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Vison crystals, chiral, and crystalline phases in the Yao-Lee model
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We study the phase diagram of the Yao-Lee model with Kitaev-type spin-orbital interactions in the presence of
Dzyaloshinskii-Moriya interactions and external magnetic fields. Unlike the Kitaev model, the Yao-Lee model
can still be solved exactly under these perturbations due to the enlarged local Hilbert space. Through a variational
analysis, we obtain a rich ground-state phase diagram that consists of a variety of vison crystals with periodic
arrangements of background Z2 flux (i.e., visons). With an out-of-plane magnetic field, these phases have gapped
bulk and chiral edge states, characterized by a Chern number ν and an associated chiral central charge c− = ν/2
of edge states. We also find helical Majorana edge states that are protected by magnetic mirror symmetry. For the
bilayer systems, we find that interlayer coupling can also stabilize new topological phases. Our results spotlight
the tunability and the accompanying rich physics in exactly solvable spin-orbital generalizations of the Kitaev
model.
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I. INTRODUCTION

In the absence of magnetic order down to zero temperature,
a quantum spin liquid (QSL) ground state displays unique
features such as fractionalization and emergent gauge fields,
due to underlying long-range quantum entanglement [1–5].
The Kitaev model on a honeycomb lattice [6] is an archety-
pal model for QSLs as the first exactly solvable case with a
QSL ground state with gapless as well as gapped phases with
Abelian and non-Abelian anyons. In recent years, there has
been significant progress in identifying QSL materials with
strong Kitaev interactions, such as iridates and α-RuCl3 [7–9].
In spite of important progress, the confirmation of a QSL
ground state remains under debate [10,11].

Although the Kitaev model has one of the most elegant
solutions in quantum magnetism, the QSL state is quite fragile
to perturbations. For instance, in model Hamiltonians pro-
posed for candidate materials, the QSL phase occupies a small
portion of the phase diagram [12]. Moreover, most additional
interactions destroy the integrability of the Kitaev model,
making it very difficult to determine the ground state of the
system. One remedy relies on extending Kitaev’s original
model to a larger family of exactly solvable models that
includes additional local, e.g., orbital, degrees of freedom
(DOF). Such models feature the Kugel-Khomskii interaction
[13], which involves both spin and orbital DOF [14–28].
These spin-orbital generalizations of the Kitaev model offer
more flexibility in incorporating additional terms that preserve
the exact solvability of the model.

For this reason, we study the ground-state phase diagram
of a spin-orbital generalization of the Kitaev model, first
proposed by Yao and Lee (YL) [17], with an additional

Dzyaloshinskii-Moriya interaction (DMI), an external mag-
netic field (B) in the monolayer system, and additional
interlayer coupling in the bilayer system via a variational
analysis. DMI and the magnetic field are two important per-
turbations that can give rise to interesting magnetic phases,
such as skyrmions in chiral magnets [29–31]. In the Kitaev
model, these perturbations break integrability and therefore
prohibit an exact solution. However, the Majorana mean-field
theory studies suggest that a variety of chiral QSL phases
can be stabilized [32]. On the contrary, for the YL model,
these perturbations can be treated exactly due to the enlarged
local Hilbert space. Our main results are as follows: (i) The
phase diagram for finite Bz and DMI displays a diverse set
of gapped vison crystals. Moreover, these phases are further
characterized by a Chern number ν ranging from 0 to 4. (ii)
We also find helical edge states that are protected by mag-
netic mirror symmetry for the zero-flux, ν = 0 phase. (iii)
The in-plane magnetic field also gives rise to a rich phase
diagram of vison crystals. However, these phases are mostly
gapless, except for the 1/3-, 2/3-, and 1/4-flux configurations
with ν = 0. (iv) For the bilayer system, we perform self-
consistent mean-field theory calculations for the interlayer
exchange and show that additional topological phases can be
stabilized.

II. MODEL

We consider the YL [17] model on a honeycomb lattice
with spin-orbital DMI and an external magnetic field,

H = HYL + HDM + HB, (1)
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where

HYL =
∑

α−links,〈i j〉
K (α)(τ (α)

i τ
(α)
j

)
(σ i · σ j ), (2)

HDM = D
∑

α−links,〈i j〉

(
τ

(α)
i τ

(α)
j

)
δ̂

(α)
(i j) · (σ i × σ j ), (3)

HB =
∑

i

Bi · σ i. (4)

Here, K (α) is the nearest-neighbor YL coupling constant, D

is the DMI coupling, and δ̂
(α)

is the DMI vector for links
α ∈ {x, y, z} as shown in Fig. 1. The plaquette flux operator
[Fig. 1(a)] is defined as W = τ x

i τ
y
j τ

z
k τ

x
l τ

y
mτ z

n ⊗ 1. W involves
only orbital DOFs and commutes with the Hamiltonian,
[H, W ] = 0. As a result, the eigenstates of the Hamiltonian
can be labeled by the ±1 eigenvalues of the plaquette opera-
tor. We consider a DMI vector δ̂ = r̂i j × ẑ which arises from
broken inversion symmetry on the surface [33]. In addition,
our DMI differs from the usual DMI due to the additional
Kitaev-type coupling for the orbital DOF. This special form is
critical as it commutes with the flux operator and consequently
becomes bilinear in the itinerant Majorana fermions. In con-
trast, the usual DMI leads to quartic Majorana interactions
which preclude a closed-form solution. We expect that our
form of DMI would naturally occur in systems with spin and
orbital DOFs which already include YL interactions, due to
the broken inversion symmetry.

It is possible to obtain an exact solution to Eq. (1) via Ma-
jorana fermion representations for the spin and orbital DOF
[17]: σ

(α)
j = −iεαβγ c(β )

j c(γ )
j /2, τ

(α)
j = −iεαβγ d (β )

j d (γ )
j /2, and

σα
i τ

β
j = icα

i dβ
j . However, these representations are redun-

dant, and the physical states in each layer must be restricted
to the eigenstates of Di = −ic(x)

i c(y)
i c(z)

i d (x)
i d (y)

i d (z)
i opera-

tors with eigenvalues 1. Similar to Kitaev’s original model,
these constraints can be enforced through projection opera-
tors P = ∏

i(1 + Di )/2. The monolayer Hamiltonian in the
Majorana representation can be expressed as H = PHP,
where H = HYL + HDM + HB,

HYL =
∑

α−links,〈i j〉
K (α)uα

i j

[
ic(x)

i c(x)
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j + ic(z)
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j

]
, (5)
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HB =
∑

i

[
iBxc(y)

i c(z)
i + iByc(z)

i c(x)
i + iBzc

(x)
i c(y)

i

]
. (7)

The bond operators u(α)
ν,i j = −id (α)

ν,i d (α)
ν, j commute with H, and

are therefore conserved with eigenvalues ±1. In the Majorana
representation, the plaquette operator is defined by the product
of bond operators (ui j) around the hexagonal plaquette.

In the absence of the external magnetic field and DMI,
the ground state of the YL model lies in the zero-flux sector
according to Lieb’s theorem [34]. Furthermore, the three
Majorana fermions exhibit the same noninteracting spectra
which is obtained by performing a Fourier transformation
over half of the Brillouin zone. The spectra are gapless for
Kx + Ky > Kz and gapped otherwise. In our analysis, we

FIG. 1. Illustration of the Yao-Lee model (a) honeycomb lattice
with three types of bonds x, y, and z (black, green, and blue, re-
spectively). (b) Examples of vison crystals. The red lines represent
“flipped” bonds with ui j = −1, which differ from the zero-flux gauge
configuration where ui j = 1. The white and gray plaquettes represent
zero (W = 1) and π (W = −1) fluxes, respectively. The dashed lines
show the unit cells.

consider the isotropic Kitaev interactions Kx, Ky, Kz = K .
In this case, Majorana fermions have Dirac spectra and
are coupled to static Z2 gauge fields. “Flipping” an odd
number of the u(α)

i j bonds around a plaquette induces a
π -flux which is a vison excitation. This affects the kinetic
energy of the Majorana fermions through a π Berry phase.
A periodic arrangement of the visons is called a vison
crystal. In the original Kitaev model, vison crystals can
be stabilized by additional interactions [35,36]. Vison
crystals break translational symmetries and therefore have a
local Ginzburg-Landau-type order parameter and exhibit a
finite-temperature phase transition. The order parameter of
the vison crystals is given by the vison structure factor [36]

ρ(k) = 1

L2

∑
m,n

eik.(rm−rn )〈WmWn〉, (8)

where rm is the position of the mth hexagon, W = ±1, L is
the system size, and the sum is over all hexagons.

In the presence of DMI and magnetic fields, Lieb’s theo-
rem is not applicable and several vison crystal configurations
can be stabilized. We consider 58 such vison crystal phases
in our variational calculations [35–37]. These are shown in
Appendix A, Fig. 6.

For the bilayer system, we consider AA-stacked layers
coupled via Heisenberg antiferromagnetic interactions HI =∑

i Jσ1i · σ2i. Here, (1,2) are layer indices, and J is the
nearest-neighbor interlayer coupling constant. The interlayer
Hamiltonian in the Majorana representation is

HI = J
∑

i;α �=β

(
c(α)

1i c(α)
2i c(β )

1i c(β )
2i

)
. (9)

Although the interlayer exchange interactions commute with
the flux operators, they cannot be reduced to a bilinear form.
Therefore, we decouple these interactions using mean-field
theory [26]. There are three possible mean-field channels:
〈ic(α)

1i c(α)
2i 〉, 〈ic(α)

1i c(β )
2i 〉, and 〈ic(α)

1i c(β )
1i 〉, where α �= β. Here, we

consider the Hartree channel 〈χ (α)
i 〉 = 〈ic(α)

1i c(α)
2i 〉. The second

channel is related to the Hartree channel via an SO(3) rotation
of the Majorana fermions in one of the layers. We ignore the
magnetic channel, 〈ic(α)

1i c(β )
1i 〉, since we expect the interlayer

interaction to lead to singlet formation, not long-range mag-
netic order.

224427-2



VISON CRYSTALS, CHIRAL, AND CRYSTALLINE … PHYSICAL REVIEW B 108, 224427 (2023)

FIG. 2. (a) Phase diagram as a function of out-of-plane magnetic field Bz and DMI strength D for a monolayer. For finite D and Bz, all of
the phases are gapped. The solid black lines represent first-order phase transitions between the vison crystal phases and the dashed red lines
represent gap-closing topological phase transitions where the Chern number ν changes. (b) Chiral edge states in the zero-flux, ν = −3 phase
at Bz/K = 1 and D/K = 0.7. The red and green colors represent edge states on the two open boundaries, respectively. (c) Chiral edge states
for the π flux, ν = −2 phase at Bz/K = 1.5 and D/K = 0.65.

III. RESULTS AND DISCUSSION

Vison crystals in the YL model in the presence of a mag-
netic field have been recently studied in Ref. [37], which
concluded that the ground state can have zero-, π -, or 1/3-flux
patterns as a function of a magnetic field. Here, we extend this
analysis and consider additional DMI and interlayer exchange
interactions. The phase diagram for out-of-plane magnetic
fields and DMI in the monolayer model is shown in Fig. 2(a).
It exhibits seven distinct vison crystal phases, the most no-
table having zero-, π -, and 1/3-fluxes, respectively. It also
includes 2/3-stripy, 2/3, 1/2-stripy, and 1/6 flux configura-
tions. Our phase diagram matches well with the phase diagram
of Ref. [37] for a wide range of Bz in the absence of DMI.
However, we obtain an additional 1/6-flux phase in our phase
diagram that lies between the zero and 1/3 fluxes. All of the
phases are gapped for finite Bz and D and are further identified
by the Chern number

ν = 1

π

∑
α,β

∫
BZ/2

d2k trFαβ
xy (k), (10)

of the Bogoliubov–de Gennes (BdG) Hamiltonian of
the Majorana fermions. Here, Fαβ

xy = ∂kx A
αβ
y − ∂ky A

αβ
x +

i([Ax, Ay])αβ is the Berry curvature, Aαβ = −i〈nα (k)|∇k

|nβ (k)〉 is the non-Abelian Berry connection, and α, β rep-
resent filled bands defined over half Brillouin zone [37,38].
The Chern number indicates the number of chiral edge modes
as shown in Figs. 2(b) and 2(c). There are topological gap-
closing transitions within the vison crystal phases, represented
by the red dashed lines in Fig. 2(a) where the Chern number
changes. For instance, in the zero-flux sector, there are two
topological phases with ν = −3 and ν = 0 that are separated
by a topological phase transition. Similarly, there are three
topological phases for ν = −2, 0, and 4 in the π -flux sector.
Moreover, the 2/3-stripy, 2/3, 1/2-stripy, and 1/6 phases also
exhibit topological phases, while the 1/3-flux phase is trivial
with ν = 0. The zero-flux, ν = 0 phase possesses helical edge
states for the zigzag open boundary, whereas they are gapped
on the armchair open boundary, as shown in Fig. 3. These
helical edge states are topological, protected by the following

magnetic mirror symmetry M ′
x:

M ′
x = Mxei π

2

∑
i σ

x
i +i π

4

∑
i τ

z
i K(−1)s, (11)

where Mx is the spatial reflection about the x axis, K rep-
resents complex conjugation, and s = 0, 1 for the A and B
sublattices, respectively. Mx is preserved for the zigzag open
boundary, whereas it is broken for the armchair case. In mo-
mentum space, it has the form M ′

x = Rx(π ) ⊗ μzK, where
Rx(π ) is a 180◦ rotation about the x axis, which acts on the
Majorana DOF and μz is a Pauli matrix in the sublattice
indices. The Hamiltonian under this symmetry transforms as

M ′
xH(kx, ky)(M ′

x )−1 = H(kx,−ky). (12)
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FIG. 3. Zigzag and armchair edges and their corresponding he-
lical and gapped edge states for the zero-flux, ν = 0 phase. (a) A
schematic picture of the zigzag edge. (b) A schematic picture of the
armchair edge. (c) Helical edge states on zigzag open boundaries at
Bz/K = 2.3 and D/K = 0.8. The red and green colors represent edge
states on the two open boundaries, respectively. (d) Gapped states on
armchair open boundaries at Bz/K = 2.3 and D/K = 0.8.
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The helical edge states have zero-energy crossings at high
symmetry points kx = {0, π/

√
3a}, as shown in Fig. 3(a). For

kx = 0 and kx = π/
√

3a, the BdG Hamiltonian reduces to
two one-dimensional (1D) Hamiltonians, H (ky)kx=0,π , which
have effective time-reversal (M ′), particle-hole (K), and chi-
ral (C = M ′K) symmetries. According to Altland-Zirnbauer’s
10-fold way classification [39–41], they belong to symmetry
class BDI with a 1D topological invariant Z which can be
calculated by the winding number [42–44],

w = −i

π

∫ π

0

dz(k)

z(k)
, (13)

z = det(F)

F
, (14)

UH(k)U † =
(

0 F (k)
F (−k)T 0

)
, (15)

where U is the diagonal representation of chiral symmetry
C. We obtained w = 1 for both kx = 0 and π/

√
3a lines.

Therefore, we have shown that the helical edge states on
the zigzag boundary are protected by the magnetic mirror
symmetry. On the other hand, for the armchair open boundary,
the Hamiltonian preserves another anti-unitary mirror sym-
metry M ′

y = Ry(π ) ⊗ μxK, particle-hole symmetry K, and
chiral symmetry C ′ = Ry(π ) ⊗ μx on the high-symmetry lines
ky = 0 and π/3a. In this case, we get w = 0 for both ky = 0
and π/3a, in agreement with the gapped edge states shown in
Fig. 3(b).

Next, we discuss the interplay between an in-plane mag-
netic field and DMI for the monolayer model as shown in
Fig. 4. Similar to the case of out-of-plane magnetic field,
here we also obtain a rich phase diagram of vison crystals for
both in-plane magnetic fields Bx and By. However, the phase
diagrams are gapless except for the 1/3- and 2/3-flux phases
for Bx and 1/3- and 1/4-flux phases for By. Similar to the
out-of-plane magnetic field cases, the dominant phases have
zero, π , and 1/3 fluxes, but there are also 1/7, 2/7, 6/7, 2/3,
and 2/3-stripy phases. In contrast to the out-of-plane magnetic
fields, there are also additional phases present, namely, the
1/3-stripy, 1/4, 3/4, 2/5-stripy, 1/8, 3/8, 5/8, and 7/8 flux
phases.

Lastly, we discuss a bilayer system with interlayer
couplings in an AA stacking configuration. We restrict our
calculations to small D and B such that the zero-flux state
remains the ground state. We follow a mean-field procedure
for the interlayer exchange [Eq. (9)], first introduced in
Ref. [26], and decouple the interaction in the Hartree channel
〈χ (α)

i 〉 = 〈ic(α)
1i c(α)

2i 〉. We consider opposite-sign 〈χ〉 on the
two sublattices, 〈χAA〉 = −〈χBB〉, which gaps the Majorana
spectrum, thus lowering the ground-state energy when
compared to the case where 〈χ (α)

i 〉 has the same sign on
both sublattices. Figure 5 shows the phase diagram and
self-consistent solutions 〈χ (x)〉 as functions of Bz and DMI for
J/K = 1. Both Bz and D suppress 〈χ (x)〉 since they gap the
Dirac spectrum which, in return, suppresses the instability.
A similar behavior is obtained for 〈χ (y)〉 and 〈χ (z)〉. For
large Bz and D, a chiral topological phase with ν = −6
emerges, corresponding to two uncoupled monolayers, each
with ν = −3. On the other hand, for small D and finite Bz, χ

can lead to trivially gapped phases with ν = 0. This phase is

FIG. 4. (a) Phase diagram for in-plane magnetic field Bx and
DMI D on the monolayer. The solid black lines represent first-order
phase transitions and the dashed red lines represent topological phase
transitions. (b) Phase diagram of the in-plane magnetic field By and
DMI D on the monolayer. Unless explicitly indicated, the phases are
gapless, in contrast to the case with out-of-plane fields.

adiabatically connected to the trivial gapped phase at Bz = 0
and D = 0 [26]. As we increase D, χ decreases and we
obtain a new topological phase with ν = −2, where only one
of the chiral edge modes from each layer survives. Having
discussed our results in detail, we now comment on their

FIG. 5. Phase diagram for out-of-plane magnetic field Bz and
DMI D for a bilayer model with zero flux at interlayer coupling
J/K = 1. The color map indicates the value of the mean-field ef-
fective hybridization 〈χ (x)〉.
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FIG. 6. Vison crystals considered in variational analysis. The red bonds represent “flipped” bonds with ui j = −1, which differ from the
flux-free gauge configuration where ui j = 1. The white and gray plaquettes represent zero (W = 1) and π (W = −1) fluxes. The dashed lines
represent the unit cells.

general features. As already mentioned, the phase diagrams
for out-of- and in-plane magnetic fields differ substantially,
while showing similar complexity. The difference is due to
the relative orientation of the fields and DMI vector, which

naturally imposes a preferred axis. Their similar complexity,
due to the presence of both spin and orbital DOF, further
demonstrates the remarkable tunability of these models.
However, the most striking results occur for the out-of-plane
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fields. Here, arbitrarily small DMI and applied field always
lead to gapped phases. Furthermore, a topologically nontrivial
(ν = −3) zero-flux phase persists for a significant range of
small fields and any nonzero DMI coupling. This is to be
contrasted to the phase diagram of the YL model without
DMI, where the topologically nontrivial π -flux phase (ν = 4)
requires fine tuning. In the case of the bilayer, the stability
of the gapped trivial phase (ν = 0) can also be understood
from the nature of the ground state, which includes interlayer
spin singlets on overlapping sites [26]. Nevertheless, a
topologically nontrivial phase with ν = −2 emerges here as
well for the coupled layers. There are several experimental
signatures of the vison crystals with different Chern numbers
[36]. For the out-of-plane magnetic field, the vison crystals
are gapped and the heat capacity acts like C ∝ e−�/T , where
� is the smaller of the vison or Majorana fermion gap. The
energy gap of the excitation spectrum can be detected from
the temperature dependence of the specific heat. For the
in-plane magnetic field, most of the vison crystals are gapless
and contain both Dirac dispersion or Fermi surfaces with
specific heat C ∝ T 2 and C ∝ T , respectively. Moreover, the
distinct Majorana spectra can be distinguished based on their
characteristic low-energy signatures in spectroscopic probes,
such as resonant inelastic x-ray scattering [45,46]. In addition,
the vison crystals spontaneously break the translational
invariance; their presence implies a finite-temperature
phase transition into a high-temperature symmetric phase.
Furthermore, vison crystals are expected to exhibit clear
features of translation symmetry breaking in neutron
scattering experiments [36]. Moreover, a finite Chern number
for a gapped bulk ground state can lead to a quantized

thermal Hall conductance Kxy = ν
πK2

BT
12h̄ due to the chiral

edge states [6,47]. YL models, as well as other spin-orbital
extensions of the Kitaev model, generally require a quartet
ground state at the atomic level and strongly bond-dependent
interactions. These conditions may be realized in strongly
spin-orbit-coupled Mott insulators with orbital degeneracy

or in materials with J = 3/2 local moments [20,48–50]. For
instance, an enhanced SU(4) symmetry has been proposed for
α-ZrCl3 [51]. However, to date, there are no predictions for
material realizations of the YL model.

IV. CONCLUSION

Based on variational calculations, we have shown that a
variety of vison crystal phases can be stabilized by an external
magnetic field and DMI in the YL model. The vison crystals
are gapped for an out-of-plane magnetic field and mostly
gapless for an in-plane magnetic field. Gapped vison crystals
include topological phases with both chiral and helical edge
states. The latter are protected by a magnetic mirror symmetry
and are present only on the zigzag open boundary. Further-
more, for the bilayer model, we have shown that additional
topological phases can be stabilized by tuning the interlayer
coupling. An important future study involves the topological
defects of these symmetry-breaking vison crystals, including
domain walls, dislocations, and disclinations that can host
gapless modes or non-Abelian anyons [52,53].
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APPENDIX: VARIATIONAL ANALYSIS

In our variational analysis, we consider 58 vison crystals,
as shown in Fig. 6. We find the energy of each vison crystal
for each point of the phase diagram and then compare their
energies to construct the phase diagrams.
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