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A unidirectional “density” wave order in an otherwise isotropic environment is guaranteed to display a
smecticlike Goldstone mode. Examples of such soft states include conventional smectic liquid crystals, pu-
tative Fulde-Ferrell-Larkin-Ovchinnikov superfluids, and helical states of frustrated bosons and spins. Here
we develop generalized spin-smectic σ -models that break O(N ) internal symmetry in addition to the d-
dimensional rotational and uniaxial translational symmetries. We explore long-wavelength properties of such
strongly fluctuating states, show that they are characterized by a “double-power-law” static structure peak, and
analyze their asymptotic symmetry-reduced crossover to conventional low-energy modes. We also present the
associated Ginzburg-Landau theory, describing the phase transition into such spin-smectic states, and we discuss
experimental realization of such models.
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I. INTRODUCTION

A. Background and motivation

There are a number of systems in nature that spontaneously
undergo transitions to a variety of “density” [1] wave states,
characterized by a periodic modulation. Such systems range
from a large variety of charge and spin density waves, e.g.,
antiferromagnetic insulators in cuprates [2], charge density
waves in NbSe3 [3], and Wigner crystal [4], to the putative
pair-density wave superconductors [5]. Generically, in an ori-
entationally ordered environment of a crystal, the low-energy
nonlinear σ -model (nσm) description of the corresponding
Goldstone modes is given by their linear gradient elasticity
at weak coupling controlled by a Gaussian fixed point, and it
is thus quite well-understood [2,6–10].

In contrast to these systems, there exists a qualitatively
distinct class of phases of matter, where a unidirectional
density-wave order (characterized by a spontaneously ori-
ented wave vector q0) takes place in an isotropic environment,
and thus, in addition to translational and internal symme-
tries, also spontaneously breaks spatial rotational symmetry.
We expect such states to be described by a “soft”—higher
gradient—nσm that is qualitatively distinct from their crys-
talline counterparts. The derivation and study of such models
is the focus of the present work.

The simplest realization of such states is the extensively
studied conventional smectic liquid crystals [11] characterized
by a periodic scalar number-density, described by a fully
rotationally invariant soft nonlinear elastic model [12,13]. In
the presence of thermal and quantum fluctuations or quenched
disorder [14–16], the corresponding scalar phonon (denoted
as u) fluctuations are qualitatively enhanced (e.g., for spa-
tial dimension d � 3, thermal urms grows with system size,
diverging in the thermodynamic limit) and lead to the impor-
tance of the nonlinear elasticity [12], resulting in a tuning-free
critical smectic phase described by universal exponents [17].

In this paper, we consider a generalization of such a scalar
smectic to “spin” (nonscalar) density, �S(x), that transforms

nontrivially under O(N )-spin rotational symmetry. Such a
state, that we dub “spin-smectic,” is characterized by an
internal flavor degree of freedom, and it exhibits a sponta-
neous uniaxial spatial modulation in �S(x) along q0. It thereby
spontaneously breaks the O(N )-internal spin symmetry, and
the underlying spatial O(d )-rotational and T (d )-translational
symmetries.

Our study of such spin-smectics is motivated by a num-
ber of physical realizations of unidirectional orders, that
include (i) O(N = 1): conventional smectic liquid crystal
[11], and quantum Hall striped states of a two-dimensional
electron gas at half-filled high Landau levels [18–23]; (ii)
O(N = 2): cholesteric liquid crystal [24], spin-orbit coupled
and dipolar Bose condensates [25,26], putative Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) paired superfluids [27,28] in
imbalanced degenerate atomic gases [29,30], a p-wave res-
onant Bose gas [31,32], and helical states of frustrated bosons
[33]; (iii) O(N = 3): helimagnets of frustrated spin systems
[34–36], as realized in spinel materials, e.g., CoAl2O4 [37,38]
and MnSc2S4 [39], van der Waals honeycomb magnets, e.g.,
FeCl3 [40], and a stretched diamond lattice, e.g., LiYbO2

[41]. For long-wavelength 2π/q0 � a (lattice constant) spin-
density modulation, even in the crystalline realizations with
spin-orbit interactions above, we expect the spin-smectics to
emerge in a broad range of intermediate scales from an ap-
proximate rotationally symmetric state, even if asymptotically
crossing over to more conventional ordered states.

B. Frustrated J1-J2 spin model

Before we summarize our main findings, we discuss the
frustrated J1-J2 lattice model, studied at a microscopic level
in Refs. [35,36]. The long-scale phenomenology that emerges
from this model motivates our current study.

Its Hamiltonian is given by

H = J1

∑
〈i j〉

�Si · �S j + J2

∑
〈〈i j〉〉

�Si · �S j, (1)
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where �Si is an N-component spin on site i (with N = 1, 2, 3,
respectively, corresponding to the Ising, XY , and Heisenberg
models), and 〈i j〉 and 〈〈i j〉〉 denote the nearest-neighbor (NN)
and next-nearest-neighbor (NNN) pairs of sites. The frustra-
tion of the system is then induced by the antiferromagnetic
NNN interactions, J2 > 0, while the sign of the NN exchange
interactions is not important (as it is nonfrustrating and can
be changed by a bipartite transformation), but for concrete-
ness and convenience we take it to be J1 > 0. Then, the spin
frustration is characterized by the ratio, J2/J1 > 0. In the
classical S = ∞ limit, the model (1) exhibits ground-state
degeneracy. Taking the diamond-lattice antiferromagnets (as
realized in AB2X4 compounds, with A a magnetic ion living
on a diamond lattice and B living on a pyrochlore lattice,
studied by Bergman et al. [35]) for example, for weak frus-
tration, 0 < J2/J1 < 1/8, the ground state is the Néel state.
For intermediate frustration, 1/8 < J2/J1 < 1/4, the ground
state is an incommensurate helical spin-density wave that is
degenerate with respect to orientation of the ordering wave
vector q0 on the so-called spiral codimension 1 surface around
the � point. For 1/4 < J2/J1, the spiral surface exhibits open
topology along the (111) axis, and in the limit J2/J1 → ∞,
it collapses into one-dimensional lines that correspond to the
nearest-neighbor-coupled face-centered cubic antiferromag-
net.

As a consequence of the large classical ground-state de-
generacy, the ordering temperature, Tc, is small relative to the
Curie-Weiss exchange scale, �CW [42]. For example, spinel
compounds like CoAl2O4 [37,38] and MnSc2S4 [39] have
|�CW| > 10 − 20Tc and |�CW| ≈ 10Tc, respectively. This is
considered as empirical signatures of highly frustrated mag-
nets. As an aside, this then leads to a broad regime of spiral
classical spin liquid for temperatures Tc < T < |�CW|, where
the system thermally explores many different low-energy
configurations on the spiral surface and thereby exhibits
anomalous physical properties. This is in contrast with an even
more exotic quantum spin liquid that survives down to zero
temperature [43].

At low temperatures, T < Tc, the ordering of such magnets
is associated with the lifting of the spiral surface degeneracy
that is sensitive to the degeneracy-breaking perturbations like
spin-orbit and crystalline symmetry breaking anisotropies. In
the absence of such perturbations, the spiral surface degener-
acy is lifted via quantum and thermal fluctuations in the free
energy, which select a set of wave vectors (whose magnitude
is given by the radius of spiral surface, q0) of the ordered
states that one expects to be along the crystalline symmetry
axes—the so-called order-by-disorder [44,45]. The resulting
low-temperature ordered phases range from the nematic [36]
to a variety of spin-density-wave states at specific wave vector
[35]. The ordering of the latter self-consistently introduces a
stabilizing stiffness of a conventional nσm and thereby deter-
mines other physical observables such as the specific heat and
structure factor [33,35]. As a result, the fluctuation-generated
stiffness is small, subdominant to the higher-order gradient
elasticity over a large regime (set by order-by-disorder scale),
within which the system exhibits the softer (than conventional
spin-density-wave states) smecticlike elasticity [33]. Our goal
here is to study the universal low-energy description and
phenomenology of such soft, unidirectionally ordered spin-

TABLE I. Goldstone mode number and type in the coplanar and
collinear O(N ) spin-smectics for different number N of spin compo-
nents. NGM is the number of the Goldstone modes. “Sm”, “XY ,” and
“O(N )” stand for smectic, XY , and O(N ) Goldstone mode models,
respectively.

Coplanar Collinear

NGM 2N − 3 N
N = 1 N/A Sm
N = 2 Sm Sm + XY
N � 3 soft nσm, (2) Sm + O(N ), (4)

density-wave states, which we refer to as spin-smectics. To
this end, in this paper we primarily focus on an isotropic
(i.e., neglecting the order-by-disorder and lattice symmetry
breaking effects) field theory controlled by the ordering on
the spiral momentum surface.

C. Results

1. Coplanar smectic σ-model

Motivated by the above physical systems and the frus-
trated J1-J2 Heisenberg model [35,36], generalized to N spin
components, our key result (summarized for different cases
of interest in Table I) is the derivation of the O(N ) smectic
σ -model for an N-component orthonormal n̂(x) − m̂(x) diad,
described by the Hamiltonian density

Hcoplanar[n̂, m̂] = J|∇2ψ̂ + 2iq0∂‖ψ̂ |2 + κ (∇ ˆ̂L)2. (2)

It describes the nonlinear Goldstone modes of the N � 3
coplanar spiral state at a wave vector q0 [see Fig. 1(a)]. In
the above, we defined components of spin fluctuations ˆ̂Lαβ =
nαmβ − nβmα transverse to the spiral plane n̂-m̂ and the com-
plex vector ψ̂ = (n̂ + im̂)/

√
2. For simplicity of presentation

here, we neglected inessential (quantitative) anisotropy in κ ,
discussed in the main body of the paper. Throughout this
paper, we use the subscripts ‖ (≡ q̂) and ⊥ to denote the axes
parallel and perpendicular to q0, respectively. The J modulus
describes the “soft” Goldstone-mode elasticity for the fluctu-
ations in the n̂-m̂ plane, which for weak excitations reduces
to the standard smectic form, (33), and also introduces κ‖
stiffness for ˆ̂L. The κ terms give linear-gradient elasticity for
the out-of-n̂-m̂-plane fluctuations. We find that B, K, κ‖ ∝ S2

0 ,
κ⊥ ∝ S4

0, predicting a divergent anisotropy near the critical
point, where S0 → 0.

For the special case of N = 3, the spin-smectic σ -model in
(2) reduces to

Hcoplanar = J|∇2ψ̂ + 2iq0∂‖ψ̂ |2 + κ (∇�̂)2

= J

2
(∇2n̂ − 2q0∂‖m̂)2 + J

2
(∇2m̂ + 2q0∂‖n̂)2

+ κ (∇�̂)2, (3)

where the complex 3-vector ψ̂ = (n̂ + im̂)/
√

2, defining an
orthonormal triad n̂ × m̂ = �̂.

Easy-plane (XY ) anisotropy −(�̂ · ĉ)2 locks �̂ along the
anisotropy axis ĉ, reducing the model to an N = 2 conven-
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FIG. 1. A schematic of N = 3 (a) coplanar and (b) collinear
spin-smectics. The black and red arrows denote the spins �S(x) and
the spiral wave vector q0, respectively. The green (online) curves
denote the spin-smectic phase fronts of constant spin magnitude and
orientation, with the nearby fronts separated by an arbitrarily chosen
phase of 2π/3. Upper right insets: The coplanar state is described
by an orthonormal triad n̂(x), m̂(x), �̂(x), with n̂ and m̂ defining
the spin �S(x) plane that in the absence of spin-orbit interaction
(that is our focus here) is decoupled from q0. The collinear state
is characterized by a unit vector n̂(x) that denotes the axis of the
collinear spin-density wave.

tional smectic σ -model, of, e.g., cholesteric and Fulde-Ferrell
states for φ with n̂ = (cos φ, sin φ).

2. Collinear smectic σ-model

For collinear spiral states [see Fig. 1(b)], the low-energy
Goldstone modes are a smectic-like pseudophonon u(x) cor-
responding to the spin-density-wave phase and a unit vector
n̂(x) that describes local spin orientation. These are character-
ized by a Hamiltonian density

Hcollinear[u, n̂] = Bu2
qq + K (∇2u)2 + κ (∇n̂)2, (4)

where uqq = ∂qu + (∇u)2/2 is the rotationally invariant strain
tensor. In the presence of easy-axis anisotropy g(n̂ · ĉ)2 com-
mon to magnetic crystalline materials, when g < 0, the spin
orientation n̂ freezes out, leading to a low-energy N = 1 smec-
tic σ -model described by a single smectic phonon derived
in Sec. II A. When g > 0, the spin orientation n̂ is locked
perpendicular to ĉ, resulting in an N = 2 collinear smectic,
such as the Larkin-Ovchinnikov state.

3. Thermal fluctuations and structure factor

Focusing on the physical case, N = d = 3, we show that
both the coplanar and collinear states are described by a
smectic phonon and two XY Goldstone modes at the harmonic
level, i.e., at the Gaussian fixed point, neglecting effects of
nonlinearities that may lead to a crossover to a nontrivial spin-
smectic fixed point, thereby modifying these predictions at
long scales. Accordingly, they both exhibit quasi-long-range
and long-range orders in their spin-density modulation and

FIG. 2. Schematic plot of the structure factor S(q) for the O(3)
collinear and coplanar spin-smectic states that display double-power-
law quasi-Bragg (as oppose to single-power-law and δ-function)
peaks at q = ±nq0.

spin orientation orders, respectively. As illustrated in Fig. 2,
this then leads in 3D to anisotropic double-power-law peaks
in their static spin structure factor at ±nq0 (n = 1, 2, 3, . . . )
[see Eq. (111) for a more detailed form],

S (q) ≈
∑

n

Pn(q − nq0) +
∑

n

Pn(q + nq0), (5)

where (a = 1)

Pn(k⊥ = 0, k‖) ∼ 1

|k‖|2−ηn
+ T

κ

1

|k‖|1−ηn+ 1
1+2ηn

(6)

with the positive temperature-dependent exponent ηn =
n2q2

0T/16π
√

BK . In the above, the first term is the lead-
ing (narrower) smectic Goldstone mode contribution of the
power-law peak, while the second term is the subleading
(broader) contribution from the XY Goldstone mode fluctu-
ations, with the prediction valid at small T/κ , expected to
become important as this ratio becomes of order 1 or larger.

We discuss the effects of various symmetry-breaking per-
turbations that exist in real materials, including the lattice
anisotropy and spin-orbit coupling. The former breaks the
O(d = 3) spatial rotational symmetry, and thereby leads to
a crossover for the smectic phonon mode to XY correlation
(see Fig. 5). This results in true Bragg peaks (δ functions), as
in conventional long-range-ordered states, but may keep the
power-law tail at intermediate scales if the symmetry-breaking
perturbation is weak. On the other hand, the spin-orbit cou-
pling, as, e.g., Dzyaloshinskii-Moriya (DM) interaction in a
helimagnet (or a chiral twist term in a cholesteric), breaks
O(N = 3) × O(d = 3) symmetries down to the diagonal sub-
group. For the coplanar state, this locks the orientation of
�̂ perpendicular to q0, and thereby freezes out the two XY
Goldstone modes, resulting in a single-power-law peak with
the second term in (6) suppressed.

4. Transition into the spin-smectic: O(N) de Gennes model

To describe the criticality associated with the phase tran-
sition into these spin-smectic states, illustrated in Fig. 3, we
also derive a generalized O(N ) de Gennes model [11], with
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FIG. 3. Schematic phase diagram for the frustrated J1-J2 Heisen-
berg model with a low-temperature spin-density wave that also
breaks (at intermediate scales for a lattice system with weak
spin-orbit coupling) translational and spatial rotational symmetries,
thereby exhibiting what we dub a “spin-smectic.” We expect it
to melt at Tsn into an orientationally ordered spin-nematic (both
in spin, 〈SαSβ〉 � δαβ , and coordinate, 〈qiq j〉 � δi j , spaces). The
spin-nematic then disordered at Tc into a spiral spin liquid (SSL)
(characterized by a short-range smectic order) that then crosses over
into a paramagnetic state (PM).

Hamiltonian density given by

HGL = r| �ψ |2 + v1| �ψ |4 + v2

2
| �ψ · �ψ |2 + J

2
|(i∇ − q0δN) �ψ |2

+ Ks(∇ · δN)2 + Ktb(∇ × δN)2, (7)

where the complex vector �ψ = �n + i �m (�n and �m are indepen-
dent N-vectors, physical cases corresponding to N = 1, 2, 3)
describes the spin-density-wave order parameter, and δN =
N − q̂, with N a spatial unit vector that describes the transla-
tionally invariant nematic liquid that spin-smectic melts into
for r > 0. This Ginzburg-Landau theory, which we dub the
O(N ) spin–de Gennes model, at low temperatures for r < 0
predicts the collinear (v2 < 0) and coplanar (v2 > 0) states
discussed above.

5. Quantum dynamics

By including the Wess-Zumino-Witten Berry phase, which
encodes the spin precessional dynamics and corresponding
spin commutation relations, we supplement the above O(N )
classical smectic σ -models with quantum dynamics in the
spin-coherent path integral. For an N = 3 coplanar state we
find that Berry phase action for the smectic σ -model is given
by a

SB = γ

∫
x,t

[(∂t n̂)2 + (∂t m̂)2 + 2(m̂ · ∂t n̂)2], (8)

where γ is the uniform ferromagnetic susceptibility in the
coplanar phase.

The remainder of the paper is organized as follows. In
Sec. II, we derive the continuum field theory of the lattice
model (1) with generalized O(N ) spin symmetry and the
underlying spatial O(d ) rotational and T (d ) translational sym-
metries. It gives our key result, a new class of “soft” O(N ) ×
O(d ) σ -models that describe the universal long-wavelength
properties of spin-smectics. We show that these reduce to the
fully nonlinear Goldstone-mode field theories for the con-
ventional smectic liquid crystals (N = 1), the putative FFLO
paired superfluids in imbalanced degenerate atomic gases
(N = 2), and a new class of soft-spin-density waves (N � 3),
among other physical realizations. In Sec. III, we analyze the
spin-smectic in the presence of weak thermal fluctuations,
assess its stability, and compute its correlation functions, fo-
cusing on the structure factor that exhibits crossovers across

a range of length scales. In Sec. IV, we introduce a comple-
mentary Ginzburg-Landau model that gives spin-smectic as
its ordered state and describes the transition from the orienta-
tionally ordered to the spin-smectic states. In Sec. V, starting
with the WZW term, we derive the quantum dynamics for the
O(N ) spin-smectic σ -model. We conclude in Sec. VI with a
summary of our results and a discussion of open directions.

II. FIELD THEORY OF O(N) SMECTICS

The key feature of the frustrated lattice model, (1), is
its degenerate ground-state manifold (neglecting order-from-
disorder effects), defined by a spiral surface ε(q) = const,
where q is the wave vector of the spin spiral state. Motivated
by this class of models and corresponding experimental re-
alizations of frustrated helimagnets [37–41], we develop the
field theory of low-energy excitations of helical states that
emerge from an isotropic spiral surface, |q| = q0, neglecting
spin-orbit coupling (SOC) and rotational-symmetry-breaking
lattice effects. To this end, we develop an O(N ) Goldstone-
mode σ -model by starting with an N-component spin �S model
with Hamiltonian density (throughout this paper, we employ
the Einstein convention, where repeated indices are implicitly
summed over),

H = J

2
[(∇2 �S)2 − 2q̄2

0(∇�S)2] + r

2
�S2 + λ1 �S4

+ λ2(�S × ∇�S)2 + λ3(∂i �S · ∂ j �S)2 + · · · , (9)

that encodes the coplanar and collinear spiral states on an
O(d ) hyperspherical spiral surface, ε(|q|) = (q2 − q2

0 )2 =
const, that can be derived from the microscopic Hamilto-
nian (1). We note that the Hamiltonian (9) respects O(d ) ×
O(N )-rotational [and T (d )-translational with d the spatial di-
mension] symmetry, neglecting any SOC, i.e., forbidding the
inner product between the spatial (∇) and “spin” (�S) degrees
of freedom.

Driven by the J term, that for r < 0 clearly exhibits a
nonzero momentum |q| = q̄0 spin condensation on an O(d )-
symmetric spiral surface [46], we consider (as we will show,
most strongly fluctuating) unidirectional, single q spin states
[47]

�S(x) = �n(x) cos(q · x) − �m(x) sin(q · x)

= Re[ �ψ (x)eiq·x], (10)

where �n and �m are N-component real vector fields, that can be
compactly written as a complex N-vector field

�ψ = �n + i �m, (11)

with 2N degrees of freedom.
The remaining quadratic and quartic terms in (9) for r < 0

encode Landau ordering and determine the amplitude of the
spin-density-wave spiral. We note that in contrast to conven-
tional Landau theories, here the ordering is at a nonzero wave
vector, with �S condensing at a nonzero momentum |q| = q0.
Therefore, the higher derivative λ2,3 terms play an important
role, as they constitute the lowest-order form needed for a
generic Goldstone-mode description of the spin-smectic σ -
model [48]. As we will show, the λ2,3 in (9) are crucial for
the stabilization of the N � 2 spin-density waves.
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With the ansatz (10), the mean-field (constant part, after
dropping the fast-oscillating contributions, that on spatial in-
tegration average out to zero) energy density is given by

HLandau = r̃

4
| �ψ |2 + v1

4
| �ψ |4 + v2

8
| �ψ · �ψ |2, (12)

where the zeroth-order couplings (corrected by fluctuations)
are given by

r̃ = Jq4 − 2Jq2q̄2
0 + r,

v1 = λ1 + λ2q2 + λ3q4,

v2 = λ1 − 2λ2q2 + λ3q4. (13)

At low temperatures, r̃ < 0 (and v1 > 0), the spin-density
wave is ordered and can be parametrized as

�ψ = S0(n̂ cos χ + im̂ sin χ ), (14)

where S0 = | �ψ | and χ are, respectively, the overall and rela-
tive amplitudes of order parameters �n and �m. The (mean-field)
magnitude of the ordering wave vector q is then determined
by minimizing the Landau free energy (12), with direction
chosen spontaneously. For λ2, λ3 � λ1 we find

|q| ≡ q0 ≈ q̄0. (15)

It is straightforward to see that the Landau theory (12)
predicts two qualitatively distinct spin-density waves. With
the parametrization (14), the v2 quartic interaction can be
written as

| �ψ · �ψ |2 = (n2 − m2)2 + 4(�n · �m)2 (16)

= S4
0 cos2(2χ ) + S4

0 sin2(2χ )(n̂ · m̂)2. (17)

For v2 < 0 (or N = 1), it is clearly minimized by

n̂ ‖ m̂ (18)

with arbitrary phase, χ . This allows us to rewrite the order
parameter as

�ψcollinear = S0n̂ei(q0·x+χ ), (19)

where the minimization of (12) then gives

S0 =
√

|r̃|
2v1 + v2

. (20)

The resulting collinear spin-density wave (10) is then given
by oscillatory magnitude,

S2
collinear = S2

0 cos2(q0 · x + χ ). (21)

In contrast, for v2 > 0 (and N > 1), minimization of (17)
then gives

n̂ ⊥ m̂, χ = π/4 + nπ, (22)

where n is an arbitrary integer. This gives a coplanar, i.e.,
helical spin-density-wave state characterized by the order pa-
rameter

�ψcoplanar = S0√
2

(n̂ + im̂), (23)

with a constant magnitude

S2
coplanar = n2 cos2(q0 · x) + m2 sin2(q0 · x)

= S2
0, (24)

given by

S0 =
√

|r̃|
2v1

. (25)

Importantly, because of the absence of SOC, both the collinear
and coplanar states have decoupled spin orientation and wave
vector q0, particularly distinguishing the coplanar state from
the helical state of a DM helimagnet and a cholesteric state of
a chiral liquid crystal.

Based on the above analysis, below we first derive σ -
models for the cases of N = 1, 2, which, as we will show,
correspond to the familiar ordered states of a conventional
smectic and the putative Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) superfluids, respectively. We then study the N = 3
case (and its generalization to larger N), corresponding to
collinear and coplanar spin-density waves, described by two
distinct “soft” O(3) nonlinear smectic σ -models. These are
relevant to the ordered states of “codimension 1” frustrated
magnetic systems reviewed in Sec. I B.

A. N = 1: Conventional smectic

We begin with the simplest case of N = 1, corresponding
to a scalar number density ρ, that according to field theory (9)
condenses into a scalar-density wave,

ρ(x) = Re[ψ (x)eiq·x]

= |ψ | cos[q · x + qu(x)], (26)

where ψ = |ψ |eiqu, with smectic amplitude |ψ | and u(x) the
phonon Goldstone mode, corresponding to the displacement
along q, familiar from conventional smectic liquid crystals.
In our generalized formulation, this N = 1 state corresponds
to a necessarily collinear case, with one-component “vectors”
n ‖ m, parametrized by n = ρ cos(qu) and m = ρ sin(qu).

At low temperatures in the ordered smectic state, the am-
plitude |ψ | is well approximated by a mean-field value

ρ0 =
√

n2 + m2 =
√

−r̃/(2v1 + v2), (27)

with only small gapped fluctuations. Thus, with the ansatz
(26) and its derivatives,

∇ρ = ρ0Re[i(q + q∇u)eiq·x+iqu],

∇2ρ = ρ0Re[[−(q + q∇u)2 + iq∇2u]eiq·x+iqu], (28)

the model (9) (neglecting λ2 and λ3, which are unimportant for
N = 1) reduces to the familiar nonlinear smectic Goldstone-
mode elasticity,

H = 1
4 Jρ2

0

[
(q + q∇u)4 + q2(∇2u)2 − 2q̄2

0(q + q∇u)2
]

+ 1
4 rρ2

0 + 3
8λ1ρ

4
0 + · · ·

= a
(
q2 − q̄2

0

)
uqq + Bu2

qq + K (∇2u)2 + E (q), (29)

where in the first equality we dropped fast oscillating pieces
that average away after spatial integration of the energy den-
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sity. Above, the rotationally invariant strain tensor is

uqq = q̂ · ∇u + (∇u)2/2 (30)

and two independent elastic constants B and K , at zeroth order
[i.e., model (9)-dependent] are given by

a = 4K = Jρ2
0 q2, B = Jρ2

0 q4. (31)

The minimization of the constant part of H,

E (q) = 1
4ρ2

0

(
Jq4 − 2Jq2q̄2

0 + r
) + 3

8ρ4
0λ1, (32)

over ρ0 and q, gives |q| = q̄0, which ensures the vanishing of
the coefficient of the linear in the strain uqq term, and thereby
guarantees the stability of the smectic state. We note that with
the inclusion of fluctuations, the optimum wave vector gets
corrected, i.e., |q| = q0 �= q̄0, so as to eliminate the linear in
uqq contribution order by order (akin to what is done with
the order parameter ρ0), which amounts to ensuring that the
expansion in the nonlinear strain uqq is done around the correct
(fluctuation-corrected) ground state. With this, by choosing
q = q0ẑ, we then recover the familiar nonlinear elastic, fully
rotationally invariant smectic Goldstone-mode σ -model,

Hsm = Bu2
zz + K (∇2u)2. (33)

We observe that the emergence of smectic elasticity (33)
is expected, based on spatial rotational symmetry encoded in
(9), that requires a fully rotationally invariant nonlinear strain
tensor uzz. To see this, we note that the global rotation of the
undistorted u = 0 smectic state is characterized by a rotation
of q0,

q0ẑ → q′
0 = q0 cos θ ẑ + q0 sin θ x̂, (34)

which corresponds to the phonon displacement

u0(x) = z(cos θ − 1) + x sin θ. (35)

Using u0(x) inside (33), straightforward analysis then shows
that the nonlinear strain uzz and thereby the energy (33) indeed
vanish under such rotation, i.e., Hsm[u0] = 0.

More generally, the global rotation of the smectic state (34)
is equivalent to the following transformation of u:

u(x) → u(x) + u0(x), (36)

as can be seen from its identification with the corresponding
phase transformation of ψ (x) in Eq. (26). The latter trans-
forms the nonlinear strain tensor

uzz = ∂zu + 1
2 (∇u)2

→ ∂zu + cos θ − 1 + 1
2 [∇u + (cos θ − 1)ẑ + sin θ x̂]2

= (cos θ ẑ + sin θ x̂) · ∇u + 1
2 (∇u)2, (37)

and thereby leaves the form of Hamiltonian (33) unchanged
with q̂ = ẑ rotated to q̂′ = cos θ ẑ + sin θ x̂, i.e., Hsm[u(x) +
u0(x)] = Hsm[u(x)].

B. N = 2: XY smectic and FFLO/PDW superfluid

For N = 2, in its ordered regime the Hamiltonian (9)
encodes a soft planar spin-density wave of XY spins. Phys-
ically, this is relevant for frustrated magnetic systems with
an easy plane anisotropy and “striped” [e.g., pair-density

wave (PDW), FFLO, and other] nonzero-momentum super-
fluids [30]. The latter is characterized by a complex field,
whose real and imaginary parts are isomorphic to a two-
component real vector field. The U (1) symmetry of the
superfluid then maps to the SO(2) spin-rotational symmetry of
the N = 2 spin-smectic. Below, we show that the putative FF
(time-reversal-breaking, amplitude uniform) and LO (time-
reversal-preserving, amplitude modulated) PDWs states are
isomorphic to the coplanar and collinear spin-density waves,
emerging from the N = 2 field theory, respectively.

The low-energy properties of a striped superfluid can be
qualitatively captured by the following order parameter:

�FFLO(x) = �+(x)eiq·x + �−(x)e−iq·x, (38)

where the two complex scalar fields

�±(x) = �0
±(x)eiφ±(x), (39)

distinguishing between the coplanar and collinear (i.e., the
so-called FF and LO) states. The imaginary and real parts of
the two complex order parameters in (38) can equivalently
be encoded in a spin language, via two real two-component
vectors �n, �m via

�SFFLO = �n(x) cos(q · x) − �m(x) sin(q · x), (40)

where

�n = (�R
+ + �R

−,�I
+ + �I

−),

�m = (�I
+ − �I

−,�R
− − �R

+), (41)

with the superscripts R and I , respectively, denoting the real
and imaginary parts of the corresponding complex fields.

As in the analysis of the previous subsection, here too
the two phases are controlled by the sign of v2. For v2 < 0,
the Landau free energy (12) selects the collinear state that
satisfies the conditions (18) that together with (41) gives
|�+| = |�−| ≡ �0. The order parameter (38) then reduces to
the familiar LO state

�LO = 2�0eiφ cos(q · x + θ ), (42)

where the phases

φ = (φ+ + φ−)/2, θ = (φ+ − φ−)/2, (43)

are the LO superfluid phase and its smectic phonon, respec-
tively. In terms of the two-component vector order parameters
(40), this corresponds to the collinear case with

�nLO = 2�0 cos θ (cos φ, sin φ),

�mLO = 2�0 sin θ (cos φ, sin φ). (44)

As detailed below and in Ref. [30], after choosing the mini-
mum q = q0 and dropping constants, the O(N = 2)collinear σ -
model (4) reduces to the Goldstone mode Hamiltonian given
by the coupled smectic and XY sectors [29,30],

HLO = Bu2
qq + K (∇2u)2 + ρ‖

s (∂‖φ)2 + ρ⊥
s (∂⊥φ)2, (45)

where u = θ/q0. Notice that ρ⊥
s vanishes when the current-

current interaction λ2 → 0 (see below and Ref. [30]). Namely,
it is required to capture the universal low-energy Goldstone-
mode energetics of the LO state.
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For v2 > 0, the Landau free energy (12) is minimized
by the coplanar state that satisfies the conditions (22), that
together with (41) gives �R

+�I
− − �R

−�I
+ = 0 and �R

+�R
− +

�I
+�I

− = 0, which is equivalent to �+ = 0 or �− = 0. Thus,
the order parameter (38) reduces to the FF state

�FF = �0eiq·x+iφ, (46)

where φ = φ+ and the amplitude �0 = �0
+ is uniform. In

terms of the vector order parameter (40), this corresponds to
the coplanar state, with orthogonal vectors

�nFF = �0(cos φ, sin φ), �mFF = �0(sin φ,− cos φ). (47)

Thus, the Goldstone-mode O(N = 2)coplanar σ -model is de-
scribed by a single smectic phonon (see below and Ref. [30])

HFF = Bu2
qq + K (∇2u)2, (48)

where u = φ/q0.
We next turn to the discussions of the N > 2 coplanar

O(d )-symmetric density-wave, which leads to a new class of
soft nonlinear O(N > 2) σ -model.

C. O(N) coplanar smectic

For the coplanar helical state, which satisfies the condition
(22) and N � 2, the order parameter can be written as

�S = S0Re[ψ̂eiq·x], (49)

where

ψ̂ (x) = n̂(x) + im̂(x)√
2

(50)

is a complex N-component vector field with |ψ̂ |2 = 1, de-
scribed by orthonormal real vectors, n̂ and m̂.

To count the number of Goldstone modes, we first note that
the O(N ) group consists of N (N − 1)/2 generators of rotation
that correspond to independent planes in the N-dimensional
spin space. For an ordered state that breaks the entire O(N )
group, there will be N (N − 1)/2 Goldstone modes. For the
coplanar state, the symmetry group of the order parameter is
O(N − 2) (due to the subtraction of n̂ and m̂ axes). The Gold-
stone modes then live on O(N )/O(N − 2) = SN−1 × SN−2

manifold with 2N − 3 Goldstone modes [49].
To derive the Goldstone-mode classical Hamiltonian of the

coplanar state, we substitute (49) into (9) and first consider
the simplest case with λ2 = λ3 = 0, which gives (see details
in Appendix A)

HJ = a
(
q2 − q̄2

0

)|∇ψ̂ + iqψ̂ |2 + J̄|∇2ψ̂ + 2iq∂‖ψ̂ |2, (51)

where the zeroth-order parameters above are given by

2a = 4J̄ = JS2
0 . (52)

By selecting |q| ≡ q0 = q̄0 to eliminate the a (first) term in
the Hamiltonian above, and expressing the result in terms of
the orthonormal triad, we obtain

H = J̄

2
(∇2n̂ − 2q0∂‖m̂)2 + J̄

2
(∇2m̂ + 2q0∂‖n̂)2. (53)

We stress that this nonlinear O(N ) σ -model is fully rotation-
ally invariant for an arbitrary large spin-smectic-layer rotation
R, corresponding to q0 → q′

0 = R · q0, where in 3D q′
0 =

q0(cos θ ẑ + sin θ x̂) with x̂ any of the axes transverse to q̂ = ẑ.
With the definition of the order parameter (49), this rotation
can be interpreted as the following transformation of n̂ and m̂:

n̂ → n̂ cos χR(x) − m̂ sin χR(x),
(54)

m̂ → n̂ sin χR(x) + m̂ cos χR(x),

where χR(x, z) = q0(cos θ − 1)z + q0 sin θx. Thus, in the he-
lical state the global spatial O(d ) rotational symmetry of H
(9) maps onto an inhomogeneous spin rotational symmetry
O(n̂,m̂). It can be straightforwardly verified that the transforma-
tion (54) leaves the form of the Hamiltonian (53) unchanged
with the ‖ axis rotated to q̂′ = cos θ ẑ + sin θ x̂.

1. N = 2

To further analyze the Hamiltonian (53), we first consider
the case of N = 2 and parametrize the orthonormal diad as

n̂N=2 = (cos χ, sin χ ), m̂N=2 = (− sin χ, cos χ ), (55)

corresponding to

ψ̂N=2 = 1√
2

e−iχ (1, i), (56)

where the angle χ is related to the phonon mode along q0 by
u = −χ/q0. The Hamiltonian (53) then describes a smectic
phonon and reduces to (48) at low energies, where the per-
pendicular stiffness of (∇⊥u)2 vanishes, consistent with our
discussion of FF superfluid. As we will see, for a general
N , the soft smectic elasticity, enforced by the underlying
spatial O(d ) rotational symmetry, manifests as a vanishing
perpendicular stiffness, (m̂ · ∇⊥n̂)2, corresponding to inhomo-
geneous spin rotations in the n̂-m̂ plane.

2. N = 3

Now we consider N = 3 coplanar spin state. The spin
space is now spanned by the orthonormal triad n̂, m̂, �̂, where

�̂γ = εαβγ n̂αm̂β = 1
2εαβγ

ˆ̂Lαβ, (57)

with
ˆ̂Lαβ = n̂αm̂β − m̂α n̂β. (58)

Notably, the O(3) coplanar smectic σ -model can be ex-
pressed in terms of the following “spin connections”:

A = m̂ · ∇n̂ = iψ̂∗ · ∇ψ̂, D = �̂ · ∇ψ̂, (59)

where A and D are real and complex spatial vector fields,
respectively. To this end, we first note that an arbitrary vector
in spin space, �v, can be expanded in terms of the orthonormal
triad,

�v = (n̂ · �v)n̂ + (m̂ · �v)m̂ + (�̂ · �v)�̂,

= (ψ̂ · �v)ψ̂∗ + (ψ̂∗ · �v)ψ̂ + (�̂ · �v)�̂. (60)

This enables us to express the linear gradient term in (53) as

(∂‖m̂)2 + (∂‖n̂)2 = 2(q̂ · A)2 + 2|q̂ · D|2,
= 2(m̂ · ∂‖n̂)2 + (∂‖�̂)2, (61)

where we used

|q̂ · D|2 = |�̂ · ∂‖ψ̂ |2 = |ψ̂ · ∂‖�̂|2 = 1
2 (∂‖�̂)2. (62)
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In the above, the A (first) and D (second) terms correspond
to the elastic moduli for the along-q0 distortions of in-plane
(one) and out-of-plane (two) polarizations, respectively. An
important feature of the Goldstone-mode σ -model (53) is a
vanishing of its transverse stiffness, A2

⊥ = (m̂ · ∇⊥n̂)2, guar-
anteed by the underlying O(d ) rotational symmetry of (9),
corresponding to rotation of q. The latter demands a vanishing
of the curvature in the transverse component to q0 in the
thermodynamic potential. The vanished stiffness then follows
from the equivalence of the infinitesimal shift q → q + δq⊥
and the following transformation:

A → A − δq⊥ + O
(
δq2

⊥
)
. (63)

In contrast, the vanishing of the transverse stiffness for
the out-of-plane polarization �̂, i.e., a modulus for |D⊥|2 ∼
(∇⊥�̂)2 in (53), is nonuniversal, unconstrained by any
symmetry, and is accidental due to a nongeneric (fine-tuned)
nature of (9) for vanishing λ2,3.

We next derive and analyze a generic coplanar O(3)
smectic σ -model by including nonzero λ2, λ3. In particular,
we show that λ3 introduces a nonzero stiffness for (∇⊥�̂)2,
controlling the out-of-n̂-m̂-plane fluctuations, leading to our
universal Goldstone-mode σ -model of the helical state. This
stiffness is also necessary to stabilize model (53), which is
otherwise unstable against thermal fluctuations in any dimen-
sion (see Sec. III). A complementary view on the importance
of the λ3 coupling and the presence of (∂⊥�̂)2 in the Goldstone
mode theory is given in Appendix C.

To this end, we examine the contribution of nonzero λ3 in
H (9) to the σ -model in the coplanar helical state. Relegating
the details to Appendixes A and B, using the helical order
parameter (49), dropping the oscillatory and constant contri-
butions, we find

(∂i �S · ∂ j �S)2 = S4
0

4
Re[(∂i − iqi )ψ̂

∗ · (∂ j + iq j )ψ̂]2

+ S4
0

8
|∂iψ̂ · ∂ jψ̂ |2

= S4
0

4
Re[D∗

i D j + AiAj − qiA j − q jAi + qiq j]
2

+ S4
0

8
|DiDj |2

≈ S4
0

4
[2|q · D|2 + 4(q · A)2 + 2q2A2

− 4q2(q · A) + q4], (64)

where in the last line we only kept terms up to quadratic order
in A and D. At the minimum of the thermodynamic potential,
we remove the linear in A term with the rotationally invariant
strain tensor

|∇ψ̂ + iqψ̂ |2 = |D|2 + (A − q)2, (65)

which ensures the stability of the coplanar smectic state. This
then leads to the correction

S4
0[|q · D|2 − q2|D|2 + 4(q · A)2], (66)

with the sought-after stabilizing stiffness

|D⊥|2 = |D|2 − |q̂ · D|2,
= 1

2 (∇⊥�̂)2. (67)

Thus, by including the crucially stabilizing λ3 contribution
to (53), we now have obtained the generic form of the O(3)
smectic σ -model of the helical state, as advertised in the
Results subsection of the Introduction, Sec. I C,

H = J̄|∇2ψ̂ + 2iq∂‖ψ̂ |2 + κ‖(∂‖�̂)2 + κ⊥(∇⊥�̂)2, (68)

where we included the κ‖ stiffness, that, as we have seen
above, is already contained in the J̄ contribution in (61) and
can also be generated by other higher-order (in S0) terms.
Neglecting higher-derivative contributions in J̄ of (68), an
equivalent, smectic form of the O(3) σ -model, expressed in
terms of the “gauge” fields, is given by

H = B
(
q0Â‖ − 1

2 Â2)2 + K (∇ · Â)2

+ κ‖(∂‖�̂)2 + κ⊥(∇⊥�̂)2, (69)

where the dimensionless field (not unit vector, Â2 �= 1)

Â ≡ A/q0 = m̂ · ∇n̂/q0

≈ ∇u, (70)

leads to a conventional smectic form (33) for small-angle
fluctuations. In the above, the leading contributions to the
zeroth-order parameters are

K, κ‖ ∼ JS2
0q2

0, B ∼ JS2
0q4

0, κ⊥ ∼ −λ3S4
0q2

0, (71)

constrained to be κ⊥ > 0 (λ3 < 0) for stability of the coplanar
helical state.

We close this helical state derivation by noting that the λ2

term in (9) gives a contribution proportional to

(�S × ∇�S)2 = S2
0 (∇�S)2, (72)

where we used (�S · ∇�S)2 = 0 and S2 = S2
0 . Since it is pro-

portional to an already present (∇�S)2 term in (9), it simply
shifts the minimum q0 while leaving the form of the resulting
Goldstone mode theory (53) unchanged.

Finally, we observe that, in contrast to the stabilizing tensor
quartic operator in (64), a scalar quartic term, (∇�S)4, does
not introduce any new physics into the O(3) helical σ -model,
(68),(69). To see this, observe that in the helical state,

(∇�S)4 = S4
0

4
|∇ψ̂ + iqψ̂ |4 + S4

0

8
|∇ψ̂ · ∇ψ̂ |2

≈ S4
0q2

4
[2|∇ψ̂ + iqψ̂ |2 + 4|ψ̂∗ · ∂‖ψ̂ |2 − q2], (73)

where in the second line we only kept the terms up to quadratic
order in ∇. Thus, this contribution simply shifts the condition
on q that eliminates the first term in (51), only leaving the
following correction to the smectic phonon elasticity:

|ψ̂∗ · ∂‖ψ̂ |2 = (m̂ · ∂‖n̂)2. (74)

Thus, the only consequence of this scalar quartic contribution
(73) is to modify above zeroth-order (nongeneric) expressions
for q, B, and K , and in particular it shows that the elastic
constants B and K are independent.
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3. N > 3

For N > 3, the spin space is spanned by N orthonormal
vectors n̂, m̂, and {�̂α} (α = 1, . . . , N − 2). The (quadratic in
A and D) correction by the λ3 term, which for N = 3 is given
by (66), becomes

S4
0[|q · Dα|2 − q2|Dα|2 + 4(q · A)2], (75)

where Dα = �̂α · ∇ψ̂ . It now gives the following stabilizing
out-of-plane contribution to the O(N > 3) σ -model,

|Dα
⊥|2 = |�̂α · ∇⊥ψ̂ |2 = |∇⊥ψ̂ |2 − (iψ̂∗ · ∇⊥ψ̂ )2

= 1
4 (∇⊥ ˆ̂L)2, (76)

where in the last line we expressed it in terms of ˆ̂L, the
components of out-of-plane fluctuations defined in (58), using
the identity

1
2 (∇ ˆ̂Lαβ )2 = ∇(n̂αm̂β )∇(n̂αm̂β ) − ∇(n̂αm̂β )∇(n̂βm̂α )

= (∇n̂)2 + (∇m̂)2 − 2(m̂ · ∇n̂)2

= 2|∇ψ̂ |2 − 2(iψ̂∗ · ∇ψ̂ )2. (77)

Thus, as advertised in the Results subsection of the Intro-
duction, Sec. I C, the O(N ) smectic σ -model is given by

H = J̄|∇2ψ̂ + 2iq∂‖ψ̂ |2 + κ‖(∂‖ ˆ̂L)2 + κ⊥(∇⊥ ˆ̂L)2. (78)

When higher-order gradients are neglected, it reduces to a
form resembling a conventional smectic,

H = B
(
q0Â‖ − 1

2 Â2
)2 + K (∇ · Â)2

+ κ‖(∂‖ ˆ̂L)2 + κ⊥(∇⊥ ˆ̂L)2. (79)

D. O(N) collinear smectic

We next derive the Goldstone-mode smectic σ -model for
the collinear state for a general N . As discussed in Sec. II, the
order parameter of the collinear state can be parametrized as

�S = S0Re[ψ̂ (x)eiq·x], (80)

with

ψ̂ (x) = n̂(x)eiqu(x), (81)

described by a unit “polarization” vector, n̂(x), and a phonon
mode, u(x), with a parametrization redundancy that requires
identification of n̂ with −n̂, which is already accounted for
by qu = π . There are thus N Goldstone modes living on
the SN−1 × S1/Z2 compact manifold. We also note that (in
contrast to the coplanar state) the magnitude of such a linearly
polarized spin-density-wave state oscillates in space, and thus
(81) corresponds to a coarse-grained spin-density order pa-
rameter.

We can now derive the O(N ) collinear smectic σ -model
using the representation (80) inside the J piece of H in (9).
Relegating technical details to Appendix A, we obtain

HJ = a
(
q2 − q̄2

0

)
[uqq + (∇n̂)2/2q2] + Bu2

qq + K (∇2u)2

+ κ‖(∂‖n̂ + ∇u · ∇n̂)2 + α(∇2n̂)2 + c(∇n̂)2uqq, (82)

where ∂‖ ≡ ∂q = q̂ · ∇, the familiar nonlinear smectic strain
uqq is given by (30), and the zeroth-order elastic moduli are

α = JS2
0

4
, a = 4K = κ‖ = c = JS2

0q2, B = JS2
0q4.

(83)

We note that, as expected on general O(d ) symmetry grounds,
at the energy minimum |q| ≡ q0 = q̄0, the phonon mode is
“soft” (i.e., controlled by higher derivative elasticity), with a
vanishing transverse-to-q stiffness, (∇⊥u)2. This is enforced
by the underlying O(d ) rotational invariance of H in (9)
(including fluctuations), which corresponds to an arbitrary
rotation of the spontaneously chosen q. This then ensures the
vanishing of the transverse-to-q curvature in the thermody-
namics potential at the minimum q0, with the zero stiffness
that then follows from the equivalence of the following trans-
formations:

q → q + δq⊥ ⇔ qu → qu + δq⊥ · x, (84)

where q · δq⊥ = 0, coming from the definition of the order
parameter in (80).

In contrast, the vanishing of the transverse stiffness of the
Goldstone mode (∇⊥n̂)2 is a purely accidental property of
the J term in (9), and is generically expected to be nonzero
for the full H. Indeed, by including the λ2 term (with details
given in Appendix A), we find

(�S × ∇�S)2 = S2(∇�S)2 − (�S · ∇�S)2

= 3S4
0

8
(∇n̂)2, (85)

which gives a nonzero transverse κ⊥ stiffness for n̂ gradient
deformations. With this, and choosing q = q0ẑ, we finally ob-
tain the O(N ) collinear smectic σ -model for its N Goldstone
modes,

H = Bu2
zz + K (∇2u)2 + c(∇n̂)2uzz

+ κ‖(∂zn̂ + ∇u · ∇n̂)2 + κ⊥(∇⊥n̂)2, (86)

where the zeroth-order stiffnesses are given by

K, κ‖ ∼ JS2
0q2

0, B ∼ JS2
0q4

0, κ⊥ ∼ λ2S4
0 . (87)

Neglecting symmetry-allowed nonlinearities in u and n̂,

(∇n̂)2uzz, (∇u · ∇n̂)∂zn̂, (∇u · ∇n̂)2, (88)

leads to two decoupled sectors of a conventional scalar smec-
tic in u and the standard O(N ) σ -model in n̂ (4). We leave
the open question of the effects of these couplings to a fu-
ture study. Other terms like λ3 also give a corrections to κ⊥
(proportional to JS4

0q2
0), but they do not change the univer-

sal long-wavelength form (86). As expected, for N = 2, the
Hamiltonian density (86) reduces to the smectic σ -model of
the LO superfluid, (45), with the superfluid phase representing
the single Euler angle of n̂, corresponding to the complex
superfluid order parameter.

III. THERMAL FLUCTUATIONS IN THE O(N = 3)
SMECTIC STATES

Having established the corresponding smectic coplanar
and collinear σ -models, we next analyze the thermodynamic
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properties of these smectic spin-density wave states, with a
focus on the physical case of N = 3. We limit our analysis
to classical statistical mechanics at the Gaussian fixed point,
with the Goldstone-modes partition function given by

Z =
∫

Dψ̂Dψ̂∗e−β
∫

dd xH[ψ̂,ψ̂∗], (89)

where β = T −1 (kB = 1 throughout) and ψ̂ given by (50) and
(81) for the coplanar and collinear states, respectively.

Namely, below we introduce the angular fields represen-
tation of the Goldstone modes in the Hamiltonian density
H[ψ̂, ψ̂∗] for these two O(3) smectic states. Then, we ex-
amine their stability to small thermal fluctuations within a
Gaussian approximation, followed by a discussion of possible
consequences of the nonlinearities and symmetry-breaking
perturbations. We will then calculate Goldstone modes’ cor-
relation functions that control low-energy, long-wavelength
scattering and thermodynamics.

A. Angular representation of Goldstone modes

1. Collinear state

As discussed in the previous sections, the N = 3 collinear
smectic state (80) is characterized by a smectic phonon u and
a unit spin vector n̂. The latter can be parametrized by

n̂(x) = cos θ cos φê1 + cos θ sin φê2 + sin θ ê3, (90)

where we chose an orthonormal frame ê1, ê2, ê3 = ê1 × ê2,
such that for small fluctuation of these angular Goldstone
modes, θ (x) and φ(x),

n̂(x) ≈ ê1 + φê2 + θ ê3. (91)

Neglecting higher-order gradients, the Hamiltonian density
(86) is then given by

H = Bu2
qq + K (∇2u)2 + κ‖(∂‖θ )2 + κ‖ cos2 θ (∂‖φ)2

+ κ⊥(∇⊥θ )2 + κ⊥ cos2 θ (∇⊥φ)2. (92)

2. Coplanar state

The fluctuations of the N = 3 coplanar state (49) are
parametrized by an orthonormal triad, n̂, m̂, �̂ = n̂ × m̂. In
terms of the complex vector field ψ̂ = n̂ + im̂, this can be
parametrized by

�̂ = cos θ cos φê1 + cos θ sin φê2 + sin θ ê3,

ψ̂ = [(sin θ cos φ − i sin φ)ê1 + (sin θ sin φ + i cos φ)ê2

− cos θ ê3]ie−iχ/
√

2, (93)

where θ and φ are Euler angles that parametrize the orien-
tation of �̂ and χ the rotation around �̂. In the small-angle
approximation, this gives

�̂ ≈ ê1 + φê2 + θ ê3,

n̂ ≈ φê1 − ê2 − χ ê3,

m̂ ≈ θ ê1 + χ ê2 − ê3. (94)

The coplanar Hamiltonian density (69) is then given by the
same form of the collinear state Hamiltonian (92), with the

gradient of the smectic phonon replaced by

∇u → Â = 1

q0
sin θ∇φ + ∇u, (95)

where the third Euler angle χ is associated with the smectic
phonon by χ = q0u. We note that although the coplanar and
collinear smectic states are quite different, their low-energy
excitations only differ by the nonlinearities in Â.

3. Harmonic theory of O(3) smectic

As discussed above, the Goldstone mode models for the
N = 3 collinear and coplanar states arise from the sponta-
neous periodic ordering of spins at wave vector q0, which
leads to an order parameter that breaks the O(N = 3)-spin and
O(d = 3)-spatial symmetries. Because the two states only dif-
fer from each other by the nonlinearities (95), at the harmonic
level the collinear and coplanar states are described by the
same low-energy Hamiltonian density,

H0 = H0,sm[u] + H0,spin[θ, φ], (96)

where

H0,sm[u] = B(∂‖u)2 + K (∇2u)2,

H0,spin[θ, φ] =
∑

ϕ=θ,φ

[κ‖(∂‖ϕ)2 + κ⊥(∇⊥ϕ)2], (97)

with the zeroth-order elastic moduli given by (71) and (87)
for the coplanar and collinear states, respectively. Thus, the
harmonic model (96) consists of decoupled smectic and two
XY Goldstone modes.

At higher energies, however, the collinear and coplanar
states acquire distinct corrections to (96), which can become
particularly important as near the melting transition where the
ratio of the XY moduli, κ⊥/κ‖ ∼ S2

0 , vanishes as S0 → 0. For
the collinear state, the higher-order term, α(∇2n̂)2, in (82)
leads to the spin Goldstone mode Hamiltonian

Hcollinear
0,spin [θ, φ] =

∑
ϕ=θ,φ

[κ‖(∂‖φ)2 + κ⊥(∇⊥φ)2]

+ α(∇2θ )2 + α(∇2φ)2 (98)

with α = JS2
0 . For the coplanar state, the leading correction in

(53) instead gives

Hcoplanar
0,spin [θ, φ] = J̄ (∇2θ − 2q0∂‖φ)2 + J̄ (∇2φ + 2q0∂‖θ )2

+ κ⊥(∇⊥θ )2 + κ⊥(∇⊥φ)2 (99)

with J̄ = JS2
0/4 and κ‖ = 4J̄q2

0.

4. Symmetry-breaking perturbations

Before analyzing thermal fluctuations in these O(3) smec-
tic states, we note that in the solid-state realizations there are
two types of natural symmetry-breaking perturbations on the
Hamiltonian (9), as we now discuss.

First, in the presence of the underlying lattice that breaks
O(d = 3)-spatial rotational symmetry but preserves O(N =
3)-spin symmetry, the ordering wave vector q0 will get ener-
getically pinned to high-symmetry crystalline axes, either in a
microscopic Hamiltonian by higher-order exchange couplings
or via quantum and/or thermal order-by-disorder phenomena
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[33,35]. This in turn introduces a transverse (to q0) stiffness,
B⊥, to the spin-density pseudophonon mode u in the smectic
sector, leading to H0,sm → Hcrystal

0,sm , where

Hcrystal
0,sm = B(∂‖u)2 + B⊥(∂⊥u)2 + K (∇2u)2,

≈ B(∂‖u)2 + B⊥(∂⊥u)2. (100)

Secondly, the ever-present SOC locks the orientation of
spin to q, breaking the independent O(N = 3) × O(d = 3)
symmetry down to its diagonal subgroup, with the reduced
O(3) symmetry further broken by the accompanying crys-
talline anisotropies. In the case of the coplanar state, this will
gap out the spin sector [H0,spin in (96)]. For q0 that is spatially
incommensurate with the lattice, this will then reduce Gold-
stone modes down to a single conventional XY phonon of a
standard discrete spin-density wave.

Nevertheless, in the case of weak symmetry-breaking per-
turbations, based on a number of experimental realizations
[37–41,50–53], we expect an extended range of length scales
over which our O(d ) × O(N ) description will apply, but we
expect it to asymptotically crossover to weakly fluctuating
behavior of conventional spin-density waves.

B. Stability

As found in the previous subsection, at a quadratic level
the low-energy Hamiltonian densities are identical for the
collinear and coplanar spin-smectic states, given by (96), with
decoupled Goldstone modes u, θ , and φ. We first analyze
thermal fluctuations at this harmonic order, and then discuss
the effects of nonlinearities.

1. Gaussian fluctuations

The stability of the O(3) smectic states is characterized by
their local Goldstone-mode thermal root-mean-squared (rms)
fluctuations, 〈u2〉, 〈θ2〉, 〈φ2〉. The divergence of these quanti-
ties with system size in the thermodynamic limit is a signature
of the instability of the spatial (for 〈u2〉) and spin (for 〈θ2〉 and
〈φ2〉) orders.

We first analyze the stability of the spatially uniform com-
ponent of the magnetic order, characterized by (taking κ =
κ‖ = κ⊥ for simplicity)

〈θ2〉 = 〈φ2〉 = T

2κ

∫ a−1

L−1

dqd

(2π )d

1

q2

∼ T

κ
×

⎧⎪⎪⎨
⎪⎪⎩

L2−d , d < 2,

ln(L/a), d = 2,

a2−d , d > 2,

(101)

where L is the system size, a is the UV cutoff length scale, T is
the temperature, and we neglected subordinate contributions
in a/L � 1. Thus, the spin orientational order is unstable
for d � 2. This is a manifestation in the uniform spin sector
of our system of the Hohenberg-Mermin-Wagner theorems
[54,55], where in a classical field theory at nonzero tem-
perature, controlled by a Gaussian fixed point, a continuous
symmetry can only be spontaneously broken for d > 2. As a
side note, for κ⊥ → 0, the coplanar state [with Hamiltonian
(99) that includes higher-order terms] exhibits fluctuations

〈θ〉2 = 〈φ2〉 ∼ ∫
q(qz − q2)−2 ∼ L that diverge with system

size. Thus, the coplanar state is unstable in any dimensions
without the stabilizing modulus κ⊥, which, as we discussed
above, arose from including a nonzero λ3 modulus.

The stability of the translational symmetry breaking is
characterized by rms fluctuations of the smecticlike phonon,
given by

〈u2〉 = T

2

∫ a−1
⊥

L−1
⊥

dq‖dqd−1
⊥

(2π )d

1

Bq2
‖ + Kq4

⊥

= T

4
√

BK

∫ a−1
⊥

L−1
⊥

dqd−1
⊥

(2π )d−1

1

q2
⊥

∼ T√
BK

×

⎧⎪⎨
⎪⎩

L3−d
⊥ , d < 3,

ln(L⊥/a⊥), d = 3,

a3−d
⊥ , d > 3,

(102)

where L⊥ and a⊥ are, respectively, the system size and UV
lattice cutoff, transverse to q, and again we only kept leading
contributions in L⊥ � a⊥. The lower-critical dimension of
the smectic (density-wave) order is thus given by dlc = 3,
where the system exhibits logarithmically diverging thermal
fluctuations [11,56].

Thus, at the Gaussian level, we expect that the O(3)
smecticlike helical states will exhibit long-range magnetic
and quasi-long-range translational orders in three dimen-
sions. However, as emphasized in Sec. III A 4, in crystalline
materials (but not in atomic gases), the presence of lat-
tice anisotropies and SOC introduces stabilizing elastic
moduli. These moduli give rise to conventional Goldstone
modes at low energies, characterized by dlc = 2 and thus
leading to long-range order in three dimensions, as in con-
ventional XY and Heisenberg models. However, for weak
symmetry-breaking perturbations, we expect strong smecti-
clike fluctuations in three dimensions extending over long
crossover length scales.

2. Nonlinearities

As discussed above, the collinear and coplanar states are
both characterized by an O(N = 3) unit vector and a smecti-
clike phonon, but with different symmetry-allowed nonlinear
coupling terms. Below, we will first discuss the two sectors of
Goldstone modes that have been studied individually over the
past few decades, and then we will comment on the nonlinear
couplings between them.

The O(N ) σ -model was first studied by Polyakov [6],
Nelson, and Pelcovits [7] using a perturbative renormaliza-
tion group (RG) in d = 2 + ε, which shows that for N > 2
the ferromagnet-paramagnet (FM-PM) transition is described
by a critical fixed point at Tc ∼ ε/(N − 2), as illustrated in
Fig. 4(a). Consequently, the ordered state is unstable in 2D
(Tc = 0) at any nonzero temperatures, where the correlation
length of the order parameter is finite. This is in contrast to the
N = 2 XY model that has vanished nonlinearity, and at low
temperatures exhibits a quasi-long-range-ordered Kosterlitz-
Thouless phase.

The smectic Goldstone mode theory was studied by
Grinstein and Pelcovits [12,13] using RG for d = 3, by
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FIG. 4. Schematic renormalization group (RG) flows for a clas-
sical (a) ferromagnetic state in the O(N > 2) model and for (b) the
smectic state in various dimensions. (a) The dimensionless cou-
pling g ∼ T/κ . The FM-PM phase transition is controlled by the
repulsive critical point at g = gc ∼ ε/(N − 2). For d > 2, there is
a stable ferromagnetic state at low temperatures, while for d = 2,
gc = 0, signifying the instability of the classical ferromagnetic state,
destroyed by thermal fluctuations. (b) The dimensionless coupling
g ∼ T

√
B/K3. At low temperatures g < gc, the smectic state is char-

acterized by a nontrivial infrared attractive fixed point at g = g∗ ∼ ε,
but it becomes unstable below its lower-critical dimension dlc = 3.

Golubović and Wang [57] in d = 2, and by Radzihovsky
in d = 3 − ε [30]. Remarkably, for d = 3 − ε, the smectic
ordered state is described by an attractive fixed point at
g∗ ∼ ε—a stable critical phase [see Fig. 4(b)] [58]. However,
we note that these analyses all consider pure elastic models
that neglect topological defects—dislocations in the layered
structure, which undoubtedly unbind in 2D at any nonzero
temperatures [59]. Thus, these critical phase correlations only
extend out to lengths corresponding to distance between topo-
logical defects, beyond which the state crosses over to a
translationally disordered nematic.

Now we consider the coupling between the two sectors.
For the collinear state, the leading-order couplings in (88) in
angular representation are given by

(∇⊥n̂)2(∂‖u), (∂‖n̂) · (∇⊥n̂ · ∇⊥u), (∇⊥n̂)2(∇⊥u)2.

(103)

At d = 3, the only marginal correction to the elastic moduli
is 〈(∇⊥u)2(∇⊥u)2〉 and the remaining are irrelevant. There-
fore, all coupling terms are irrelevant and at low energies
the two sectors are decoupled, described by the RG flows in
Fig. 4, all of which are asymptotically identical to those in
Refs. [12,13,30]. A similar argument applies to the coplanar
state. However, as discussed in Eq. (95), the Goldstone-
mode Hamiltonian is distinct from the collinear state by a
replacement

q0∇u → sin θ∇φ + q0∇u. (104)

As a result, smectic phonon u and the spin field �̂ are in-
trinsically coupled in the low-energy Hamiltonian (69). This

implies that the spin field �̂ can acquire a universal power-law
correction to its elastic moduli, which are distinct from the n̂
in collinear state. We leave the resulting RG analysis to future
studies.

C. Two-point correlation function of Goldstone modes

Next we calculate the two-point correlation functions of the
Goldstone modes. This not only provides spatially resolved
properties of the system but also serves as the first step to-
wards a calculation of the structure factor of the following
subsection. We note that as discussed above, in principle all
Goldstone modes are coupled. However, because they are sub-
dominant, below we neglect the coupling between the smectic
(χ ) and magnetic (θ and φ) sectors, a valid approximation at
low energies.

1. Smectic Goldstone mode

Both the collinear and coplanar states are characterized by
a smectic phonon, whose correlation function is given by the
following logarithmic Caillé form [56]:

Csm(x) ≡ 〈[u(x) − u(0)]2〉 = T
∫ 1

a dq‖dq2
⊥

(2π )3

1 − eiq·x

Bq2
‖ + Kq4

≈ T
∫ 1

a dq‖dq2
⊥

(2π )3

1 − eiq·x

Bq2
‖ + Kq4

⊥

= T

4π
√

BK

[
ln

(x⊥
a

)
− 1

2
Ei

( −x2
⊥

4λ|x‖|
)]

≈
⎧⎨
⎩

T
4π

√
BK

ln
( x⊥

a

)
, x⊥ � √

λ|x‖|,
T

8π
√

BK
ln

( λ|x‖|
a2

)
, x⊥ � √

λ|x‖|,
(105)

which exhibits an anisotropic correlation at long scales, with
the coefficients in front of the ln functions differing by a
factor 2 in the perpendicular and parallel directions. In the
above, Ei(x) is the exponential-integral function. λ = √

K/B
is the penetration length that characterizes the anisotropy of
the smectic state.

In the presence of weak lattice anisotropy, where the spatial
rotational symmetry is explicitly broken, the smectic mode is
perturbed by a stabilizing modulus, B⊥ � B, with the Hamil-
tonian given by (100). This deforms the correlation function
to be of the following form:

Ccrystal
sm (x) = T

∫
q

1 − eiq·x

Bq2
‖ + B⊥q2

⊥ + Kq4
. (106)

As illustrated in Fig. 5, this introduces a crossover scale λ⊥ =√
K/B⊥ in 3D separating the logarithmic (x‖ < λ2

⊥/λ, x⊥ <

λ⊥) and long-range-ordered (x‖ > λ2
⊥/λ, x⊥ > λ⊥) regimes.

2. Spin Goldstone modes

For the spin sector, the Goldstone modes ϕ = θ, φ at low
energies are described by the XY model form, with their
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FIG. 5. Linear-log plot of 3D two-point correlation function of a
smectic phonon with λ = √

K/B = a along (a) x‖ and (b) x⊥. The
black-solid and blue-dashed curves correspond to the cases λ⊥ =√

K/B⊥ = ∞ and 5λ, respectively. The crossover scales from the
smectic to XY fluctuations are given by λ⊥ = 5λ and λ2

⊥/λ = 25λ

in the perpendicular and parallel directions, respectively. Inset: same
plot in linear scales.

correlation function given by

Cxy,ϕ (x) = 〈[ϕ(x) − ϕ(0)]2〉

= T
∫

dq‖dq2
⊥

(2π )3

1 − eiq·x

κ‖q2
‖ + κ⊥q2

⊥

= T

2π2κ
1/2
‖ κ⊥

∫ 1/x̃(a)

0
d p

(
1 − sin(px̃)

px̃

)

≈ T

2π2κ
1/2
‖ κ⊥

(
1

x̃(a)
− 1

x̃(x)

)
, (107)

where

x̃(x) =
√

x2
‖

κ‖
+ x2

⊥
κ⊥

, x̃(a) = a
√

κ−1
‖ + κ−1

⊥ . (108)

The correlator consists of constant and power-law parts,
which, as discussed below, gives rise to two power-law con-
tributions to the peaks of the static structure factor.

As discussed in Sec. III A 4, in the presence of SOC that
locks the spins perpendicular to q0, the magnetic Goldstone
modes can be pinned with a gap k2

p, leading to

Csoc
xy (x) = T

∫
dq‖dq2

⊥
(2π )3

1 − eiq·x

κ‖q2
‖ + κ⊥q2

⊥ + k2
p

= T

2π2κ
1/2
‖ κ⊥

∫ 1
x̃(a)

0

d p

1 + k2
p/p2

(
1 − sin(px̃)

px̃

)

≈ T

2π2κ
1/2
‖ κ⊥

(
e−kpx̃(a)

x̃(a)
− e−kpx̃(x)

x̃(x)

)
, (109)

where the gap introduces crossover length scales ξ soc
‖/⊥ =√

κ‖/⊥/kp for the parallel/perpendicular directions, beyond
which the spin fluctuations are suppressed.

D. Structure factor

The static spin structure factor is an important experimental
characterization of magnetic ordering. Theoretically, this is
proportional to the equal-time spin-spin correlation function,

S (q) = 1

V

∫
x,x′

eiq·(x−x′ )〈�S(x) · �S(x′)〉, (110)

where V is the volume of the system. Below, we calculate the
structure factor for the soft spin-density waves using the Gaus-
sian theory (96), focusing on its asymptotic long-wavelength
behaviors and the effects of symmetry-breaking perturbations
that are relevant in real materials. As detailed in Appendix D,
at the Gaussian level, the asymptotic behavior of the structure
factor for the collinear and coplanar states takes the same
form:

S (q) ∼
∫

x
[ei(q−q0 )·x + ei(q+q0 )·x]TrD(x)e− 1

2 q2
0Csm(x)

= P0(q) + P(q − q0) + P(q + q0) (111)

with

P(k) = Psm(k) + Pxy(k), (112)

where we retained only the fundamental ±q0 quasi-Bragg
peaks, with real spin-smectic also displaying higher har-
monics ±nq0 (n = 2, 3, . . . ). The matrix D(x) above is
the magnetic sector correlators defined and calculated in
Appendix D, with the trace given by

TrD(x) =
{

e− 1
2 Cxy,θ (x)− 1

2 Cxy,φ (x) (collinear),
e− 1

4 Cxy,θ (x)− 1
4 Cxy,φ (x) (coplanar).

(113)

The key characteristic feature of S (q) is the 3D quasi-Bragg
peak around the ordering wave vector q0. In the above, P0

is the contributions from short-range correlations that depend
smoothly on q, Psm(k) is the leading-order singular part due to
the quasi-long-range correlation of the smectic phonon, given
by (a = 1)

Psm(k) ∼ D0

{ 1
|k⊥|4−2η for k‖ = 0,

1
|k‖|2−η for k⊥ = 0,

(114)
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FIG. 6. Schematic plot of the ideal double-power-law peak
P(k) = Psm(k) + Pxy(k) in the structure factor along k‖. The
combined effects of smectic (red-dashed) and XY (blue-dotted) fluc-
tuations give rise to the double-power-law peak (black-solid).

with D0 = TrD(|x| → ∞) the Debye-Waller factor, and
Pxy(k) is a subleading singular contribution coming from the
power-law dependence in TrD(x), (113), which (together with
the smectic correlation) is given by

Pxy(k) ∼ T

κ

⎧⎨
⎩

1

|k⊥|2(1−η)+ η
1+η

for k‖ = 0,

1

|k‖|1−η+ 1
1+2η

for k⊥ = 0,
(115)

where for simplicity we chose κ = κ‖ = κ⊥, and the nonuni-
versal temperature-dependent exponent is given by

η = q2
0T

16π
√

BK
. (116)

As illustrated in Fig. 6, the structure factor exhibits
anisotropic “double-power-law” peaks at q = ±q0 with ex-
ponents 4 − 2η and 2 − η perpendicular and parallel to the
ordering wave vector q0, respectively. Away from the peaks,
these cross over to 2(1 − η) + η

1+η
and 1 − η + 1

1+2η
, as dom-

inated by the subleading (but broader) contributions of Pxy.
The magnitudes of the power-law functions Psm and Pxy are
nonuniversal, depending on the detailed Goldstone mode dis-
persions and temperature. In real systems, it may be hard to
distinguish the power-law tail of Pxy from the nonuniversal
contribution P0. However, the former may still manifest at
high temperatures or small stiffness κ [see Eq. (115)], not only
due to the enhanced magnitude of Pxy, but also the suppression
of Psm by the Debye-Waller factor.

In real crystalline materials, the spin-density waves gen-
erally consist of higher harmonics that will also give rise to
double-power-law peaks at q = ±nq0 with modified expo-
nents η → ηn = n2η; see Eq. (6) and Fig. 2. Furthermore, the
spin-density waves tend to form domains with their wave vec-
tors pinned by the underlying lattice. In this case, the structure
factor is given by the average of those domain contributions,
leading to peaks located on the high symmetry axes of the
Brillouin zone. As illustrated in Fig. 7, this also leads to
finite-size effects that broaden the power-law contributions
Psm and Pxy, with the leading singular part Psm by widths
1/ξ cr and (a0ξ

cr)−1/2 (ξ cr is the averaged domain size, a0 is
the longest UV scale, within which the smectic dispersion

FIG. 7. Schematic plot of the asymptotic behavior of the power-
law contribution in the structure factor, Psm(k) or Pxy(k), along k‖.
The red-dashed line shows the ideal power-law behavior of Psm/xy

with an exponent 1.5. The blue-dotted curve shows the peak per-
turbed by an infrared cutoff ξ (chosen to be 10 000a, modeled by
an exponential cutoff) due to a finite linear domain size of the system
(ξ cr, for Psm or Pxy) or SOC effects (ξ soc, only for Pxy). The black-solid
curve shows the power-law peak Psm perturbed by (in addition to the
finite-size cutoff) the lattice anisotropy effects that lead to a crossover
scale (chosen to be ξ/2) to the XY fluctuations.

starts to deviate) in the parallel and perpendicular directions,
respectively.

As shown in Eq. (109), the SOC also gives rise to sim-
ilar effects on Pxy by introducing a gap in the magnetic
Goldstone-mode correlators, which terminates the power-law
dependence around ξ soc

‖/⊥ ≈ √
κ‖/⊥/kp. For the cases that spins

are locked perpendicular to the q0, the collinear and coplanar
states have one and two magnetic Goldstone modes gapped,
respectively. Accordingly, for the collinear state the asymp-
totic behaviors of Pxy remain the same, while for the coplanar
state Pxy is broadened by the infrared cutoff introduced by the
gap.

In the presence of lattice anisotropy that pins the direction
of q0, the smectic correlator becomes long-range-ordered; see
Fig. 5. This sharpens the power-law quasi-Bragg peak of Psm

to a δ-function Bragg peak, while it modifies the exponents of
Pxy to be 2. As illustrated in Fig. 7, together with the finite-
size effects, this leads to an enhanced peak strength, within
the crossover momentum scale (see the black-solid and blue-
dotted curves).

Finally, we expect that near a thermal phase transition, the
ratio of the spin stiffness κ⊥/κ‖ will be small, which can lead
to a sizable nonsingular contribution P0(q) due to strong spin-
sector fluctuations, that depend on the “subleading” moduli
in (98) and (99) for the collinear and coplanar states, respec-
tively. For the coplanar states, there are strong fluctuations on
the spiral surface, which may lead to anisotropic arc-shaped
peaks, observed in a classical J1-J2-J3 Heisenberg model in
Ref. [60].

IV. GINZBURG-LANDAU MODEL

In Sec. II we constructed the spin-density functional
designed to give condensation into a spin-smectic state.
However, such a functional is unable to capture the nature
of a continuous phase transition as its disordered state is
an isotropic structureless fluid. Here, we instead construct
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a generalized Ginzburg-Landau [O(N ) generalization of de
Gennes’ scalar N = 1 model for conventional smectic liquid
crystal [11]] model that gives the O(N ) smectic as its ordered
state and has an additional virtue of describing the continuous
transition from the orientationally ordered to the O(N ) smec-
tic ordered states.

To this end, we propose the following free-energy density
that incorporates the orientation order that is characterized by
the wave vector q̂,

HGL = r| �ψ |2 + v1| �ψ |4 + v2

2
| �ψ · �ψ |2 + J‖

2
|(i∂‖ − q0δN‖) �ψ |2

+ J⊥
2

|(i∇⊥ − q0δN⊥) �ψ |2 + Ks(∇ · δN)2

+ Kt (q̂ · ∇ × δN)2 + Kb(q̂ × ∇ × δN)2. (117)

In the above,

δN(x) = N(x) − q̂, N · N = 1, (118)

are the orientational Goldstone mode fluctuations characteriz-
ing the “nematic” phase from which the spin-smectic emerges.
As for conventional nematics, they are characterized by the
standard Frank-Oseen free energy with the splay (Ks), twist
(Kt ), and bend (Kb) elastic moduli. The complex vector field,
�ψ (x) = �n(x) + i �m(x), is the slowly varying order parameter

of spin-smectic in (10) that characterizes the strength of spin
order (note that �n, �m are not unit vectors, with their ampli-
tude growing in the usual Landau way below the transition).
As spin-smectic emerges from an anisotropic, orientationally
ordered nematic state, the stiffness of the order parameter is
anisotropic, J‖ �= J⊥.

For clarity of presentation, in the following discussion we
set Kt = Kb = Ktb, with the model then simplifying to

HGL = r| �ψ |2 + v1| �ψ |4 + v2

2
| �ψ · �ψ |2

+ J‖
2

|(i∂‖ − q0δN‖) �ψ |2 + J⊥
2

|(i∇⊥ − q0δN⊥) �ψ |2

+ Ks(∇ · δN)2 + Ktb(∇ × δN)2, (119)

which resembles the Ginzburg-Landau model of a normal-
superconductor transition with a nonzero spin-angular mo-
mentum pairing (e.g., He3), but with an additional gauge-
invariance breaking splay stiffness replacing the Maxwell
term for the vector potential.

At high temperatures, r > 0, the complex vector field �ψ
is translationally disordered, leaving the Frank-Oseen free
energy that describes the nematiclike unidirectional order of
the parent liquid state.

At low temperatures, r < 0 (and v1 > 0), the spin-smectic
order emerges, characterized by a nonzero order parameter,

�ψ (x) = S0ψ̂, (120)

where for N = 1 or v2 < 0, the collinear state that satisfies
(18) is energetically preferred with

ψ̂ = n̂eiχ , S2
0 = −r/(2v1 + v2). (121)

Instead, for N > 1 and v2 > 0, the coplanar state that satisfies
(22) is more stable with

ψ̂ = n̂ + im̂√
2

, S2
0 = −r/2v1. (122)

The state is characterized by the coherence length,

ξ =
√

J

2|r| , (123)

which governs the spatial distortions of of the amplitude
| �ψ | = S0 and thereby the size of the so-called cybotactic
clusters near the critical point, and by the orientational “pene-
tration” length

λtb =
√

2Ktb

Jq2
0S2

0

, (124)

which is the scale that twist and bend deformation can pene-
trate through the soft spin-density wave.

Below, we show that at low temperatures this generalized
spin–de Gennes model reproduces all the properties of the
collinear and coplanar spin-smectic states, but in addition
captures the critical properties of the phase transition, whose
beyond-mean-field treatment of critical behavior is a challeng-
ing problem that we leave to future studies.

A. Collinear state

For the collinear state (121), the coupling terms in (119)
become (χ = q0u)

|(i∂i − q0δNi )ψ̂ |2 = (∂in̂)2 + q2
0(∂iu + δNi )

2, (125)

where we suspended Einstein’s summation convention (no
summation over i) and at low temperatures, deep in the
collinear spin-smectic state, the minimization of the second
term above gives [61] (δN � 1)

δN⊥ = −∇⊥u. (126)

This leads to the following low-energy Goldstone theory that
describes the collinear state:

Hcollinear
GL = J‖S2

0q2
0

2

(
∂‖u + (∇⊥u)2

2

)2

+ Ks(∇2
⊥u)2

+ J‖S2
0

2
(∂‖n̂)2 + J⊥S2

0

2
(∇⊥n̂)2, (127)

in agreement with our earlier analysis in (86) with the identi-
fication of the coefficients

J‖S2
0q2

0

2
= B, Ks = K,

J‖/⊥S2
0

2
= κ‖/⊥, (128)

which suggests a divergent anisotropy J⊥/J‖ = κ⊥/κ‖ ∼ S2
0

near the critical point, where S0 → 0. As before, deep in the
phase, here we also neglected the dislocation defects, i.e.,
∇ × ∇u = 0.
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B. Coplanar state

For the coplanar spin-smectic state (122), the coupling
terms in (119) reduce to

|(i∂i − q0δNi )ψ̂ |2

= |∂iψ̂ |2 − (iψ̂∗ · ∂iψ̂ )2 + (iψ̂∗ · ∂iψ̂ − q0δNi )
2

= 1
4 (∂i

ˆ̂L)2 + (m̂ · ∂in̂ − q0δNi )
2, (129)

where we suspended Einstein’s summation convention and
in the last line we expressed the out-of-plane fluctuations in
terms of ˆ̂Lαβ = n̂αm̂β − m̂α n̂β using (77).

In the ordered state, the minimization of the second term
above gives an emergent Higgs-like mechanism locking ori-
entational and smectic orders according to

δN⊥ = Â⊥, (130)

where the dimensionless field Â = (m̂ · ∇n̂)/q0. This then
gives the Goldstone mode Hamiltonian for the coplanar state

Hcoplanar
GL = J‖S2

0q2
0

2

(
|Â‖| − 1

2
Â2

⊥

)2

+ Ks(∇ · Â⊥)2 + Ktb(∇ × Â⊥)2

+ J‖S2
0

8
(∂‖ ˆ̂L)2 + J⊥S2

0

8
(∇⊥ ˆ̂L)2, (131)

which reduces to (79) in the absence of dislocations, ∇ ×
Â⊥ = 0, with

J‖S2
0q2

0

2
= B, Ks = K,

J‖/⊥S2
0

8
= κ‖/⊥. (132)

This again leads to a divergent anisotropy J⊥/J‖ ∼ S2
0 near the

critical point, where S0 → 0.
As noted above, in addition to reproducing the correspond-

ing spin-smectic states, the spin–de Gennes model faithfully
captures the spin-nematic-smectic phase transition that we
expect to display rich universal critical phenomenology [62],
whose study we leave for the future.

V. QUANTUM DYNAMICS

So far, all of our analysis has been confined to a classical
treatment of the spin-smectic states, valid at high temper-
atures. However, at low temperatures quantum dynamics
becomes important, and we need to generalize our model
by extending it to include dynamics and quantize it via,
e.g., a coherent spin path-integral formulation, following the
standard derivation of the conventional antiferromagnetic σ -
model with linear dispersion [9,10].

To this end, to capture the zero-temperature dynamics and
the associated quantum fluctuations, we now introduce the
spin Berry phase that is the Wess-Zumino-Witten action SWZW

that encodes the SU(2) (N = 3) spin commutator algebra into
the action, corresponding to spin precession generic to all
underdamped spin systems.

To extend this to an array of spins, we sum over lattice sites
with the action then given by (h̄ = 1)

SB =
∫

dt φ̇(x, t )[1 − cos θ (x, t )]

=
∫

x
SWZW[Ŝ(x, t, u)]

= −s
∫

x,t

∫ 1

0
duŜ · ∂t Ŝ × ∂uŜ, (133)

where s is the spin magnitude quantum number, Ŝ(x, t, u) is
the coherent spin label corresponding to orientation of a spins
at x, and auxiliary timelike variable u was introduced to be
able to express SWZW covariantly in terms of Ŝ(x, t, u), rather
than in terms of its polar (θ ) and azimuthal (φ) angles. It is
easy to see that SWZW is a boundary term that after u integral
gives the solid angle in (133), swept out by Ŝ(x, t, u), which
quantizes spin s in integer multiples of 1/2. This also gives
the identification of Ŝ(x, t, u) with the physical spin according
to Ŝ(x, t, 0) = Ŝ(x, t ) and Ŝ(x, t, 1) = ê, with the latter an
arbitrary reference spin orientation.

Below, we focus on the coplanar state, expressing Ŝ in
terms of the zero-wave-vector �S0 (uniform, ferromagnetic
part, not to be confused with the magnitude of spin S0 in
previous sections) and the nonzero wave vector (spiral part)
Ŝq contributions,

Ŝ = (�S0 + Ŝq)/
(
1 + 2�S0 · Ŝq + �S2

0

)1/2
, (134)

where

Ŝq = 1√
2

(ψ̂eiq0·x + ψ̂∗e−iq0·x)

= n̂ cos q0 · x + m̂ sin q0 · x (135)

and the denominator is a normalization factor that ensures
Ŝ2 = 1. The uniform component �S0 must be included de-
spite being gapped in the spin-spiral state, as it encodes the
conserved magnetization and has a nontrivial commutation
relation with Ŝq.

We consider small ferromagnetic fluctuations |�S0| � 1
such that

Ŝ ≈ �S� + Ŝq, (136)

where �S� = �S0 − (�S0 · Ŝq)Ŝq is the components of �S0 perpen-
dicular to Ŝq, i.e., �S� ‖ �̂. Furthermore, because the ground
state is not a ferromagnet, uniform magnetization fluctuations
�S� are gapped, i.e., characterized by a Hamiltonian

Huniform = 1

2
γ −1

∫
x

�S2
� , (137)

where γ is the uniform ferromagnetic susceptibility in the
coplanar state.

With this, the evolution operator is given by (h̄ = 1)

Ut =
∫

[dŜ(x, t, u)]eiSB−i
∫

dt[Hcoplanar+Huniform], (138)

where Hcoplanar is given by (68). Inserting the form (136)
inside SB and keeping only linear terms in the gapped uniform
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magnetization �S�, we find

SB = −s
∫

x,t

∫ 1

0
du[�S� · ∂t Ŝq × ∂uŜq

+ Ŝq · ∂t �S� × ∂uŜq + Ŝq · ∂t Ŝq × ∂u �S�], (139)

where we dropped the term proportional to Ŝq · ∂t Ŝq × ∂uŜq,
which vanishes (for smooth configurations of ψ̂) because it
oscillates strongly at wave vector q0 [63]. The first term above
vanishes because it involves three vectors lying in a plane
normal to Ŝq. With integration by parts, SB reduces to a total
derivative,

SB = −s
∫

x,t

∫ 1

0
du∂u(�S� · Ŝq × ∂t Ŝq)

= −s
∫

x,t

�S� · Ŝq × ∂t Ŝq

= −1

2
s
∫

x,t

�S� · (ψ̂ × ∂t ψ̂
∗ + ψ̂∗ × ∂t ψ̂ ), (140)

where in the last line we dropped the oscillating terms.
Integrating over the gapped magnetization field �S� and sub-
stituting ψ̂ = (n̂ + im̂)/

√
2, we find

SB = γ̄

∫
dt (n̂ × ∂t n̂ + m̂ × ∂t m̂)2

= γ̄

∫
dt[(∂t n̂)2 + (∂t m̂)2 + 2(m̂ · ∂t n̂)2]

= γ̄

∫
dt[(∂t �̂)2 + 4(m̂ · ∂t n̂)2], (141)

where γ̄ = sγ /2. This form is straightforwardly generalized
to N spin components, and using the identity (77), gives

SB = γ̄

∫
dt

[
1

2
(∂t

ˆ̂L)2 + 4(m̂ · ∂t n̂)2

]
, (142)

where ˆ̂L is defined in (58).

VI. SUMMARY AND CONCLUSION

Motivated by a large number of physical realizations of
unidirectional orders in liquid crystals, degenerate atomic
gases, electronic, and in particular frustrated magnetic sys-
tems, here we developed a low-energy theory of Goldstone
modes, i.e., O(N ) spin-smectic σ -model that describes uni-
directional “density” waves of generalized N-component
smectic. We predicted two phases—coplanar and collinear
spin-smectics that spontaneously break O(N )-spin and O(d )-
spatial rotational symmetries in addition to the translational
symmetry along q0 [64].

Having established two corresponding O(N ) smectic σ -
models, we focused on the new physically interesting case of
N = 3 and examined spin-smectics’ stability to thermal fluc-
tuations within a harmonic approximation. We showed that
these states are characterized by a critical dimensions dc = 3
below which the corresponding mean-field order is unstable,
to a state with strongly fluctuating Goldstone modes in d � 3.
We briefly discussed the nonlinearities that couple the smectic

and magnetic sectors, reserving their detailed analysis to a
future study.

We then used the developed O(N ) σ -models to charac-
terize spin-smectic phases by the correlation functions of
their Goldstone modes. In addition to the asymptotic behav-
ior of the idealized system, we also discussed the effects
of weak symmetry-breaking perturbations that exist in real
materials: (i) Lattice anisotropy breaking spatial-O(d = 3)
rotational symmetry by pinning q0 along high symmetry axes
of the underlying lattice, that leads to a smectic to XY model
crossover for the smectic phonon mode. (ii) Spin-orbit interac-
tion locking the spin orientation to q0 and thereby breaking the
O(N = 3) × O(d = 3) rotational symmetries down to their
diagonal subgroup. In particular, for the coplanar state, the
spin-plane normal vector �̂ is frozen along q0, which gaps out
the two magnetic Goldstone modes, akin to cholesterics and
DM-interacting helical magnets. In materials with weak DM
spin-orbit interactions and weak lattice pinning anisotropy
compared to the Heisenberg exchange interactions, we predict
that spin-smectic σ -models will control the low-temperature
Goldstone modes and therefore will exhibit spin-smectic
structure function over a large intermediate range of length
scales before asymptotically crossing over to a conventional
σ -model behavior.

Utilizing these Goldstone modes correlation functions, we
computed the static spin structure factors, focusing on their
asymptotic long-wavelength behaviors. We showed that at
the harmonic level, the N = 3 collinear and coplanar spin-
smectics are characterized by the same asymptotic form. In
3D they both exhibit double-power-law quasi-Bragg peaks (in
contrast to the usual single-power-law for scalar smectics and
δ-function Bragg peaks in conventional magnets) at ±q0 due
to the combined effects of the smectic and XY spin Goldstone
mode fluctuations. In addition, we discussed specific appli-
cations to magnetic systems, including the effects of various
symmetry-breaking perturbations and powder averaging over
different spin-smectic domains, that change the asymptotic
behaviors of the peaks. However, we expect that even in the
ideal case without such perturbations, the double-power-law
characteristic feature may be weak, and difficult to distinguish
from the nonsingular short-range correlations. Yet, we found
that these novel features are enhanced near a phase transition
into the spin-nematic state, where the effective transverse to
q0 spin stiffness vanishes parametrically faster than its lon-
gitudinal counterpart. We leave the required detailed analysis
near the critical point to future studies.

We also complemented our O(N ) spin-smectic σ -model
development with a O(N ) generalization of a de Gennes–like
model that captures the spin-nematic to spin-smectic (NA)
phase transition in terms of a complex N-vector order param-
eter characterizing the spin-smectic state. At the mean-field
level, it describes the phase transition and reproduces pre-
cisely the O(N ) σ -models of the planar and collinear smectic
states. However, it raises a challenging question of true crit-
icality of this spin-NA transition, which we leave for future
investigations.

An extension of our study to a quantum spin-smectics is
another interesting and open direction to explore. Here, by
appending our classical theory with the WZW action-spin
precessional dynamics, we derived the quantum dynamic for

224423-17



TZU-CHI HSIEH AND LEO RADZIHOVSKY PHYSICAL REVIEW B 108, 224423 (2023)

the coplanar spin state. At the Gaussian level it leads to one
smecticlike mode (with linear and quadratic dispersion in the
parallel and perpendicular directions, respectively) and 2N −
4 conventional spin-density-wave-like Goldstone modes with
linear dispersion. This allows for the study of the dynamic
structure function obtained in neutron scattering, with the
analysis left for a future study. Our analysis assumes smooth
configurations of spins, and thus neglects possible topological
terms that could play a nontrivial role in the properties of
spin-smectics. We also leave more detailed studies of this to
future research.

Our study is based on an O(d ) × O(N ) symmetric
field theory, with the discussion of symmetry-breaking ef-
fects incorporated phenomenologically. A more microscopic
analysis, that allows a quantitative assessment of such sym-
metry breaking terms, is a necessary next step to assess
smectic σ -model applicability and range of validity in real
materials.

Other future directions include but are not limited to large-
N and RG analyses of the O(N ) smectic σ -model, the effects
of topological defects, and the generalization of spin-smectic
states to different representations of the O(N ) × O(d ) group
and to other symmetry groups. We hope our study can stim-
ulate future theoretical and experimental studies in such soft
spin-density waves and their generalizations.
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APPENDIX A: ANALYSIS OF THE GRADIENT TERMS IN THE O(N) SMECTIC MODEL

Here, we evaluate all the symmetry-allowed gradient terms in the field theory (9) up to quartic order in �S. As discussed in
Sec. II, this then leads to universal, low-energy Goldstone mode models for both the collinear and coplanar spin-density wave
states. Specifically, we will consider the following quadratic:

(∇�S)2, (∇2 �S)2 (A1)

and quartic terms

(∇�S)4, ( �S·∇�S)2,
∑

i j

(∂i �S · ∂ j �S)2. (A2)

We note that the important λ2 term in (9) is the linear combinations of the above terms, given by

(�S × ∇�S)2 = S2(∇�S)2 − (�S · ∇�S)2. (A3)

1. Collinear state

For the collinear state (80) we find (χ = qu),

∂i �S = S0Re[(∂in̂ + i(∂iχ + qi )n̂)eiq·x+iχ ],

∂i∂ j �S = S0Re[[∂i∂ j n̂ − (∂iχ + qi )(∂ jχ + q j )n̂ + i(∂iχ + qi )∂ j n̂ + i(∂ jχ + q j )∂in̂ + i(∂i∂ jχ )n̂]eiq·x+iχ ]. (A4)

After dropping the oscillating (in space) contributions (that vanish upon spatial integration), the quadratic terms are given by

(∇�S)2 = S2
0

2
[(∇n̂)2 + (∇χ + q)2],

(∇2 �S)2 = S2
0

2
{(∇2n̂)2 + 2(∇χ + q)2(∇n̂)2 + (∇χ + q)4 + (∇2χ )2 + 4[(∇χ + q) · ∇n̂]2}, (A5)

where we used n̂ · ∇2n̂ + (∇n̂)2 = 0. The quartic terms are given by

S2(∇�S)2 = S4
0

8
[3(∇n̂)2 + (∇χ + q)2], (�S · ∇�S)2 = S4

0

8
(∇χ + q)2,

(∇�S)4 = S4
0

8
[3(∇n̂)4 + 3(∇χ + q)4 + 2(∇χ + q)2(∇n̂)2],

(∂i �S · ∂ j �S)2 = S4
0

8
{3(∇n̂)4 + 3(∇χ + q)4 + 2[(∇χ + q) · ∇n̂]2}. (A6)

We used above expression in the main text to derive the collinear smectic σ -model.
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2. Coplanar state

In the coplanar spin-wave state, characterized by the order parameter (49), we instead find

∂i �S = S0Re[(∂iψ̂ + iqiψ̂ )eiq·x], ∂i∂ j �S = S0Re[(∂i∂ jψ̂ + iqi∂ jψ̂ + iq j∂iψ̂ − qiq jψ̂ )eiq·x], (A7)

where ψ̂ = (n̂ + im̂)/
√

2, with n̂ · m̂ = 0. After dropping the oscillating (in space) terms, the quadratic terms are given by

(∇�S)2 = S2
0

2

∣∣∇ψ̂ + iqψ̂
∣∣2

, (∇2 �S)2 = S2
0

2
[|∇2ψ̂ + 2iq · ∇ψ̂ |2 + 2q2|∇ψ̂ + iqψ̂ |2 − q4], (A8)

where we used the identity Re[ψ̂∗ · ∇2ψ̂] = −|∇ψ̂ |2. The quartic terms are given by

(∇�S)4 = S4
0

4

∣∣∇ψ̂ + iqψ̂
∣∣4 + S4

0

8

∣∣∇ψ̂ · ∇ψ̂
∣∣2

,

(∂i �S · ∂ j �S)2 = S4
0

4
Re

[
(∂i − iqi )ψ̂

∗ · (∂ j + iq j )ψ̂
]2 + S4

0

8

∣∣∂iψ̂ · ∂ jψ̂
∣∣2

, (A9)

and ( �S·∇�S)2 = 0 because S2 = const for the coplanar state.
In terms of n̂ and m̂, the expressions reduce to

|∇ψ̂ + iqψ̂ |2 = 1
2 (∇n̂ − qm̂)2 + 1

2 (∇m̂ + qn̂)2,

|∇2ψ̂ + 2iq · ∇ψ̂ |2 = 1
2 (∇2n̂ − 2q · ∇m̂)2 + 1

2 (∇2m̂ + 2q · ∇n̂)2,

|∂iψ̂ · ∂ jψ̂ |2 = 1
4 (∂in̂ · ∂ j n̂ − ∂im̂ · ∂ j m̂)2 + 1

4 (∂in̂ · ∂ j m̂ + ∂im̂ · ∂ j n̂)2,

Re[(∂i − iqi )ψ̂
∗ · (∂ j + iq j )ψ̂]2 = (

1
2∂in̂ · ∂ j n̂ + 1

2∂im̂ · ∂ j m̂ + qim̂ · ∂ j n̂ + q jm̂ · ∂in̂ + qiq j
)2

. (A10)

APPENDIX B: GAUGE FIELD REPRESENTATION OF THE O(3) COPLANAR σ-MODEL

In this Appendix, we reformulate the coplanar smectic σ -model in terms of gauge (spin-connection) fields constructed from
n̂, m̂. For N = 3, ψ̂ , ψ̂∗ (or equivalently n̂, m̂) and �̂ = n̂ × m̂ span the spin space:

�a · �b = (ψ̂∗ · �a)(ψ̂ · �b) + (ψ̂ · �a)(ψ̂∗ · �b) + (�̂ · �a)(�̂ · �b) = (n̂ · �a)(n̂ · �b) + (m̂ · �a)(m̂ · �b) + (�̂ · �a)(�̂ · �b). (B1)

With this identity, all the terms above can be written in terms of a real vector (in space) field A and a complex vector field D,
defined by

A = iψ̂∗ · ∇ψ̂, D = �̂ · ∇ψ̂, (B2)

giving

|∇ψ̂ + iqψ̂ |2 = |D|2 + (A − q)2,

|∇2ψ̂ + 2iq · ∇ψ̂ |2 = |D · D|2 + (A2 + |D|2)2 + (∇ · A)2 + |(∇ − iA) · D|2
+ 4Im[(q · D∗)(∇ − iA) · D] − 4(q · A)(A2 + |D|2) + 4(q · A)2 + 4|q · D|2,

|∂iψ̂ · ∂ jψ̂ |2 = |DiDj |2,
Re[(∂i − iqi )ψ̂

∗ · (∂ j + iq j )ψ̂]2 = Re[D∗
i D j + AiAj − qiA j − q jAi + qiq j]

2, (B3)

where we used

(∂iψ̂ ) · (∂ jψ̂
∗) = (ψ̂∗ · ∂iψ̂ )(ψ̂ · ∂ jψ̂

∗) + (�̂ · ∂iψ̂ )(�̂ · ∂ jψ̂
∗) = AiAj + DiD

∗
j ,

(∂iψ̂ ) · (∂ jψ̂ ) = (�̂ · ∂iψ̂ )(�̂ · ∂ jψ̂ ) = DiDj,

ψ̂∗ · (∇2ψ̂ ) = ∂i(ψ̂
∗ · ∂iψ̂ ) − (∇ψ̂∗) · (∇ψ̂ ) = −i∇ · A − A2 − |D|2,

ψ̂ · (∇2ψ̂ ) = −(∇ψ̂ )2 = −D2,

�̂ · (∇2ψ̂ ) = ∂i(�̂ · ∂iψ̂ ) − (∇�̂) · (∇ψ̂ ) = (∇ − iA) · D. (B4)

We use this description to formulate the coplanar spin-smectic σ -model.
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APPENDIX C: COMPLEMENTARY DESCRIPTION OF THE O(N) SMECTIC MODEL AND THE λ3 TERM

A complementary description of the spin-smectic was proposed by Toner, starting with

HToner = J
[
(∇2 �S)2 − 2q2

0(t̂ · ∇�S)2
] + 1

2 K0(∇t̂ )2, (C1)

where the nematiclike field t̂ ensures underlying rotational symmetry. Using this model to derive Goldstone mode theory for the
coplanar state (49), at harmonic level in the small expansion of the orthonormal triad in terms of three angles χ, θn, θm,

n̂ ≈ ê1 − χ ê2 + θnê3, (C2)

m̂ ≈ ê2 + χ ê1 + θmê3, (C3)

one obtains

HToner = 1
2 B(∂zχ )2 + 1

2 K (∇2
⊥χ )2 + 1

2 B(∇θn)2 + 1
2 B(∇θm)2. (C4)

That is, the smectic phonon (spiral phase angle χ ) is indeed smecticlike, but the two out-of-plane fluctuations of the triad are
XY -like. This form does not exhibit the out-of-plane instability of the “soft” sigma model (53).

This suggests that the first derivation is from a nongeneric model and therefore misses some important couplings that will
appear in a more general model. Examination of the model proposed by Toner shows that it contains a new quartic term, which
when averaged over t̂ gives

〈tit jtktl〉(∂i �S · ∂ j �S)(∂k �S · ∂l �S) ∝ |∇�S|4 + 2(∂i �S · ∂ j �S)2,

(C5)

where we used isotropy of the t̂ probability distribution. The second term is the stabilizing λ3 quartic term that enters crucially
for the nonlinear planar spin-smectic σ -model.

APPENDIX D: CALCULATION DETAILS OF THE SPIN-SMECTIC STRUCTURE FACTOR

In this Appendix, we calculate the spin-smectic structure factor in a Gaussian approximation using the angular representation
of the spin-density waves in Sec. III A. We note that the analysis below neglects the effects of nonlinearities that may lead to a
crossover to a nontrivial spin-smectic fixed point, thereby modifying these predictions at long scales. We first calculate thermal
averages of the Goldstone modes, ϕ, ϕ′ = χ, θ, φ (or superposition of them):

〈cos ϕ〉 = 1
2 〈eiϕ〉 + 1

2 〈e−iϕ〉 = 1
2 e− 1

2 〈ϕ2〉 + 1
2 e− 1

2 〈ϕ2〉 = e− 1
2 〈ϕ2〉

,

〈sin ϕ〉 = 1
2i 〈eiϕ〉 − 1

2i 〈e−iϕ〉 = 1
2i e

− 1
2 〈ϕ2〉 − 1

2i e
− 1

2 〈ϕ2〉 = 0. (D1)

Accordingly the following two-point correlators are given by:

〈cos ϕ(x) cos ϕ′(x′)〉 = 1
2 〈cos[ϕ(x) + ϕ′(x′)]〉 + 1

2 〈cos[ϕ(x) − ϕ′(x′)]〉 = e− 1
2 〈ϕ2〉− 1

2 〈ϕ′2〉 cosh Cϕϕ′ (x − x′),

〈sin ϕ(x) sin ϕ′(x′)〉 = 1
2 〈cos[ϕ(x) − ϕ′(x′)]〉 − 1

2 〈cos[ϕ(x) + ϕ′(x′)]〉 = e− 1
2 〈ϕ2〉− 1

2 〈ϕ′2〉 sinh Cϕϕ′ (x − x′),

〈cos ϕ(x) sin ϕ′(x′)〉 = 1
2 〈sin[ϕ(x) + ϕ′(x′)]〉 − 1

2 〈sin[ϕ(x) − ϕ′(x′)]〉 = 0, (D2)

where

Cϕϕ′ (x − x′) = 〈ϕ(x)ϕ′(x′)〉. (D3)

In general, all Goldstone modes are coupled and therefore Cϕϕ′ �= 0 for any ϕ and ϕ′. Below, we neglect the coupling between
θ , φ, and χ , a valid approximation at low energies. Specifically, we consider the correlators

Cχχ (x), Cθθ (x), Cφφ (x), (D4)

neglecting all others. The structure factor S (q) is given by the Fourier transform of the spin-spin correlation function, (110).

1. Collinear state

For the collinear state (80), the spin-spin correlation function in momentum space is given by∫
x,x′

eiq·(x−x′ )〈Sα (x)Sβ (x′)〉 =
∫

x,x′
eiq·(x−x′ )〈n̂α (x)n̂β (x′)〉〈cos[q0 · x + χ (x)] cos[q0 · x′ + χ (x′)]〉

= V

4

∫
x
[ei(q−q0 )·x + ei(q+q0 )·x]Dαβ (x)e− 1

2 q2
0Csm(x), (D5)
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where in the second line above we dropped the term proportional to e±iq·(x+x′ ) that will average to zero for q0 �= 0 and then
renamed x − x′ → x. In the above, Csm(x) is defined in (105) and Dαβ (x) = 〈n̂α (x)n̂β (0)〉, where by using (90) the matrix
elements are given by

D11 = e−〈θ2〉−〈φ2〉 cosh Cθθ (x) cosh Cφφ (x), D22 = 1
2 e−〈θ2〉−〈φ2〉 cosh Cθθ (x) sinh Cφφ (x), D33 = e−〈θ2〉 sinh Cθθ (x), (D6)

and all others vanish. Keeping terms up to quadratic order in Goldstone modes, we have

D(x) ≈

⎛
⎜⎝

1 − 〈θ2〉 − 〈φ2〉 0 0

0 Cφφ (x) 0

0 0 Cθθ (x)

⎞
⎟⎠. (D7)

This harmonic approximation is consistent with the one we made on the Hamiltonian and it gives the physically reasonable
expression that is symmetric around the axis ê1, i.e., D22 = D33. Within this Gaussian approximation, the structure factor is then
given by

S (q) = 1

V

∑
α

∫
x,x′

eiq·(x−x′ )〈Sα (x)Sα (x′)〉,

≈ 1

4

∫
x
[ei(q−q0 )·x + ei(q+q0 )·x]e− 1

2 q2
0Csm(x)− 1

2 Cxy,θ (x)− 1
2 Cxy,φ (x), (D8)

where Cxy,θ (x) and Cxy,φ (x) are defined in (107), and in the last line we rewrote small Goldstone mode fluctuations in an
exponential form, TrD(x) = e− 1

2 Cxy,θ (x)− 1
2 Cxy,φ (x).

2. Coplanar state

Repeating the above analysis and approximations for the coplanar state (49), the spin-spin correlation function in momentum
space is then given by∫

x,x′
eiq·(x−x′ )〈Sα (x)Sβ (x′)〉 = 1

4

∫
x,x′

eiq·(x−x′ )(〈ψ̂α (x)ψ̂∗
β (x′)〉eiq0·(x−x′ ) + 〈ψ̂α (x)ψ̂β (x′)〉eiq0·(x+x′ ) + H.c.

)

= V

4

∫
x

[
ei(q+q0 )·xDαβ (x) + ei(q−q0 )·xD∗

αβ (x)
]
e− 1

2 q2
0Csm(x), (D9)

where Dαβ (x) = 〈ψ̂α (x)ψ̂∗
β (0)ei[χ (x)−χ (0)]〉 and H.c. denotes the Hermitian conjugate. Using (93), the matrix elements are given

by

D11 = 1

2
e−〈θ2〉−〈φ2〉 sinh Cθθ (x) cosh Cφφ (x) + 1

2
e−〈φ2〉 sinh Cφφ (x),

D22 = 1

2
e−〈θ2〉−〈φ2〉 sinh Cθθ (x) sinh Cφφ (x) + 1

2
e−〈φ2〉 cosh Cφφ (x),

D33 = 1

2
e−〈θ2〉 cosh Cθθ (x), D32 = −D23 = i

2
e− 1

2 〈θ2〉− 1
2 〈φ2〉, (D10)

with all others contributions vanishing. For small Goldstone mode fluctuations, we obtain a physically reasonable expression
that is symmetric around the ê1 axis,

D ≈ 1

2

⎛
⎜⎝

Cθθ (x) + Cφφ (x) 0 0

0 1 − 〈φ2〉 −i
(
1 − 1

2 〈θ2〉 − 1
2 〈φ2〉)

0 i
(
1 − 1

2 〈θ2〉 − 1
2 〈φ2〉) 1 − 〈θ2〉

⎞
⎟⎠. (D11)

With these approximations, the structure factor is then given by

S (q) = 1

V

∑
α

∫
x,x′

eiq·(x−x′ )〈Sα (x)Sα (x′)〉

= 1

4

∑
α

∫
x
[ei(q−q0 )·x + ei(q+q0 )·x]Dαα (x)e− 1

2 q2
0Csm(x)

≈ 1

4

∫
x
[ei(q−q0 )·x + ei(q+q0 )·x]e− 1

2 q2
0Csm(x)− 1

4 Cxy,θ (x)− 1
4 Cxy,φ (x), (D12)

where in the last line we rewrote the small Goldstone mode fluctuations in exponential form, TrD(x) = e− 1
4 Cxy,θ (x)− 1

4 Cxy,φ (x).
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The expressions for the collinear (D8) and coplanar (D12) structure factors, together with the Goldstone mode correlators
(105) and (107), lead to the same asymptotic form (111), characterized by the following double-power-law peaks:

P(k) = Psm(k) + Pxy(k). (D13)

In the above, the leading power-law contribution is from the smectic Goldstone mode fluctuations, given by

Psm(k) = D0

∫
|x|�a

eik·xe− 1
2 q2

0Csm(x)

∼ D0

∫
dx‖d2x⊥eik·x ×

⎧⎨
⎩

1
x2η

⊥
for x⊥ � √

λ|x‖|,
1
xη

‖
for x⊥ � √

λ|x‖|,

∼ D0

⎧⎨
⎩

1
|k⊥|4−2η for k‖ = 0,

1
|k‖|2−η for k⊥ = 0,

(D14)

where D0 = TrD(x → ∞) is the Debye-Waller factor, the temperature-dependent exponent η is given by (116), and we used the
change of variable x‖ = x2

⊥ to get the last line. On the other hand, the subleading power-law contribution is a consequence of the
combined effects of the smectic and XY Goldstone mode fluctuations, given by

Pxy(k) ∼
∫

|x|�a
eik·xe− 1

2 q2
0Csm(x)[Cθθ (x) + Cφφ (x)]

∼ T

κ

∫
dx‖d2x⊥eik·x ×

⎧⎨
⎩

1
x2η+1
⊥

for x⊥ � √
λ|x‖|,

1
xη+1
‖

for x⊥ � √
λ|x‖|,

∼ T

κ

⎧⎪⎨
⎪⎩

1

|k⊥|2(1−η)+ η
1+η

for k‖ = 0,

1

|k‖|1−η+ 1
1+2η

for k⊥ = 0,
(D15)

where for simplicity we chose κ = κ‖ = κ⊥ and we used the change of variable xη+1
‖ = x2η+1

⊥ to get the last line.
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