetic systems. In particu-
lar, frustrated systems [4,5] are very fruitful to the physical
investigation, presenting features such as the quantum analog
to the critical point of water [6], critical end points [7], and
quantum bicritical points, as in the heavy-fermion metam-
agnet YbAgGe [8]. The bicritical point, specifically, is the
end point of a first-order transition line, and in its vicinity
the system is effectively described by two competing order
parameters [9–13]. In a first-order transition, the energy does
not present a single global minimum, and phase separation
can occur. In a magnetic insulator, this transition appears
as a jump in the magnetization curve as a function of the
magnetic field.

The spin-1/2 two-leg ladder [14] is gapped, and the
ground-state wave function is well described through short-
range resonating-valence-bond states [15]. In the presence of
a magnetic field [16], the gap closes at a quantum critical point
due to the Zeeman effect. The gapless low-energy physics fits
that of the Luttinger liquid model [17,18] with a power-law
decay of the correlation functions [19]. In fact, the quasi-one-
dimensional spin-1/2 ladder compound (C5H12N)2CuBr4 has
been successfully used to investigate quantum critical points
and Luttinger liquid physics [20–22]. Furthermore, other in-
teresting phenomena arise if frustration is added to the model.
Special features of frustrated two-leg ladders include their
equivalence to spin-1 chains for some exchange patterns
and magnetic field ranges [23–25], fractional magnetization

plateaus [26–31] and first-order transitions [25,29,31]
(magnetization jumps) in their magnetization curves, spinon
and magnon condensation [29], and Kosterlitz-Thouless
[32,33] transition points [26–28]. Recently, the unfrustrated
Ising ladder with four-spin interactions in a transverse mag-
netic field showed phase coexistence [34], and the frustrated
model was used to understand mode splittings in the ladder
compound (C5H12N)2CuBr4 [35]. Furthermore, we men-
tion that first-order [36] and Kosterlitz-Thouless transitions
[37–40] were identified in one-dimensional ferrimagnetic
models.

Here, the density matrix renormalization group (DMRG)
[41–43] and a hard-core boson mapping, taking as
vacuum the fully polarized state, were used to investigate
selected facets of the phase diagram of a two-leg ladder
with frustrated couplings along the two diagonals (J×) of the
plaquettes in a magnetic field. We characterize the quantum
bicritical point and associated first-order transition line, par-
ticularly the phase-separated states inside the magnetization
jump. Moreover, we present a careful numerical estimate
of the Kosterlitz-Thouless critical points at which the m =
1/2 plateau closes. We mention that the localization of
Kosterlitz-Thouless transition points using numerical methods
is challenging, since the gap is exponentially small near the
critical point [44].

In Sec. II, we show the Hamiltonian of the frustrated
ladder, briefly discuss the relevant features of this model,
and present the numerical methods used in our calculations.
The magnetization curves and a general description of the
phase diagram are provided in Sec. III. In Sec. IV, we
obtain the single-particle excitations from the fully polar-
ized state through a hard-core boson mapping. The bicritical
point is identified in Sec. V by analyzing the transverse spin
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FIG. 1. The frustrated ladder. We consider the phase diagram of
the chain as a function of the magnetic field h and J×, fixing J⊥ ≡ 1
and J‖.

correlation functions and the density of dimer excitations
in the competing gapless phases. The Kosterlitz-Thouless
transition points are estimated through the transverse spin
correlation functions in Sec. VI. While we have considered
a single set of model parameters in the above sections, in
Sec. VII we exhibit the phase diagrams for two other sets to
investigate the stability of the observed phases. A summary of
the paper is shown in Sec. VIII.

II. MODEL AND METHODS

The Hamiltonian of the frustrated two-leg spin-1/2 ladder
with L dimers and open boundary conditions is given by

H =
L∑

l=1

Sl,1 · Sl,2 + J‖
L−1∑
l=1

(Sl,1 · Sl+1,1 + Sl,2 · Sl+1,2)

+ J×
L−1∑
l=1

(Sl,1 · Sl+1,2 + Sl+1,1 · Sl,2) − hSz (1)

and is schematically illustrated in Fig. 1. We consider the
phase diagram of the chain as a function of J× and the mag-
netic field h for fixed values of the exchange couplings on
the rungs, J⊥ ≡ 1, and along the legs, J‖. The direction of
the external magnetic field h is defined as the z direction,
while Sz = ∑

l Sz
l = ∑

l (S
z
l,1 + Sz

l,2) is the z component of the
total spin and gμB ≡ 1. We notice, also, that the ladder is
symmetric under the exchange of J× and J‖, and of the label
of the spins in odd (or even) dimers.

In the regime J⊥ � (J‖, J×) and h > 0, the ladder has each
dimer in a Sz

l = 1 triplet or in a singlet [26,29,30]. In this
case, the Hamiltonian can be mapped onto [26] the XXZ
Heisenberg model or the model of interacting spinless
fermions in a linear chain. The magnetization per dimer m
as a function of h exhibits plateaus at m = 0 and m = 1
and a fractional plateau at m = 1/2 for some combinations
of the exchange couplings. In particular, Kosterlitz-Thouless
transitions are predicted [26] within this approximation. Fur-
thermore, the presence of magnetization jumps was observed
with DMRG [29,31] and for a range of values of J× for J× =
J‖ using DMRG and Maxwell construction [25]. Moreover,
the phase diagram for h = 0 shows a rung-singlet phase for
the J⊥-dominant regime and a rung-triplet phase (Haldane
phase) in the other regimes. A detailed discussion of the h = 0
case can be found in Ref. [45].

We used the DMRG and exact diagonalization numeri-
cal methods to calculate the magnetization curves and spin
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FIG. 2. Magnetization per dimer m = 〈Sz〉/L vs magnetic field h
for a ladder with L = 128 dimers and J‖ = 0.55. The quantum para-
magnetic (PM), 1/2, and fully polarized (FP) plateaus are indicated,
as well as the critical magnetic fields hPM, h−, h+, and hFP. We denote
by hf the magnetic field at which the magnetization jump occurs. At
the field h0, the 1/2 plateau splits into two steps in the finite-size
system with open boundary conditions.

correlations of finite-size systems. In the case of DMRG,
we used the codes provided by the Algorithms and Li-
braries for Physics Simulations (ALPS) project [46] and
the ITENSOR library [47], beyond our code. In the DMRG
simulations, the maximum number of states kept per
block, or bond dimension in the case of the tensor
code, was 1355, and we have considered chains with
open boundaries. The typical discarded weight was less
than 1 × 10−10, while the maximum discarded weight was
∼1 × 10−8. We also applied a hard-core boson mapping
to examine the single-particle excitations from the fully
polarized state.

III. MAGNETIZATION CURVES AND PHASE DIAGRAM

We present in Fig. 2 the typical features of the magne-
tization per dimer m as a function of h as we change J×
keeping J‖ (= 0.55) fixed. For a finite-size system, m(h) =
〈Sz〉/L have finite-size steps of width �h(Sz ) = hSz+ − hSz−
at a given value of Sz, with hSz± = ±[E (Sz ± 1) − E (Sz )]
being the extreme points of these steps, where E (Sz ) is the
total energy at a given value of Sz. Magnetization plateaus in
the thermodynamic limit are characterized by �h(Sz ) 	= 0 as
L → ∞.

The Oshikawa-Yamanaka-Affleck argument [48] states
that a magnetization plateau can appear at the magnetization
m if

(Su − mu) = integer, (2)
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where Su is the maximum total spin and mu is the magnetiza-
tion in the unit cell of the ground-state wave function. In our
case, the unit period of the Hamiltonian has two spin-1/2 sites.
Thus magnetization plateaus that do not spontaneously break
translation symmetry can occur at m = 0, the paramagnetic
(PM) plateau, and at m = ms = 1, the fully polarized (FP)
plateau. For any value of J×, these two magnetization plateaus
are observed in Fig. 2. Their critical fields are defined as hFP

for the FP plateau and hPM for the PM plateau. For moderate
values of J×, a magnetization plateau appears at 1/2 of the
saturation magnetization. In this case, the ground state has a
doubled unit cell with four spin-1/2 sites. The critical fields
at the extreme of the 1/2 plateau are indicated by h− and
h+. In a finite-size chain with open boundary conditions, this
plateau is made of two steps joined at h = h0. These two steps
consist in domain walls [29], and we briefly discuss them
in Sec. VI. Between the thermodynamic-limit magnetization
plateaus, there are gapless Luttinger liquid (LL) phases [16]
with critical power-law transverse spin correlation functions
with the asymptotic form

�(r) ∼ 1

r1/2K
, (3)

where K is the Luttinger liquid exponent and r is the distance
between spins along the chain. Furthermore, there is a magne-
tization jump at h = h f for J× > 0.5.

In Fig. 3, we show our estimated phase diagram h
versus J× for the frustrated ladder with J‖ = 0.55. There,
we highlight the magnetization m, given by the color code,
for a system with L = 128, and the thermodynamic-limit
boundary lines of the magnetization plateaus. For fixed val-
ues of J×, there are typically second-order transitions at
the extremes of the plateau: hFP, h−, h+, and hPM. As
the second-order transition point is approached from the
gapless side of the transition [49], K → 1 at the bound-
aries of the plateaus with the same periodicity of the
Hamiltonian (PM plateau and FP plateau), while K → 1/4 at
the boundaries of the 1/2 plateau. However, at some points,
the transitions in the plateau extremes are of the first-order
kind: for J× = 0.55 = J‖, at the PM-plateau and 1/2-plateau
transition lines. Magnetization curves exhibit magnetization
jumps in the first-order transition line h f . In particular, this
line ends at a bicritical point at J× = 0.5, which is the end-
point of the two second-order transition lines that bound
the FP plateau. For fixed m, the 1/2 plateau closes at two
points through transitions of Kosterlitz-Thouless (KT) type:
J×,KT1 = 0.255 ± 0.005 and hKT1 = 1.467 ± 0.002; J×,KT2 =
0.935 ± 0.005 and hKT2 = 1.98 ± 0.01. In these cases, K →
1/2 as the transition points are approached from its
gapless side.

In the following, we discuss some features of the phase dia-
gram shown in Fig. 3. In particular, we estimate the first-order
transition line for J‖ = 0.55 and characterize the bicritical
transition point at the end of this line. Moreover, we use a
confident numerical methodology to estimate the exact critical
values of h and J× for the KT transitions. Furthermore, we
exhibit phase diagrams for J‖ = 0.2 and 0.8 to explore the
stability of the observed phases and transition lines under
changes in J‖.

FIG. 3. DMRG results for the thermodynamic-limit magnetic
field h vs frustration J× phase diagram for J‖ = 0.55. The color code
gives the magnetization for a finite-size chain with L = 128. The
gapped fully polarized (FP), 1/2, and paramagnetic (PM) plateaus
are bounded by the lines hFP, h+, h−, and hPM, respectively. The
intermediate regions between plateaus are gapless Luttinger liquid
(LL) phases. We indicate the limiting value of the Luttinger liquid
parameter K as the second-order transition points are approached
from the gapless phases. Along the first-order transition line hf ,
the magnetization curve m vs h exhibits a jump. The line hf starts
at a bicritical point (yellow diamond) in the hFP line. We mark
with orange circles the two first-order transition points on the line
J× = J‖. The m = 1/2 plateau closes at the Kosterlitz-Thouless (KT)
transition points (red circles), for which K → 1/2 on the gapless side
of the transition.

IV. HARD-CORE BOSON MAPPING

The critical transition line from the fully polarized state,
hFP, can be precisely determined by mapping the spin vari-
ables to hard-core boson operators [50]:

Sz
l,i = 1

2 − a†
l,ial,i = 1

2 − nl,i,

S+
l,i = al,i, S−

l,i = a†
l,i.

To preserve the momentum angular commutation relations,
[S+

l,i, S−
m, j] = 2δlmδi jS

z
l,i and [Sz

m, j, S±
l,i] = ±δlmδi jS

±
l,i, with

S± = Sx ± iSy; besides the constraints S+
l,iS

−
l,i + S−

l,iS
+
l,i = 1

and (S+
l,i )

2 = (S−
l,i )

2 = 0 specific to spin-1/2 operators, the
commutation relation

[al,i, a†
m, j] = δlmδi j (1 − 2nl,i ) (4)

must be satisfied by the bosonic operators, in addition to
(al,i )2 = (a†

l,i )
2 = 0.
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In the bosonic variables, the Hamiltonian (1) is written as

H (free hc) =
(

−1

2
+ J‖ + J×

)
N + hN

+ 1

2

∑
l

(a†
l,1al,2 + a†

l,2al,1)

+ J‖
2

∑
l

2∑
i=1

(a†
l,ial+1,i + a†

l+1,ial,i )

+ J×
2

∑
l

(a†
l,1al+1,2 + a†

l,2al+1,1 + H.c.), (5)

where N = ∑
l (nl,1 + nl,2) is the total number of bosons

and we have discarded interaction and constant terms. The
Hamiltonian (5) can be straightforwardly diagonalized if we
use odd and even combinations of al,1 and al,2:

s†
l = 1√

2
(a†

l,1 − a†
l,2),

t†
0,l = 1√

2
(a†

l,1 + a†
l,2). (6)

When applied to the fully polarized state |FP〉, s†
l creates a

singlet state between the two sites at the dimer l ,

s†
l |FP〉 = 1√

2
(|↓↑〉l − |↑↓〉l ) = |sl〉, (7)

while t†
0,l creates a triplet state with total spin component Sz

l =
0 at the dimer l ,

t†
0,l |FP〉 = 1√

2
(|↓↑〉l + |↑↓〉l ) = |t0,l〉. (8)

Writing the Hamiltonian (5) in the variables (6) and Fourier
transforming, we arrive at the diagonal Hamiltonian:

H (free hc) =
∑

q

εs
qs†

qsq +
∑

q

εt
qt†

0,qt0,q, (9)

where the dispersion relations are given by

εt
q = −(J‖ + J×) + (J‖ + J×) cos(q) + h, (10)

εs
q = −1 − (J‖ + J×) + (J‖ − J×) cos(q) + h (11)

and are shown in Fig. 4 for specific values of J× and h, with
J‖ = 0.55.

The magnetic fields used in Fig. 4 are the critical fields hFP

for the respective values of J× and are determined as follows.
Since the lowest energy of the triplet band is

εt
min = εt

q=π = −2(J‖ + J×) + h, (12)

the triplet component condenses at a field

ht
c = 2J‖ + 2J×. (13)

On the other hand, the lowest energy of the singlet band is

εs
min = εs

q=π = −1 − 2J‖ + h for J× < J‖, (14)

εs
min = εs

q=0 = −1 − 2J× + h for J× > J‖. (15)

FIG. 4. (a)–(d) Free singlet and triplet hard-core bosons bands
for J‖ = 0.55 and the indicated values of J× and magnetic field h.
The critical fields hs

c = 1 + 2J‖ and ht
c = 1 + 2J×. In (a) and (d), we

illustrate with a blue box a triplet state |t0,l〉 = 1√
2
(|↓↑〉 + |↑↓〉) and

with a red ellipse a singlet state |sl〉 = 1√
2
(|↓↑〉 − |↑↓〉) between the

spins of a dimer.

Thus the singlet component condenses at

hs
c = 1 + 2J‖ for J× < J‖, (16)

hs
c = 1 + 2J× for J× > J‖. (17)

We determine the critical field hFP for given values of J× and
J‖ by finding the minimum energy between those in (12), (14),
and (15). First, we draw the line J× = J‖ in Fig. 5, since the
minimum of the singlet band is given by Eq. (16) for J× <

J‖ and according to Eq. (17) for J× > J‖. In sector J× < J‖,
the minimum energy of the singlet band crosses the minimum
of the triplet one at J× = 1/2, as indicated by a comparison
of Eqs. (12) and (14). In the sector J× > J‖, Eqs. (12) and
(15) show that the crossing occurs at J‖ = 1/2. For example,
consider the phase diagram of Fig. 3. Fixing J‖ at 0.55 and

1/2

1/2

0

1

1

FIG. 5. Expressions for the critical fully polarized field hFP as
a function of J× and J‖, as obtained by comparing the minimum
energy of the single-particle triplet and singlet bands: Eqs. (12), (14),
and (15).
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changing J×, we have hFP = hs
c = 2.1 for J× < 0.5 and hFP =

ht
c = 2.1 + 2J× for J× > 0.5. From Fig. 5, we also note that

the crossing between the singlet and triplet bands is absent for
J‖ < 1/2.

V. MAGNETIC ORDER IN THE HIGH-FIELD REGIME:
BICRITICAL POINT, FIRST-ORDER TRANSITION LINE,

AND PHASE SEPARATION

Here, we show the average triplet and singlet components,
as well as the correlation functions calculated with DMRG for
J⊥ = 0.55. This section mainly aims at the region m > 1/2.

The average probability density of singlets at the dimer l
can be written as〈

ns
l

〉 = 〈s†
l sl〉 = 1

4 − 〈Sl,1 · Sl,2〉 + 〈nl,1nl,2〉
≈ 1

4 − 〈Sl,1 · Sl,2〉, (18)

while the average probability density of triplets |t0〉 at the
dimer l can be written as〈

nt0
l

〉 = 〈t†
0,l t0,l〉 = 3

4 − 〈
Sz

l

〉 + 〈Sl,1 · Sl,2〉 − 〈nl,1nl,2〉
≈ 3

4 − 〈
Sz

l

〉 + 〈Sl,1 · Sl,2〉, (19)

where Sz
l = Sz

l,1 + Sz
l,2. In both expressions, we have discarded

the term 〈nl,1nl,2〉, which is nonzero if the dimer is in the
triplet state |↓↓〉, which has a low probability of occurrence.

We investigate the total probability of occurrence of dimer
singlets and triplets through the two probability density pa-
rameters 〈ns〉 and 〈nt0〉:

〈ns〉 = 1

L

∑ 〈
ns

l

〉
,

〈nt0〉 = 1

L

∑ 〈
nt0

l

〉
. (20)

In Fig. 6, we show the behavior of 〈ns〉 and 〈nt0〉 for J× = 0.75
(J× = 0.4 in the inset), for 0.5 < m < 1.0. In particular, we
notice that the data cross the first-order transition line h f

of the phase diagram (shown in Fig. 3) for J× = 0.75. For
m f < m < 1, with m f ≈ 0.78, we have 〈ns〉 = 0 and 〈nt0〉 	=
0, while 〈ns〉 	= 0 and 〈nt0〉 = 0 for 0.5 < m < 0.70. There
is also a range of magnetization values, �m = m f − mi =
0.78 − 0.70 = 0.08, for which phase coexistence is observed
in spatially separated regions, with 〈nt0〉 	= 0 and 〈ns〉 	= 0. For
J× = 0.4, in the inset of Fig. 6, the first-order transition line is
not crossed (see Fig. 3), and we have 〈nt0〉 = 0 and 〈ns〉 	= 0
for 0.5 < m < 1. For m < 0.5, there is the coexistence of both
components along the total extension of the ladder, such that
any dimer is in a coherent superposition of both components.

The quasi-long-range magnetic order in the high-field
regime can be described by considering 〈ns〉, 〈nt0〉, and the
transverse spin correlation functions. We consider two types
of transverse spin correlation functions: the first between spins
along the same leg �11(r) = �22(r), and the other between
spins in different legs �12(r) = �21(r). In both cases, to
reduce boundary effects, we average (〈· · · 〉|m−l|=r) the trans-
verse spin correlation 〈S+

l,iS
−
m, j + S−

l,iS
+
m, j〉 over all pairs of

dimers l and m separated by the same distance r, such that

�i j (r) = 1
2 〈〈S+

l,iS
−
m, j + S−

l,iS
+
m, j〉〉|m−l|=r . (21)

FIG. 6. DMRG results for the average density of singlets 〈ns〉 and
triplets 〈nt0 〉 as a function of the magnetization m for a system of size
L = 128, with J‖ = 0.55 and J× = 0.75. The magnetization states in-
side the magnetization jump are observed for 0.7 � m � 0.78. Inset:
the same parameters as in the main figure, except that J× = 0.40.

We sketch in Fig. 7 the short-range (power-law decaying)
magnetic orders in the phases, named phases I, I′, and II,
which are competing in the high-field regime. The values of
〈ns〉 and 〈nt0〉 in each phase are indicated, and we present
the behavior of �11(r) and �12(r) for representative points in
these phases.

First, we discuss the presence of a bicritical point [1,9,10]
at J× = 0.5 and h = 2.1. At this point, the two critical phases
become identical to the disordered fully polarized phase.
The bicritical point can thus be characterized by probability
densities 〈ns〉 and 〈nt0〉, as defined in Eqs. (18) and (19),
respectively. The disordered phase, the fully polarized magne-
tization, is gapped with 〈ns〉 = 0 and 〈nt0〉 = 0. For J× < 0.5,
as the field is reduced, the singlet component condenses,
and the average probability density 〈ns〉 	= 0 in phase I, with
〈nt0〉 = 0. For J× > 0.5, as the field is reduced, the component
|t0〉 condenses, and thus we find an average probability density
〈nt0〉 	= 0 in phase II, with 〈ns〉 = 0. In fact, in phase II, the
frustrated ladder is effectively described by a spin-1 chain in
a magnetic field. We mention that in the symmetrical case,
J× = J‖, the effective description of the frustrated ladder by
spin-1 chains was revealed for h = 0 in Ref. [23] and for
h 	= 0 in Ref. [25]. Furthermore, the equivalence between the
low-energy behavior of frustrated ladders and spin-1 chains
was also observed for other frustration patterns and zero mag-
netic field [24].

The transition from phase II, with 〈nt0〉 	= 0 and 〈ns〉 = 0,
to phase I or phase I′, both with 〈nt0〉 = 0 and 〈ns〉 	= 0, is
of first order and is indicated by the transition line h f . Fur-
thermore, near J× = J‖ = 0.55, the transition from the plateau
m = 1/2 to phase II is also of the first-order kind.

We notice that the line for the condensation of the singlet
component hs

c, Eqs. (16) and (17), from the free hard-core
boson model in (5), also shown in Fig. 7, has a trend that
resembles the line h f from the DMRG data. In particular, for
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FP state

m = 1/2

FIG. 7. Short-range magnetic ordering near the fully polarized
(FP) magnetization plateau as indicated by the transverse spin cor-
relation functions along one of the legs, �11(r), and between spins
in distinct legs, �12(r), shown in the bottom panels. In phases I and
I′, the average density of singlets 〈ns〉 	= 0 and the average density
of triplets |t0〉 is 〈nt0 〉 ≈ 0, while in phase II 〈ns〉 ≈ 0 and 〈nt0 〉 	= 0.
We indicate the bicritical point (yellow diamond) at J× = 0.5 and
h = 1 + 2J‖ = 2.1. The dashed line hs

c is the critical line for the
condensation of the singlet component in the noninteracting model,
while hf is the thermodynamic-limit first-order transition line from
DMRG.

J× < J‖, hs
c = 1 + 2J‖ = 2.1 is constant, and hs

c = 1 + 2J× =
2.1 for J× > J‖, having an upward slope. Compared with
it, the DMRG results for h f show that the interactions have
introduced an average downward slope for the line in the
region J× > J‖ and also for the horizontal line in the range
0.5 < J× < J‖.

The phases I, I′, and II are gapless phases in which dimers
are predominantly found in a coherent superposition of triplets
|↑↑〉 and singlets (phases I and I′) or triplets |t0〉 (phase II).
Thus the dimer spins present the classical orientations de-
picted in Fig. 4(d). The canted orientation of the dimer spins
and the competition between J× and J‖ explain the quasi-
long-range magnetic order of phases I and I′. For J× < J‖
there is a quasi-long-range transverse antiferromagnetic order
between spins in the same leg, while for J× > J‖ this order is
observed between spins of distinct legs. Phases I and I′ meet
at the gapped m = 1/2 magnetization, the fully frustrated
point J× = J‖ = 0.55, for which the singlet and triplet |↑↑〉
components are localized, as will be discussed in the next
section. In contrast to phases I and I′, in phase II, there is
no competition between J× and J‖, since, in this case, the
coherent superposition between the triplet components |t0〉
and |↑↑〉 satisfies both couplings. In this case, the transverse
spin correlation functions present an antiferromagnetic quasi-
long-range order between spins along the legs and between
spins in distinct legs.

Phase separation

Along the first-order transition line h = h f (J×) shown in
Figs. 3 and 7, we expect phase coexistence between phase
II and phases I or I′. Around h = h f (J×) the competition
occurs between a singlet-rich phase (phases I or I′) and a
phase rich in triplets |t0〉 (phase II). In the thermodynamic
limit, precisely at h = h f , the energy curve as a function of m
has a flat region, with degenerate magnetization states in the
range m(jump)

i < m < m(jump)
f , where m(jump)

i and m(jump)
f are the

extreme magnetizations of the jump. At m = m(jump)
i (phases

I or I′), we should have 〈ns〉 	= 0 and 〈nt0〉 = 0, while at m =
m(jump)

f (phase II), 〈ns〉 = 0 and 〈nt0〉 	= 0; see Figs. 7 and 2.

In the flat portion of the energy curve, m(jump)
i < m < m(jump)

f ,
the states exhibit spatial separation of phases I or I′ (singlet
rich) and phase II (triplet rich). Thus, to complete the whole
physical picture associated with the first-order transition line
and the bicritical point, we investigate the distribution of 〈ns〉
and 〈nt0〉 along the ladder near the transition.

We show the energy per dimer Eh=ht (L)/L as a function of
m at the respective value of the transition field h = ht (L) in
Fig. 8(a). The curves are translated by the respective value
of the energy minimum, Eh=ht (L),min/L. In the inset of this
figure, we have put the finite-size magnetization curves as a
reference. In particular, we notice the presence of two min-
ima separated from each other by a region of unstable states
in finite-size systems.

In Fig. 8(b), we present the magnetization, singlet, and
triplet |t0〉 distributions along the chain. Data show that at
minimum m = m(jump)

i , the ladder is in the singlet-rich phase
I′, while at minimum m = m(jump)

f its bulk is in the triplet-
rich phase II. Furthermore, as shown in the central panel of
Fig. 8(b), the states in the straight line portion of the energy
curves exhibit phase separation.

A finite-size scaling analysis of the angular coefficient of
the straight line portion in the energy curves of Fig. 8(a),
the region highlighted, shows that the thermodynamic-limit
straight line is horizontal, joining the two single-phase states,
and the energy density as a function of m is an equilibrium
curve. Furthermore, the size dependence of the energy curves
in the linear regime implies that the energy density of phase
I′ differs from the energy density of phase II by a term a/L,
where a is a constant. Since this difference is in the size L of
the whole system, we attribute it to the interface between the
two coexisting states.

In Fig. 9, we present the phase diagram m versus J× for
0.5 � m � 1 and 0.5 � J× � 1.12 for a ladder with 128
dimers. We are interested in observing the magnetization
region bounded by m(jump)

i and m(jump)
f as a function of J×,

particularly to show that m(jump)
i → m(jump)

f → 1 as J× → 0.5,
the quantum bicritical point. We also show singlet and triplet
distributions of |t0〉, 〈ns

l 〉 and 〈nt0
l 〉, along a 128-dimer

ladder for (J× = 0.52, m ≈ 0.8) and (J× = 0.50, m ≈ 0.7).
The region of phase separation is limited by the bicritical
point, (J× = 0.50, m = 1), on the left, and we could
identify not a jump, but a discontinuity in the slope of
the magnetization curve at J× � 1.1 on the right. For
magnetizations m(jump)

i < m < m(jump)
f , the gapless phase II
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FIG. 8. (a) The difference between the energy per dimer
(Eh=ht (L)/L) and its minimum: �Eh=ht (L)/L = (Eh=ht (L) −
Eh=ht (L),min )/L, as a function of the magnetization m near the
magnetization jump for J× = 0.74, J‖ = 0.55, and magnetic field
h = ht (L), where ht (L) is the value of h at which the jump is
observed in systems of size L = 128, 192, 256. The inset displays
m as a function of h for the magnetization range shown in the main
figure. We indicate the lower, m(jump)

i , and the upper, m(jump)
f , values

of the magnetization that limit the magnetization jump. (b) The
magnetization distribution, 〈Sz

l 〉, and average probability densities
of singlet, 〈ns〉, and triplet |t0〉, 〈nt0 〉, states along a chain of size
L = 256 for m = m(jump)

i , m(jump)
f , and an intermediate value of m

(= 188/256), as indicated in (a). In the central panel, we illustrate
the phases in each region of the chain (see also Fig. 7).

coexists with the gapless phase I for 0.5 < J× < 0.55 = J‖
and with the gapless phase I′ for J× > 0.55. On the other
hand, phase II coexists with the gapped m = 1/2 state at
J× = J‖ and m(jump)

i < m < m(jump)
f .

In particular, we discuss a technical difficulty in obtaining
the distributions for J× = J‖ = 0.55. In this case, the gap-
less phase II coexists with the gapped m = 0.5 state, and
the renormalization procedure becomes more complex. For
J× = J‖, the Hamiltonian is invariant under the exchange of
spin variables Sl,1 and Sl,2 in the same dimer. Therefore
each dimer has constant parity. Since the Hamiltonian cannot
connect different parity sectors, the parity of the dimers is
fixed in the growth stage of the renormalization procedure
and cannot change in the sweeping stage of the DMRG. Also,
we notice that the singlet band (11) becomes flat at J× = J‖,
implying that the interaction controls the physics at this point.
Due to these issues, if we run the DMRG procedure targeting
only the desired value of m, the algorithm converges to a
higher energy state presenting a phase-separated state with
clusters of variable size of phase II separated by clusters of

FIG. 9. DMRG results for the lower, m(jump)
i , and upper, m(jump)

f ,
magnetization values bounding the magnetization jump (mag. jump)
as a function of J× for J‖ = 0.55: red and blue circles, L = 128;
black asterisks, L → ∞. Error bars are defined as the minimum
�m value for the system size: �m = 1/128. Phases I, I′, and II are
those sketched in Fig. 7. The bicritical point at J× = 0.5 and m = 1
(h = 2.1 in Fig. 7) and the Kosterlitz-Thouless (KT) point are also
indicated. Insets: probability density of singlets (〈ns〉) and triplets
|t0〉 (〈nt0 〉) along the chain for J× = 0.52 and m = 102/128 (upper
inset) and for J× = 0.55 and m = 90/128 (lower inset). PS states,
phase-separated states.

the m = 1/2 state. However, the lowest energy state shown in
Fig. 9 has only two domains and can be reached by running
the DMRG procedure twice. First, we target the final value of
m, and at the end of the run, we estimate the total size l0 of
the m = 1/2 phase as the sum of the sizes of the clusters of
this phase. In the second run, we target the sector m = 1/2
in the growth stage until the chain has a size equal to l0, and
after that we target the desired value of m. At this time, the
wave function converges to the phase-separated state shown
in Fig. 9, which has lower energy than the one obtained in the
first run.

VI. m = 1/2 MAGNETIZATION PLATEAU
AND THE KOSTERLITZ-THOULESS

TRANSITION POINTS

The magnetization plateau state m = 1/2 can be better
qualitatively understood from the J× = J‖ line [25,29]. Be-
cause all dimers have a fixed parity, they cannot be found
in a coherent superposition of singlet and triplet states. The
ground-state wave function has a singlet alternating with a
triplet |↑↑〉 along the lattice due to the repulsion energy be-
tween two triplets if they are in neighbor dimers. In a finite
chain with periodic boundary conditions (PBCs) [29], there
are two degenerate states, as illustrated in Fig. 10(a). However,
for a finite chain with open boundary conditions (OBCs), the
lowest energy states have triplets |↑↑〉 at the edges of the
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FIG. 10. (a) Degenerate states with m = 1/2 for J× = J‖ in a
chain with open boundary conditions (OBCs) or periodic boundary
conditions (PBCs). (b) Exact diagonalization results for a chain with
L = 14 and J‖ = 0.55 with PBCs. Correlation functions 〈Sl,i · Sm, j〉
between the spins at the same dimer (l = m), C⊥, and neighbor
dimers (l = m + 1), C× or C‖, as illustrated by the dashed el-
lipses. The estimated gapped regime in the thermodynamic limit is
indicated.

chain due to an edge term in the Hamiltonian [29]. As also
illustrated in Fig. 10(a), these triplets cause the presence of
two neighboring dimers in a singlet state along the chain. This
pair of singlets constitutes the edges of two domains, each of
them having the alternation of one of the PBC ground states.
Even in that case, J× = J‖, the ground state exhibits extensive
degeneracy, since the energy does not change as we change
the position of the pair of singlets. However, this degeneracy
is lifted for J× 	= J‖. This domain wall or spinon carries spin
1/2 and was studied in detail in Ref. [29]. At the magnetic
field h = h0 (see Fig. 2), one of the singlets in the domain
wall pair changes to a triplet |↑↑〉, and the spin of the spinon
changes from −1/2 to +1/2.

We use exact diagonalization for a chain with L = 14
dimers and PBCs to show in Fig. 10(b) the correlations

between the neighbor spins connected by each of the
couplings: J⊥ ≡ 1, J×, and J‖ = 0.55, which we call C⊥, C×,
and C‖, respectively, as functions of J×. In particular, due
to the twofold degeneracy for J× = J‖ [Fig. 10(a)], C⊥ is
defined as the average of this correlation for two neighbor
dimers. For J× = J‖, the singlet components are fixed, and so
C⊥ = −0.25, since the dimer singlets are sided by two dimer
triplets; C× = 0 = C‖. For J× < J‖, C× > 0 and C‖ < 0, and
thus there is a higher probability that the singlet component
will fluctuate from the perpendicular direction to the parallel
direction; in the case of J× > J‖ the roles of C‖ and C× are
exchanged in relation to the first case. However, we notice
that the values of C‖ and C× are not exactly exchanged
about the J× = J‖ point, since J× → 1 = J⊥ on the right
side of the figure. In particular, C× is lower than C⊥ for
J× � 0.97.

In a short-range region of size ∼ξ , the spin correlations are
similar to those of phase I, illustrated in Fig. 7, for J× < J‖ and
similar to those of phase I′ for J× > J‖. At the KT transition
points, ξ → ∞, and the correlations will exhibit a power-law
behavior, as shown in Fig. 7. In the following, we estimate the
critical points of the KT transitions.

Kosterlitz-Thouless transitions

In the Kosterlitz-Thouless transitions, the value of m is
fixed at 1/2, and the gap �h closes following an essential
singularity form. The asymptotic behavior of �i j (r) on the
gapless side of the transition is given by Eq. (3) with K = 1/2,
since the translation symmetry is broken and we have one
boson for every two dimers [49] of the chain. A confident
numerical technique to estimate the value of Jc from finite-
size systems with open boundaries uses the exact expected
value of K as J → Jc. Within this methodology [37,51], the
thermodynamic-limit value of K is estimated through an un-
biased approach, as detailed below.

The transverse spin correlation functions of finite-size sys-
tems with open boundaries are calculated through Eq. (21).
In Figs. 11(a) and 11(b), we present the typical behavior of
�11(r) for two values of J× and m = 1/2; see also Fig. 3.
We must fit the data to the asymptotic form of the correla-
tion, Eq. (3), to obtain K . However, in a system with open
boundaries, the value of K thus obtained strongly depends
on the interval of r chosen to make the fit. To overcome this
problem [51], we arbitrarily define some intervals of r and
extrapolate the finite-size values of K to the thermodynamic
limit for each interval. In Figs. 11(c) and 11(d), we present
this extrapolation for the same values of J× used to calculate
the correlations shown in Figs. 11(a) and 11(b). In the extrap-
olation, we use a linear scale function to fit the points of the
two largest system sizes. Notice that the extrapolated values
of K for the three r intervals are very similar and have little
dispersion. The minimum and maximum values of K , Kmin,
and Kmax, respectively, of the three intervals are used to define
our thermodynamic-limit estimate as K = (Kmax + Kmin)/2,
with error (Kmax − Kmin)/2.

In Fig. 12(a) we show K as a function of J× near the
KT transition in the region J× < J‖, while in Fig. 12(b)
we show K near the transition in the region J× > J‖; see
also Fig. 3. Through these data, we estimate the values

224433-8



QUANTUM BICRITICAL POINT AND PHASE SEPARATION … PHYSICAL REVIEW B 108, 224433 (2023)

1 10 100
r

0.0001

0.01

1

100

(-
1

)r Γ 1
1
(r

)

1 10 100
r

0.0001

0.01

1

100

Γ 1
1
(r

)

0 0.003 0.006
1 / L

0.4

0.45

0.5

0.55

K

0 0.003 0.006
1 / L

0.4

0.45

0.5

0.55
K

(8 - 16)

(16 - 32)

(32 - 48)

(8 - 16)

(16 - 32)

(32 - 48)

x100

x10

x100

x10

J
X

 = 0.95 (b)

J
X

 = 0.95 (d)

J
X

 = 0.25 (a)

J
X

 = 0.25 (c)

L = 128

L = 192

L = 256
L = 256

L = 192
L = 128

FIG. 11. Transverse spin correlation functions �11(r), where r is
the distance along the chain, and Luttinger liquid exponent K for
m = 1/2 and J‖ = 0.55. In (a), we present (−1)r�11(r) for J× =
0.25, while in (b) we show �11(r) for J× = 0.95, in both cases for
three system sizes: L = 128, 192, and 256. In (c) and (d) we show
the Luttinger liquid exponent as a function of 1/L. K is calculated
by fitting the correlations in (a) and (b) to the form 1/r1/2K along the
following intervals of r: 8 � r � 16, 16 � r � 32, and 32 � r � 48,
for (c) J× = 0.25 and (d) J× = 0.95. Extrapolating the values of K
for each interval of r using a straight line through the two larger
sizes, we obtain the minimum, Kmin, and maximum, Kmax, values of
K for a given J×. The thermodynamic-limit value of K is defined as
(Kmin + Kmax)/2, and the error in K is defined as (Kmax − Kmin )/2.

of J× for the two critical points as J×,KT1 = 0.255 ± 0.005
and J×,KT2 = 0.935 ± 0.005. To estimate the critical fields,
we extrapolate to the thermodynamic limit the extreme fields,
h− and h+, of the magnetization steps for m = 1/2 in finite-
size systems. We take h− and h+ for J× just before and just
after Jc, considering the data shown in Figs. 12(a) and 12(b).
We estimate the critical magnetic fields as hKT1 = 1.467 ±
0.002 and hKT2 = 1.98 ± 0.01 from the finite-size analysis
shown in Figs. 12(c) and 12(d).

As was mentioned earlier, in the regime J⊥ � (J‖, J×)
and h > 0, in the first-order approximation [26,29], mappings
onto the one-dimensional XXZ Heisenberg or spinless in-
teracting fermion models are possible. Within these models,
the Bethe ansatz solution allows one to locate precisely [26]
the critical KT point at J× = J‖/3, for J× < J‖. In our case,
J‖ = 0.55, and the value of the critical point is J× = 0.18
in the approximate approach, departing from our prediction,
J×,KT1 = 0.255 ± 0.005, by ∼J2

×,KT1
. For the second critical

point, J×,KT2 = 0.935 ± 0.005, the first-order approximation
is not reliable since J× and J‖ have the same order of J⊥.

VII. OTHER VALUES OF J‖, AND CHANGING J‖
WITH J× CONSTANT

This section discusses the phase diagrams for J‖ = 0.2 and
J‖ = 0.8, shown in Fig. 13, to grasp the stability of the features
observed for J‖ = 0.55. We also analyze the phase diagrams

0.21 0.25 0.26
J

X

0.5

0.6

K

0.93 0.94 0.96
J

X

0.5

0.6

0 0.002 0.004 0.006 0.008
1 / L

1.44

1.46

1.48

1.5

h

0 0.002 0.004 0.006 0.008
1 / L

1.9

1.95

2
J

X
 = 0.25

J
X

 = 0.26

h+

h−

h+

h−

J
X

 = 0.94

J
X

 = 0.93

(a) (b)

(c) (d)

FIG. 12. (a) and (b) Thermodynamic-limit estimate for the
Luttinger parameter K as a function of J× around the Kosterlitz-
Thouless transition points. We estimate the critical points as J×,KT1 =
0.255 ± 0.005 and J×,KT2 = 0.935 ± 0.005. (c) and (d) Extrapola-
tion of the critical values of the magnetic field h, h−, and h+ for m =
1/2 to the thermodynamic limit. We estimate hKT1 = 1.467 ± 0.002
and hKT2 = 1.98 ± 0.01.

for fixed J×, varying J‖, and the KT transition points in the
plane J× versus J‖.

As expected in Fig. 5, the bicritical point and the first-order
transition line are absent in the phase diagram for J‖ = 0.2
[Fig. 13(a)], since the minimum energy of the triplet and
singlet bands does not cross for J‖ < 0.5. Furthermore, from
Fig. 5, we can state that the bicritical point is located at
J× = 0.5 and h = 1 + 2J‖ for J‖ > 0.5, as exemplified by the
phase diagram in Fig. 13(b), for J‖ = 0.8.

For J‖ = 0.2, there are only two first-order transition
points, both at J× = J‖ = 0.2: one that separates the plateaus
m = 0 and m = 1/2, and the other between the plateaus
m = 1/2 and m = 1. However, as in the case of J‖ = 0.55,
the closing of the plateau m = 1/2 on the two sides of the
phase diagram, J× < J‖ and J× > J‖, follows a KT transition
for J‖ = 0.2. The DMRG data show that the ground state is
predominantly composed of a coherent superposition of the
triplet component |↑↑〉l and |sl〉, as in the cases J× = 0.4 and
J‖ = 0.55 shown in Fig. 6.

The first-order transition points at (J× = J‖ = 0.2, h =
1) and (J× = J‖ = 0.2, h = hFP) are in the meeting of four
second-order transition lines. At these points, there is the
coexistence of the two disordered phases: m = 0, m = 1/2
in the first case and m = 1/2, m = 1 in the second. At these
points, the critical magnetization states of the Luttinger liquid
phases, 0 < m < 1/2 for h = 1 and 1/2 < m < 1 for h = hFP,
become equal to the disordered m = 0 or m = 1/2 phases and
to the disordered m = 1/2 or m = 1 phases, respectively. We
mention that a similar point is also observed at (J× = J‖ =
0.55, h = 1) in the phase diagram of Fig. 3.

In Landau theory for thermal phase transitions [1,9], the
tetracritical point is also found at the meeting of four second-
order transition lines. In that case, there are three ordered
phases with two distinct orders. In one of the phases, the
“intermediate phase” [1,9], the two order parameters are finite,
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FIG. 13. DMRG results for the magnetic field h vs frustration J× phase diagram for (a) J‖ = 0.2 and (b) J‖ = 0.8. The thermodynamic-limit
transition lines are estimated from finite-size scale analysis of magnetization m as a function of h, while the color code is the value of m for a
system of size L = 128. In the phase diagrams, we highlight the fully polarized (FP) phase, the gapped paramagnetic (PM) phase, the gapless
Luttinger liquid phases, and the value of the Luttinger liquid exponent K in the incommensurate transitions and the Kosterlitz-Thouless (KT)
transition points. The dashed line in (b) is a first-order transition line, and the quantum bicritical point is indicated with a yellow diamond. We
indicate the region at which the gapped singlet Haldane phase is observed. (c) J× scans, for fixed h, of the intradimer correlation 〈Sl,1 · Sl,2〉.
The vertical orange lines mark the first-order transition point in the thermodynamic limit, as shown in (b).

while in the other two phases, one or the other parameter
is different from 0. The point (J× = J‖ = 0.2, h = 1) in the
phase diagram of Fig. 13(a) could be a tetracritical point if one
of the two phases m = 0 or m = 1/2 was critical or ordered,
instead of disordered. A similar discussion can be had for
the two similar first-order points mentioned: in (J× = J‖ =
0.2, h = 1) and (J× = J‖ = 0.55, h = 1).

The phase diagram is richer for J‖ = 0.8 [Fig. 13(b)]. In
particular, we notice the presence of the bicritical point and
the first-order transition line. The magnetization plateau, on
the other hand, closes after a KT transition only in the region
J× < J‖, in contrast to cases J‖ = 0.2 and 0.55. The suppres-
sion of the KT transition point on the side J× > J‖ can be
attributed to an increase in the downward slope of the critical
field for the condensation of the singlet component, compared
with the free hard-core boson model, due to an enhancement
in the relevance of the interaction terms, compared with the
case J‖ = 0.55. Although the transition lines in Fig. 13 have
been estimated after a finite-size scaling analysis, we can have
a vivid representation of the phases and their transitions by
calculating the dimer correlations 〈Sl,1 · Sl,2〉 in a J× scan, for
fixed values of h [Fig. 13(c)]. In a J× scan [52], we consider
a ladder in which the value of J× increases linearly from the
left to the right side, such that it covers a given range of J×,
with a constant magnetic field h along the chain. In Fig. 13(c),
we also marked with an orange line the estimated values
of the thermodynamic-limit first-order transition points, as
shown in the phase diagram for the respective values of h. We
notice that 〈Sl,1 · Sl,2〉 = 0.25 on the right side of the transi-
tion (phase II), while 〈Sl,1 · Sl,2〉 ranges from approximately
−0.75 for h = 0 to approximately 0.0 for h = 2.43. Thus,
on the right side of the first-order transition line, we observe
an effective spin-1 chain. In particular, for m = 0, there is a
gapped Haldane phase with a nontrivial topological ground

state, in contrast to the trivial gapped m = 0 state (PM) of the
left side of the first-order transition line.

Changing J‖ with J× fixed, and KT transition points

Due to the ladder symmetry under the exchange of J× and
J‖, and of the label of the spins in odd (or even) dimers, the
phase diagrams h versus J‖ for fixed J× = 0.55, 0.2, and 0.8
exhibit the same transition lines shown in Figs. 3 and 13. In
particular, the expressions for the critical FP field shown in
Fig. 5 can be used to localize the bicritical point in the phase
diagram h versus J‖ for fixed J×. The bicritical point appears
whenever there is a crossing between solutions hs

c and ht
c as we

vary J× or J‖, with the second parameter constant. For fixed
J×, from Fig. 5, we can assert the absence of the bicritical
point for J× < 0.5, and we anticipate the presence of a bi-
critical point at J‖ = 0.5 and the field hs

c|J‖=0.5 = ht
c|J‖=0.5 =

1 + 2J×, for J× > 0.5.
We can also exploit the symmetry of the chain to obtain

a more general behavior for the KT transition points as a
function of J× and J‖. In Fig. 14, the calculated points for
J‖ = 0.2, 0.55, and 0.8, which were shown in Figs. 3 and 13,
are supplemented by the corresponding symmetric points. We
also show the prediction from perturbation theory [26]: J× =
3J‖ and J× = J‖/3 for comparison. The curves for KT1 and
KT2 can be well fitted considering corrections J2

‖ and J3
‖ to the

analytical expression of perturbation: J‖/3 + 0.16J2
‖ + 0.12J3

‖
for KT1 and 3J‖ − 3.77J2

‖ + 2.60J3
‖ for KT2.

VIII. SUMMARY

We investigated the frustrated spin-1/2 ladder in a mag-
netic field h using DMRG and hard-core boson mapping. We
have focused, in particular, on the quantum bicritical point,
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KT2

KT1

FIG. 14. The two lines of the KT transitions in the J× vs J‖
plane: The points marked by black circles were calculated, while the
points marked by red circles were drawn by exploiting the symmetry
of the ladder. Error bars are less than or equal to the size of the
symbols. The blue solid lines J× = 3J‖ and J× = J‖/3 are the results
of perturbation theory. The dashed red curves are the best fittings to
the numerical results of KT1 and KT2: J‖/3 + 0.16J2

‖ + 0.12J3
‖ and

3J‖ − 3.77J2
‖ + 2.60J3

‖ , respectively.

the first-order transition line, and the precise numerical de-
termination of the Kosterlitz-Thouless transition points. We
present numerical data from phase diagrams h versus J× with
J‖ = 0.2, 0.55, and 0.8, but we use symmetry arguments and
boson mapping to discuss phase diagrams h versus J‖ with J×
fixed.

The quantum bicritical point, which is the intersection of
two second-order transition lines from the fully polarized
phase to two distinct gapless phases, is observed at (m =
1, J× = 0.5) in the phase diagram h versus J× for constant
J‖ > 0.5, and at (m = 1, J‖ = 0.5) for constant J× > 0.5.
The two competing gapless phases are characterized by the
probability density for the occurrence of a singlet, 〈ns〉, or
a triplet with the rung state Sz = 0, 〈nt0〉. With the help of
these quantities, we have shown that one phase is composed
of local singlets and |↑↑〉 triplets, while the other has only
local triplets |↑↑〉 and triplets |t0〉. In the last phase, the frus-
trated ladder is effectively described by a spin-1 chain in a
magnetic field. In particular, the transverse spin correlation
functions show that the total dimer spin has an antiferromag-
netic quasi-long-range order in the direction perpendicular to
the magnetic field in the phase rich in triplets |t0〉. The tran-
sition from one gapless phase to the other is of the first-order
kind in the field h = h f (J×), and the magnetization curve as a
function of the magnetic field exhibits a jump in the transition
between them.

The first-order transition line h f (J×) is observed in the
phase diagram for J‖ = 0.55 and 0.8 and is absent for J‖ =
0.2. In fact, we argued that this line and the quantum bicritical
point are not observed for J‖ < 0.5 or for J× < 0.5 in the
phase diagram h versus J‖.

The h = h f (J×) line starts at the quantum bicritical point,
and to complete the whole physical picture, we have inves-
tigated the energy curves and phase coexistence along this
line. Under a magnetic field h = h f , the finite-size energy
density curves exhibit two global minima corresponding to
the magnetization states that bound the magnetization jump:
m(jump)

i and m(jump)
f , with unstable states between them. How-

ever, the scaling behavior of the energy density curves shows
that the thermodynamic-limit curve is flat for magnetizations
m(jump)

i < m < m(jump)
f and thus is a stable equilibrium curve.

In fact, we attribute to the interface between the two co-
existing phases the departure 1/L of the finite-size energy
curves from the stable thermodynamic-limit curve. By cal-
culating the distribution of singlets and triplets |t0〉 along
the ladder, we were able to reveal that the states in the
range m(jump)

i < m < m(jump)
f are phase separated, and the two

single-phase magnetizations (m = m(jump)
i and m = m(jump)

f )
coexist in distinct regions of the ladder. Following the mag-
nitude of the magnetization jump, �m, we have shown that
�m → 0 as the bicritical point is approached along the
line h f .

We have made a precise estimation of the
Kosterlitz-Thouless (KT) transition points associated
with the closing of the fractional m = 1/2 plateau for
J‖ = 0.2, 0.55, and 0.80 using the transverse spin correlation
functions. For J‖ = 0.2 and 0.55, there is one KT point on
each side of the phase diagram, J× < J‖ and J× > J‖; for
J‖ = 0.8, there is only one in the region J× < J‖. For J‖ = 0.8,
the first-order transition line h f crosses the plateau m = 1/2
so that there is a first-order transition from the plateau phase
to the spin-1 phase. Finally, taking advantage of the ladder
symmetry, we were able to estimate the curves of the KT
points in the plane J× versus J‖.

We expect that our results will stimulate theoretical and
experimental investigations in frustrated ladder systems, such
as solid-state compounds or even correlated atoms in optical
lattices, particularly focusing on the dynamical and thermal
features associated with nonequilibrium states.
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