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Electron orbital resonance
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A magnetic resonance phenomenon is proposed, in which only the orbital degrees of freedom of electrons
participate. This previously unexploited magnetic resonance may be called electron orbital resonance (EOR).
To this end, a nonmagnetic, singlet ground state is necessary. In addition, the system needs to exhibit the Van
Vleck paramagnetism. Conditions for EOR are met by the rare earth perovskite LaCoO3 (LCO). The 5D state of
LCO is shown to exhibit the van Vleck paramagnetism that result in EOR. The frequency versus magnetic field
relation for EOR in LCO is shown to be readily accessible with present day instrumentation. We predict that
conventional electron spin resonance signals will be observed in the 5D state of LCO in addition to EOR.
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I. INTRODUCTION

Electron spin resonance (ESR) spectroscopy is firmly es-
tablished as a valuable tool for investigations of materials
at an atomic level of detail. As its name implies, the elec-
tron spin is the primary degree of freedom in ESR signals.
Orbital degrees of freedom are secondary and enter conven-
tional signals through a spin-orbit interaction [1]. In this pa-
per, we demonstrate that the roles can be reversed, leading to
electron orbital resonance (EOR) with orbital degrees of free-
dom primary. To this end, a nonmagnetic, singlet ground state
is necessary. In addition, the system needs to exhibit the Van
Vleck paramagnetism [2], the temperature independent para-
magnetism originating from excited crystal field levels. We
show below that the rare earth perovskite LaCoO3 (LCO) of-
fers an excellent proving ground for the investigation of EOR.

First, we summarize the magnetic properties of LCO.
There has been a number of experimental and theoretical
studies on LCO, because of its intriguing and possibly unique
magnetic properties [3]. This compound shows a transition
from a metallic to semiconducting state in the vicinity of
500 K, together with an anomaly in the magnetic suscepti-
bility χ [4]. With decreasing temperature, χ increases and is
at a maximum in the neighborhood of 100 K [4]. Thereafter,
χ decreases with decreasing temperature. At low temperatures
below ∼30 K, χ becomes temperature independent, after
subtracting the contribution of magnetic impurities [5]. The
existence of this temperature independent paramagnetic sus-
ceptibility (TIPS) has been confirmed from a nuclear magnetic
resonance measurement [5].

We start with an atomic model with localized Co 3d or-
bitals for the magnetic properties of La3+Co3+O2−

3 at a low
temperature. When a trivalent Co ion (3d6) is placed in an
octahedral crystal field, the 3d orbital states split into a lower
triplet (�5 symmetry type) and upper doublet (�3). In the
case of a strong crystal field [1], the six 3d electrons are
accommodated in the �5 with three up- and three down-spins
resulting in a nonmagnetic state named the low-spin (LS)

one [3]. In an intermediate crystal field [1], however, Hund’s
rules predominate and the ground state of a 3d6 system is a 5D.
The 5D state of LCO is essentially the same as the high-spin
(HS) one discussed in the literature [3]. The ground state of
the 5D is nonmagnetic due to a combined effect of crystal field
and spin-orbit interaction [6]. It has been shown theoretically
that the magnetic properties of LCO are explained with co-
existing 5D and LS states [6,7]. As will be shown below, the
TIPS in the 5D state is finite, whereas, TIPS does not exist in
the LS in its ground state [8].

Okuda et al. [9] have observed two types of ESR signals
in LCO. The first one (Type I) appears at low temperatures
between 4.2 and ∼35 K, whose intensity decreases with in-
creasing temperature. The origin of the Type I signal has
not been explored. The second one (Type II) appears at
high temperatures between ∼25 and ∼50 K, whose intensity
I varies with temperature T as, I = I0 exp(−�E/kT ), sug-
gesting that the ESR signal comes from the transition within
an excited state. Here, I0 and �E are a constant, and k is the
Boltzmann constant. A more detailed study of ESR in LCO
has been performed by Noguchi et al. [10], who presented a
phenomenological energy level scheme to explain the Type II
signal, in which an excited triplet state lies above a singlet
ground state. As reported in Ref. [6], the first excited state
in the 5D is a doublet. In order to reconcile the apparent
contradiction between the energy level schemes in the 5D
state and the one by Noguchi et al., Katsumata proposed
that an elementary excitation in the LS state gives an energy
level scheme with the first excited quartet above the singlet
ground state [6]. It is interesting to study what kind of ESR
phenomenon occurs in the 5D state of LCO.

II. EOR IN LaCoO3

A. The temperature independent paramagnetic susceptibility
and the energy level scheme

The energy difference � between the �3 and �5 states
is typically ∼104 cm−1 [1], whereas, the energies of the
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FIG. 1. The magnetic field dependence of the eigenvalues of the
Hamiltonian (Eq. (1)) up to second order when � = 1370 cm−1.
Possible magnetic resonance transitions are indicated by arrows.
Here, ϕ′

1, ϕ′
2, and ϕ′

3 are the eigenfunctions associated with the energy
levels.

spin-orbit interaction and the crystal fields of lower symmetry
are ∼102 cm−1 [1]. Therefore, we consider first the contribu-
tion of the �3 to �5, which results in the TIPS and EOR. Then,
we discuss the effects of the spin-orbit interaction and crystal
field of lower symmetry on the ground state �5 in the next
section.

The TIPS comes from the contribution of the excited state
to the ground one via the interaction between the orbital an-
gular momentum L and the applied magnetic field H . In this
case the Hamiltonian is given by

H = H0 + H′, (1)

where, H0 represents the crystal field term with cubic symme-
try, and

H′ = μBL · H. (2)

In Eq. (2), μB is the Bohr magneton. We calculate the eigen-
values of Eq. (1) perturbatively. A detail of the calculation is
reported in Ref. [7].

We obtain the eigenvalues W1 from the first-order perturba-
tion calculation

W1 = 0 (3)

and

W1 = ±μB

√
H2

x + H2
y + H2

z = ±μBH. (4)

When H ‖ z, we obtain the eigenvalues W z
2 from the second-

order perturbation calculation

W z
2 = 0, (5)

and

W z
2 = −2μ2

BH2
z /�. (6)

The TIPS is calculated with the standard method of statistical
mechanics using the eigenvalues given above. When H ‖ z the
magnetic susceptibility in zero field χ z

0 is given by [7]

χ z
0 = 8Nμ2

B/(3�). (7)

FIG. 2. The frequency dependence of the resonance fields for
EOR in LaCoO3 when � = 1370 cm−1.

From a comparison of Eq. (7) with the measured value [5], we
obtain, � = 1.37×103 cm−1.

We have from Eqs. (3), (4), (5), and (6), the magnetic field
dependence of the eigenvalues up to second order as shown in
Fig. 1.

B. The frequency versus magnetic field diagram

Figure 2 shows the frequency dependence of the resonance
fields derived from Fig. 1. We see two resonance branches,
the frequencies of which are given by μBH (1 ± 2μBH/�). A
salient feature of this new resonance is that its g factor is g= 1,
in contrast to the case of electron paramagnetic resonance
(EPR), which usually gives g � 2. The reason for observing
g = 1 is that only orbital degrees of freedom participate in the
present case.

C. The intensity of the EOR signal

We estimate the intensities of the resonance lines S1 and
S2 in Fig. 1. The transition probabilities per unit time w(S1)
and w(S2) for the S1 and S2 signals are given, respectively,
by [11]

w(S1) = (4π2/h)ρ(ϕ′
2)|〈ϕ′

2|μBhresL
′
x|ϕ′

1〉|2, (8)

and

w(S2) = (4π2/h)ρ(ϕ′
3)|〈ϕ′

3|μBhresL
′
x|ϕ′

2〉|2, (9)

where, h is Planck’s constant, ρ(ϕ) the energy density in the ϕ

state and hres is the amplitude of electromagnetic wave applied
perpendicularly to H . The quantity L′

x appearing in Eqs. (8)
and (9) is calculated as follows: The basis functions ϕ1, ϕ2 and
ϕ3 belonging to the �5, and ϕ4 and ϕ5 belonging to the �3 are
related to the basis functions |2〉, |1〉, |0〉, | − 1〉 and | − 2〉 be-
longing to the 5D state by the following transformation R [6]:

R =

⎛
⎜⎜⎜⎜⎜⎝

0 −√
1/3 0 0

√
2/3

0 0 1 0 0
−√

2/3 0 0 −√
1/3 0

0
√

2/3 0 0
√

1/3√
1/3 0 0 −√

2/3 0

⎞
⎟⎟⎟⎟⎟⎠

. (10)
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The x component Lx of the orbital angular momentum L
transforms as

L′
x = RLxR−1

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1/
√

2 0 0 −1

−1/
√

2 0 −1/
√

2 1 −1

0 −1/
√

2 0 −1 0
0 1 −1 0 0

−1 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (11)

The eigenfunctions ϕ′
1, ϕ′

2 and ϕ′
3 in Eqs. (8) and (9) are

slightly different from the unperturbed ones, because of an
admixture from the �3 state due to the perturbing Hamiltonian
[Eq. (2)]. Since the amount of the admixture is ∼μBH/�,
which is ∼0.03 at H = 100 T and � = 1370 cm−1, we may
disregard the admixture in calculating the transition probabil-
ity. From Eqs. (8), (9), and (11), we obtain

w(S1) � (2π2/h)ρ(ϕ′
2)(μBhres)2, (12)

and

w(S2) � (2π2/h)ρ(ϕ′
3)(μBhres)2, (13)

Since we expect that ρ(ϕ′
2) and ρ(ϕ′

3) are nearly the same
magnitude, the transition probabilities for the S1 and S2 sig-
nals are finite with nearly the same value.

The temperature dependence of the intensities of the S1
and S2 signals is calculated with the standard procedure [1].
The intensities decrease monotonically with increasing tem-
perature.

III. ESR IN THE 5D STATE OF LaCoO3

A. The energy level scheme

The energy level scheme in the 5D state of LCO has been
discussed before [6]. When H is applied parallel to the z axis,
the Hamiltonian is given by

H = −λ′l · S + 9B0
2

(
l2
z − 2/3

)

− 80B0
4

(
l2
z − 9/10

) + μBH (2Sz − lz ), (14)

where, λ′ is the spin-orbit interaction constant, l the fictitious
orbital angular momentum of magnitude one, S the spin angu-
lar momentum of magnitude two, B0

2 and B0
4 the magnitudes

of the crystal field due to the trigonal distortion. Since lz + Sz

commutes with the Hamiltonian, its eigenvalue m can be used
to classify the states. We denote the states by |lz, Sz〉, where lz
and Sz take three and five states, respectively. Then, we have
15 energy levels in total; one m = 3, two m = 2, three m = 1,
three m = 0, three m = −1, two m = −2 and one m = −3
states.

Figure 3 shows the lowest and second lowest eigenvalues
of the Hamiltonian [Eq. (14)] as a function of the applied mag-
netic field when λ′ = −410 cm−1, δ(≡ 3B0

2) = 1800 cm−1

and ε(≡ 8B0
4) = 300 cm−1. We see that the ground state is

a singlet with an energy gap to the first excited doublet at low

R1

R2

R2’

FIG. 3. The magnetic field dependence of the lowest and
second lowest energy levels of the 5D state of LaCoO3 when
λ′ = −410 cm−1, δ(≡ 3B0

2 ) = 1800 cm−1 and ε(≡ 8B0
4 ) =

300 cm−1. Possible ESR transitions designated R1, R2, and R2’ are
indicated by arrows.

fields. ESR transitions are allowed between the two states with
difference in the magnetic quantum number �m = ±1.

B. The frequency versus magnetic field diagram

In Fig. 4, is shown the frequency dependence of the res-
onance fields derived from Fig. 3. We see three resonance
branches designated R1, R2, and R2’. The two modes R1 and
R2 are degenerated in zero field at the frequency 1.86 THz,
reflecting the energy gap mentioned above. The resonance
frequency of the R2 mode becomes zero at H = 64.6 T.

C. The intensity of the ESR signal

We calculate the intensities of the ESR signals of the R1
and R2 modes. Similarly to the discussion in Sec. II, the
transition probability per unit time w from the initial |i〉 to
the final |f〉 states is given by

w = (4π2/h)ρ(f)|〈f|H′′|i〉|2, (15)

FIG. 4. The frequency dependence of the resonance fields of the
ESR signals in the 5D state of LaCoO3 when λ′ = −410 cm−1,
δ(≡ 3B0

2 ) = 1800 cm−1 and ε(≡ 8B0
4 ) = 300 cm−1.
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where, H′′ is given, in the present case, as

H′′ = μBhres(−lx + 2Sx ). (16)

From Eqs. (15) and (16), the probabilities w(R1) and
w(R2) of the ESR signals designated R1 and R2 in Fig. 4
are given, respectively, by

w(R1) = (4π2/h)(μBhres)2ρ(m = 1)

× |〈m = 1| − lx + 2Sx|m = 0〉|2, (17)

and

w(R2) = (4π2/h)(μBhres)2ρ(m = −1)

× |〈m = −1| − lx + 2Sx|m = 0〉|2. (18)

We calculate the expectation values in Eqs. (17) and (18). The
m = 0 state is a linear combination of |lz = 1, Sz = −1〉, |lz =
0, Sz = 0〉 and |lz = −1, Sz = 1〉 given by

|m = 0〉 = a|1,−1〉 + b|0, 0〉 + c| − 1, 1〉, (19)

where, a, b, and c are constants. From the condition that a, b,
and c are nonzero, we have a 3×3 secular determinant. Us-
ing Mathematica’s command, Eigensystem[ ], we obtain the
eigenvalue and the associated coefficients a, b, c simultane-
ously. When H = 10 T, we obtain E (m = 0) = −1318 cm−1

and {a, b, c} = {0.2737,−0.9229, 0.2705}.
The m = 1 state is given by

|m = 1〉 = j|1, 0〉 + n|0, 1〉 + p| − 1, 2〉, (20)

where, j, n and p are constants. We obtain E (m = 1) =
−1247 cm−1 and { j, n, p} = {0.2409,−0.9303, 0.2766} at
H = 10 T.

The m = −1 state is given by

|m = −1〉 = q|1,−2〉 + u|0,−1〉 + v| − 1, 0〉, (21)

where, q, u, and v are constants. For H = 10 T,
we obtain E (m = −1) = −1266 cm−1 and {q, u, v} =
{−0.2804, 0.9298,−0.2383}.

From Eqs. (19) and (20)

|〈m = 1| − lx + 2Sx|m = 0〉|2

= (2cp∗ − cn∗/
√

2 +
√

6a j∗ − b j∗/
√

2 +
√

6bn∗)2,

(22)

where, the asterisk indicates the complex conjugate. We note
that the coefficients take real numbers in the present case.
Inserting the numerical values obtained above to Eq. (22), we
have at H = 10 T

|〈m = 1| − lx + 2Sx|m = 0〉|2 = 7.56. (23)

From Eqs. (19) and (21)

|〈m = −1| − lx + 2Sx|m = 0〉|2

= (2aq∗ − au∗/
√

2 +
√

6bu∗ − bv∗/
√

2 +
√

6cv∗)2.

(24)

Replacing a, b, c, . . . in Eq. (24) by the numerical values
obtained above, we have at H = 10 T

|〈m = −1| − lx + 2Sx|m = 0〉|2 = 7.56. (25)

As is seen from Eqs. (17), (18), (23), and (25), the intensities
of the ESR signals are finite with the same magnitude.

The temperature dependence of the intensities of the R1
and R2 signals is calculated with the standard procedure [1].
The intensities decrease monotonically with increasing tem-
perature.

IV. DISCUSSION AND CONCLUSIONS

As explained above, the ground state of the 5D in LCO is
a singlet with an energy gap to the first excited state. As a
result, the magnetism disappears at low temperatures. In this
nonmagnetic state, a fraction of orbital angular momentum
persists which comes from the excited orbital state �3 assisted
by the interaction given by Eq. (2) and gives the TIPS and
EOR. In order to observe EOR, the measurement should be
performed at low temperatures well below the temperature at
which χ shows a peak. In the case of LCO, the measurement
should be done at T � 100 K.

The magnetic field dependence of the resonance frequency
for the EOR is given by μBH (1 ± 2μBH/�). At low fre-
quencies and low magnetic fields, one may easily observe
the signal with g = 1. It is interesting to test whether or not
a deviation in the g factor from g = 1 exists, in relation to the
case of electron spin [12]. EOR is not restricted to LCO. The
magnetic materials with a singlet ground state that is nonmag-
netic such as CsFeCl3 [13] and some rare-earth compounds
[14] are candidates for observing EOR, provided that TIPS
exists in these materials.

The Hamiltonian for the 5D state [Eq. (14)] contains three
parameters, λ′, δ(≡ 3B0

2) and ε(≡ 8B0
4). The values given

in the caption to Fig. 3 are determined from the analysis
of the magnetization data [6]. ESR measurements will give
a more accurate value for these parameters. The frequency
and magnetic field ranges of ESR spectrometer have been
expanding and now a spectrometer operating up to 1.1 THz
is available [15]. When this spectrometer is used in combi-
nation with a magnet operating at ∼35 T, the R2 mode in
Fig. 4 will be observed. Alternatively, one may use a far-
infrared spectrometer to observe magnetic excitations at high
frequencies [16].

In summary, a previously unexploited magnetic resonance
phenomenon is proposed, in which only the orbital degrees
of freedom of electrons participate. This new magnetic reso-
nance is named electron orbital resonance (EOR). To observe
EOR, a nonmagnetic, singlet ground state is necessary. In
addition, the system needs to exhibit the Van Vleck para-
magnetism. Conditions for EOR are met by the rare earth
perovskite LaCoO3 (LCO). EOR may elucidate the orbital
state of novel materials, such as, quantum antiferromagnets
and strongly correlated electron systems. We have also dis-
cussed conventional electron spin resonance signals expected
for the 5D state of LCO.
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