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Two-dimensional altermagnets: Superconductivity in a minimal microscopic model
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We propose a minimal toy model for a two-dimensional altermagnet. The model unravels altermagnetic
properties at a microscopic level. We find spin-split electron and nondegenerate magnon bands with a d-wave
symmetry. We use the model to explore magnon-mediated superconductivity in altermagnets. The dominant
superconducting state is spin polarized with a p-wave symmetry. The state adopts its characteristics from the
spin-split electron bands. Furthermore, we find that the superconducting critical temperature of altermagnets can
be significantly enhanced by tuning the chemical potential.
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I. INTRODUCTION

Altermagnets constitute a new subclass of magnetic
materials [1]. They are defined as compensated collinear mag-
nets with magnetic sublattices related by rotations instead
of inversion or translation [2]. The symmetry of altermag-
nets allows for effects with a potential to rapidly progress
the fields of spintronics [3–8], spin caloritronics [9], and
superconductivity [10–16]. The most prominent feature of
altermagnets is the large momentum-dependent spin-split
electron bands [17–25]. Nevertheless, the properties of al-
termagnets go beyond their characteristic alternating electron
bands and include, e.g., chiral magnons [26].

Spin splitting in altermagnets does not rely on a sizable
spin-orbit coupling. This allows for a diverse range of po-
tential materials. So far, RuO2 has been the main focus of
attention [27,28], but there are many candidate materials
[2,17,20–22,29–34]. These systems are three-dimensional or
quasi-two-dimensional. A monolayer altermagnet would be
compelling in the rapidly developing field of van der Waals
materials and other two-dimensional magnets [35–37]. One
route to altermagnetism is an anisotropic ordering of local
orbitals [38]. However, the recent large experimental inter-
est and progress has mainly been on materials where the
altermagnetic properties rely on the interplay between mag-
netic and nonmagnetic atoms. This typically calls for more
involved unit cells than ferro- and antiferromagnets. Conse-
quently, much of the research on altermagnets carried out so
far has been phenomenological [2,39–41], through ab initio
calculations or experimental work. The microscopic models
for studying altermagnets have typically been effective spin-
dependent hopping models in momentum space that replicate
electron bands with d-wave symmetry. Although useful, these
models do not capture the magnetic ordering, and thus,
the origin of the altermagnetic properties remains hidden from
a microscopic point of view.

The interplay of magnetism and superconductivity has
been a fertile playground for intriguing physics [42–45]. The
relation between the unconventional spin splitting in alter-
magnets and unconventional superconductivity is an open

question. This relation is fascinating because La2CuO4, which
is a parent compound of high-temperature superconductors
[46], is an altermagnet [2,47]. One intriguing direction is how
the fluctuations in localized spins can mediate effective elec-
tron interactions that, in turn, give rise to superconductivity
[48–51].

Here, we propose a two-dimensional minimal model to
study altermagnets microscopically. The model sheds light
on nonmagnetic sites as a microscopic origin of the uncon-
ventional d-wave spin-split bands and nondegenerate magnon
modes. We find that the interplay between electrons and
magnons gives rise to a spin-polarized p-wave superconduct-
ing state, in which the critical temperature is tunable by the
chemical potential. For specific values, we find a dramatic
increase in the critical temperature analogous to the squeezing
enhancement in conventional antiferromagnets [52,53], how-
ever, without the need for an uncompensated interface.

II. MODEL

We consider the lattice in Fig. 1. The nonmagnetic lattice
belongs to the plane group p4mm (No. 11).

The magnetic plane point group of the crystal has eight
symmetries. These are

(E |0), (C2z|0), (σx|0), (σy|0), (1a)

(C+
4z|T ), (C−

4z|T ), (σxy|T ), (σxȳ|T ), (1b)

where T is the time-reversal operator. The operations C−
4z

and C+
4z are fourfold clockwise and counterclockwise rota-

tions about the z axis. Furthermore, σx, σy, σxy, and σxȳ are
mirror operations about the x axis, y axis, and the diagonals.
The lattice is centrosymmetric because the twofold rotation
C2z acts as inversion symmetry in two dimensions. How-
ever, importantly, this inversion symmetry does not relate
the two magnetic sublattices. Instead, they are related by
the mirror and rotational symmetries in Eq. (1b). Thus, the
magnetic crystal classifies as an altermagnet. In Appendix F,
we briefly consider an alternative altermagnetic model due to
an anisotropic ordering of local orbitals.
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FIG. 1. A two-dimensional altermagnetic crystal lattice. The unit
cell consists of three distinct sites for which rotational symmetries
relate the two magnetic sites.

III. ELECTRON PROPERTIES

To study the electron properties, we employ a tight-binding
Hamiltonian

He = t
∑

〈i, j〉,σ
c†

i,σ c j,σ + t2
∑

〈〈i, j〉〉,σ
c†

i,σ c j,σ

− Jsd

∑
i,σ,σ ′

Si · c†
i,σ σσσ ′ci,σ ′ − μ

∑
i,σ

c†
i,σ ci,σ

+ εnm

∑
i∈nm,σ

c†
i,σ ci,σ , (2)

where c(†)
i,σ is the (creation) annihilation operator of an electron

at site i with spin σ . The nearest-neighbor hopping strength is
denoted by t . The next-nearest-neighbor hopping strength t2
governs the hopping between the magnetic sites with oppo-
site magnetization. The chemical potential μ determines the
overall doping level, and εnm is the nonmagnetic site energy.
We set the magnetic site energy to zero. The coupling Jsd

quantifies the on-site exchange interaction between the spin
of the itinerant electrons and the localized spins on the mag-
netic sites Si. We emphasize that the model has no spin-orbit
coupling term such that the Hamiltonian is block diagonal in
spin σ .

We perform a Fourier transform and rewrite the operators
in terms of electron band operators dn,k,σ = ∑

� q∗
n,�,k,σ c�,k,σ .

Here, � runs over the three sites in the unit cell, n runs over
the energy bands, and q∗

n,�,k,σ is chosen such that

He =
∑
n,k,σ

εn,k,σ d†
n,k,σ

dn,k,σ . (3)

Figure 2 shows the electronic spectrum εn,k,σ of the minimal
model in Eq. (2). The bands exhibit the characteristic spin
splitting of altermagnets with a d-wave symmetry. Without
next-nearest-neighbor hopping, the model has an accidental
particle-hole symmetry relating spin-up and spin-down at
half-filling.

FIG. 2. The electron dispersion in the x and y directions. We used
the parameters t2/t = 0, μ/t = 0, εnm/t = 0, and JsdS/t = 0.4.

Figure 3 shows the Fermi surfaces of the electron disper-
sion in Fig. 2 at four doping levels. The derivation is given in
Appendix A. The mirror symmetries of the crystal in Eq. (1b)
enforce the electron bands to be spin degenerate along the
diagonals kx = ±ky. The spin-polarized sectors switch po-
larity as a function of the chemical potential at μ = 0. The
exactness of the switching shown in Fig. 3 is due to an ac-
cidental particle-hole symmetry. Nevertheless, the chemical
potential μ remains an effective handle for switching the spin
polarization even without particle-hole symmetry.

The unconventional spin splitting is consistent with the
symmetries in Eq. (1). However, the magnitude of the spin
splitting must be determined from microscopic calculations.
Figure 4 summarizes how spin splitting depends on the tight-
binding parameters in Eq. (2).

FIG. 3. The Fermi surface at four distinct doping levels. Red and
blue correspond to spin-up and spin-down polarization, respectively.
The intensity shows the flatness of the bands |dε/dk⊥|−1, where k⊥
is perpendicular to the Fermi surface. The plots are for JsdS/t = 0.4,
t2/t = 0, εnm/t = 0 and (a) μ/t = 0.1, (b) μ/t = −0.1, (c) μ/t = 2,
and (d) μ/t = −2.
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FIG. 4. The magnitude of the maximal spin splitting |�ss| of the
three bands as a function of (a) the exchange coupling JsdS/t with
t2/t = 0 and εnm/t = 0.4, (b) the site-energy of the nonmagnetic site
εnm/t with t2/t = 0 and JsdS/t = 0.3, and (c) the nearest-neighbor
hopping t/t2 with εnm/t2 = 0.4 and JsdS/t2 = 0.3.

The spin splitting is directly proportional to the coupling
strength JsdS. This is generally magnitudes larger than the
spin-orbit coupling. Hence, the spin splitting in altermagnets
is much larger than spin splitting due to spin-orbit coupling.
Figure 4(b) shows that the site energy εnm of the nonmag-
netic site only weakly affects the spin splitting of the middle
bands. This illustrates how the presence of the nonmagnetic
site, but not necessarily its occupation, is essential for the
altermagnetic properties. Figure 4(c) shows the spin splitting
as a function of the nearest-neighbor hopping t/t2. In the
case of t/t2 = 0, the model reduces to that of a conventional
antiferromagnet with a nonmagnetic site in the atomic limit.
At this point, the spin splitting vanishes due to a restored
PT symmetry.

IV. MAGNON PROPERTIES

Here, we consider the interactions between the localized
spins shown in Fig. 1. Nearest-neighbor interactions do not
couple the magnetic sublattices. Hence, we consider the
effective spin-spin exchange interactions mediated by the non-
magnetic sites, the vacuum sites, and interactions along the
diagonals. The inequivalence between the nonmagnetic and
empty sites gives rise to an anisotropic exchange interaction
with a fourfold symmetry. In other words, the exchange inter-
actions adopt the symmetry of the altermagnet. We consider

Hm =
∑
〈i, j〉

JAB
(
SA

i · SB
j

) +
∑
〈ix, jx〉

(
JnmSA

i · SA
j + JdSB

i · SB
j

)

+
∑
〈iy, jy〉

(
JdSA

i · SA
j + JnmSB

i · SB
j

)

−
∑

i

[
Kz

(
SA

z,iS
A
z,i + SB

z,iS
B
z,i

) + Bz
(
SA

z,i − SB
z,i

)]
. (4)

Here, the parameters Jnm and Jd denote the strength of the
exchange interactions mediated by the nonmagnetic sites

FIG. 5. The magnon dispersion ω/JABS. Here, we used the pa-
rameters Jnm/JAB = −0.5, Jd/JAB = 0, Kz/JAB = 0.01, and Bz = 0.

and the direct spin exchange between magnetic sites absent
an intermediate nonmagnetic site, respectively. These terms
couple equal spin sites and are thus ferromagnetic-like. Fur-
thermore, JAB quantifies the interaction strength along the
diagonals and couples the magnetic sublattices. It couples
sites of opposite spin, giving rise to the antiferromagnetic-like
exchange interaction. We also include an easy-axis anisotropy
Kz and magnetic field Bz. As outlined in Appendix B, we
treat the Hamiltonian to bilinear order in magnon operators
by a Holstein-Primakoff transformation and diagonalize it
with aq = uqαq + vqβ

†
−q and b†

−q = v∗
qαq + u∗

qβ
†
−q. Here, a(†)

q

and b(†)
q are spin (creation) and annihilation operators at the

two magnetic sublattices. The magnon Hamiltonian is then
given by

Hm =
∑

q

[
ωα

q α†
qαq + ωβ

q β†
qβq

]
, (5)

where α(†)
q and β (†)

q are the (creation) annihilation operators of
the magnons with momentum q. The magnon frequencies are
ω

α(β )
q = (−)+γ1 +

√
γ 2

2 − γ 2
3 with

γ1 = S(Jnm − Jd )[cos (2qxa) − cos (2qya)] + Bz, (6a)

γ2 = S(Jnm + Jd )[cos (2qxa) + cos (2qya)]

−2S(Jnm + Jd ) + 4SJAB + 2SKz, (6b)

γ3 = 2JABS[cos (qxa + qya) + cos (qxa − qya)]. (6c)

The magnon bands in Fig. 5 are split and carry a finite spin
expectation value. However, they are not isolated and thus not
topological. The mirror symmetry forces band degeneracies
along the diagonal without an external magnetic field.

The magnon-band splitting has a d-wave symmetry in mo-
mentum space given by

�magnon = 2{S(Jnm − Jd )[cos (2qxa) − cos (2qya)] + Bz}.
(7)

In other words, the magnon-band splitting arises from in-
equivalence between the two ferromagnetic-like exchange
interaction strengths Jnm and Jd.

224421-3



BREKKE, BRATAAS, AND SUDBØ PHYSICAL REVIEW B 108, 224421 (2023)

V. ELECTRON-MAGNON COUPLING

Fluctuations in the localized spins Si induce an effective
electron-magnon coupling from the third term in Eq. (2). We
treat this term using the Holstein-Primakoff transformation
to second order in magnon operators. The resulting electron-
magnon coupling consists of two contributions. The first term
is spin-flip processes from first-order magnon operators. This
term is generally important for magnon-mediated supercon-
ductivity [49,50]. However, for altermagnets, they do not
contribute to robust superconducting instabilities.

The second part consists of terms that are second order in
magnon operators:

Hem = Jsd

N

∑
k,q,q′,σ

[
σMB

q,q′
(

B

k+q−q′,k,σ,σ d†
k+q−q′,σ dk,σ

)

− σMA
q,q′

(

A

k+q−q′,k,σ,σ d†
k+q−q′,σ dk,σ

)]
. (8)

Here, N is the number of unit cells. We have defined

A

k′,k,σ ′,σ ≡ q∗
a,k′,σ ′qa,k,σ and 
B

k′,k,σ ′,σ ≡ q∗
b,k′,σ ′qb,k,σ , where

we dropped the band index n because we consider scattering
processes on the Fermi surface. The magnon terms are

MA
q,q′ = u∗

q′uqα
†
q′αq + u∗

q′vqα
†
q′β

†
−q

+v∗
q′uqβ−q′αq + v∗

q′vqβ−q′β
†
−q, (9a)

MB
q,q′ = v∗

q′vqα−q′α
†
−q + v∗

q′uqα−q′βq

+u∗
q′vqβ

†
q′α

†
−q + u∗

q′uqβ
†
q′βq. (9b)

Based on the electron-magnon coupling, we derive an ef-
fective electron-electron interaction using a Schrieffer-Wolff
transformation [54]. Finite-momentum Cooper pairs are frail.
Hence, we restrict our considerations to interactions be-
tween electrons of opposite momenta. Consequently, spin-flip
processes associated with the first-order magnon terms are
prohibited, except at the spin-degenerate band crossings.
These crossings are extremely material dependent and tend
to be pointlike at the Fermi surface. We rule them out as
secondary effects in the superconducting properties of alter-
magnets and do not explore this interaction further.

As shown in Appendix D, the spin-conserving scattering
processes give rise to an effective electron-electron interaction

He−e =
∑

k,k′,σ

Vk,k′,σ d†
k′,σ d†

−k′,σ d−k,σ dk,σ , (10)

where

Vk,k′,σ = −J2
sd

N2

∑
Q

(

A

k′,k,σ,σ
|v Q−(k′−k)

2
||u Q+(k′−k)

2
|

− 
B
k′,k,σ,σ

|v Q+(k′−k)
2

||u Q−(k′−k)
2

|)2

×
(

ωα
Q+(k′−k)

2

+ ω
β
Q−(k′−k)

2

)−1

. (11)

Here, we sum over the total magnon momentum Q = q + q′.
For equal-spin Cooper pairs, the interaction has to be odd
in momenta k and k′ to respect the Pauli principle. We
symmetrize the effective interaction and keep the odd contri-
bution.

FIG. 6. The superconducting gap profiles of �k,σ corresponding
to the superconducting state with the critical temperature Tc on
the Fermi surface. Red-blue denotes the gap �k,↑ and green-purple
denotes �k,↓. Both gaps are odd in momentum k and correspond
to p-wave superconductivity. The parameters are JsdS/t = 0.4 and
(a) μ/t = 0.2, (b) μ/t = −0.2. The magnon dispersion has a smaller
energy scale with JABS/t = 0.01. We set Jnm/JAB = Jd/JAB = −0.5
and Kz/JAB = 0.01.

The superconducting gap is �k,σ = −∑
k′ Vk,k′,σ

〈d−k′,σ dk′,σ 〉, and gives the gap equation

�k,σ = −
∑

k′
Vk,k′,σ

�k′,σ

Ek′,σ
tanh

(
βEk′,σ

2

)
, (12)

with a quasiparticle dispersion Ek,σ =
√

ε2
k,σ + 4|�k,σ |2 . We

linearize the gap equation and perform a Fermi surface aver-
age. We take the resulting eigenvalue equation and solve for
the largest eigenvalue λeff . The well-known BCS formula [55]
gives the corresponding critical temperature

Tc ≈ 1.13ωM

kB
e− 1

λeff . (13)

The k-dependent gap profile �k,σ is given by the corre-
sponding eigenvector. Figure 6 shows the gap profile for two
distinct values of μ. We note how the doping changes the
spin polarization of the bands and serves as a spin switch.
The quasiparticle dispersion is fully gapped because the Fermi
surface is absent at the nodes. Hence, we expect superconduc-
tivity in altermagnets to be robust against weak magnetic and
nonmagnetic disorder. For triplet superconductors, the order
parameter can be parametrized by the complex d-vector [56].
It is defined as

�̂(k) =
(

�↑↑(k) �↑↓(k)

�↓↑(k) �↓↓(k)

)

=
(

−dx + idy dz

dz dx + idy

)
= i(d(k) · σ )σy. (14)

To parametrize the gap profile in Fig. 6(a), we use two
d-vectors to capture the gap profiles of the disjoint spin-
polarized bands. The gap is parametrized by

d1 = �(|k|)√
2

sgn(kx )(−1, i, 0), (15a)

d2 = �(|k|)√
2

sgn(ky)(1, i, 0). (15b)

Here, the subscripts 1 and 2 correspond to the spin-down
and spin-up bands, respectively. The corresponding spin
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FIG. 7. (a) The interaction strength, (b) critical temperature, and
(c) 〈
A

k,k,↑,↑〉FS and 〈
B
k,k,↑,↑〉FS as functions of the chemical po-

tential μ. Here, JsdS/t = 0.4 and t2/t = 0. Furthermore, JABS/t =
0.01, Kz/JAB = 0.01, and the magnitude of the localized spins
S = 3/2. The ferromagnetic-like exchange couplings are Jnm/JAB =
Jd/JAB = −0.5.

polarizations of the superconducting order parameter for the
two bands are

q1 = i(d1 × d∗
1 ) = (0, 0,−|�(|k|)|2), (16a)

q2 = i(d2 × d∗
2 ) = (0, 0, |�(|k|)|2), (16b)

consistent with the bands being fully spin polarized.
The estimate of the critical temperature in Eq. (13) is noto-

riously unreliable due to its exponential sensitivity to material
properties. Nevertheless, it could give an idea of the order of
magnitude and the qualitative behavior of the superconducting
state. Figure 7 highlights the qualitative relation between the
occupation of the magnetic sites and the critical temperature
Tc. The figure shows a dramatically enhanced critical tem-
perature for certain values of μ. This can be understood as
an intrinsic analog to the squeezing effect in Refs. [52,53],
without an uncompensated interface.

VI. CONCLUSION

We have introduced a minimal model for altermagnets. The
model exhibits the expected behaviors for an altermagnet and

allows for tuning the altermagnetic properties through simple
tight-binding parameters. We explore the electron and magnon
properties of the model. The electron-magnon coupling gives
rise to spin-polarized p-wave superconducting states. Further-
more, we find that the critical temperature can be significantly
enhanced by tuning the chemical potential. This effect is an
intrinsic analog to the magnon-squeezing effect predicted for
antiferromagnets with uncompensated interfaces.

Note added. Recently we found a study that consid-
ers a similar magnon model. It considers thermal magnon
transport [57].
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APPENDIX A: ELECTRON HAMILTONIAN

We consider the altermagnetic square lattice in Fig. 1. The
lattice vectors are

a1 = 2a(1, 0), a2 = 2a(0, 1), (A1)

where the nearest-neighbor distance a = 1. The reciprocal
lattice vectors are

b1 = π

a
(1, 0), b2 = π

a
(0, 1). (A2)

We Fourier-transform the electron operators in Eq. (2) as

c�,i,σ = 1√
N

∑
k

c�,k,σ e−ik·ri , (A3)

where we assume periodic boundary conditions in both the
x and y directions with a total of N unit cells. The crystal
momentum k runs over the first Brillouin zone. The subscript
� runs over the three sites in the unit cell � ∈ (a, nm, b),
where a and b refer to the magnetic sites and nm refers to
the nonmagnetic site. In this basis, the Hamiltonian is

He =
∑

k,σ,�,�′
c†
�,k,σ

(Hk,σ )�,�′c�′,k,σ , (A4)

where

Hk,σ =

⎛
⎜⎝

−σJsdS − μ 2t cos kxa 2t2 cos (kxa + kya) + 2t2 cos (kxa − kya)

2t cos kxa −μ + εnm 2t cos kya

2t2 cos (kxa + kya) + 2t2 cos (kxa − kya) 2t cos kya σJsdS − μ

⎞
⎟⎠. (A5)

We diagonalize this Hamiltonian by introducing the electron band operators

dn,k,σ =
∑

�

q∗
n,�,k,σ c�,k,σ , d†

n,k,σ
=

∑
�

qn,�,k,σ c†
�,k,σ

. (A6)

The diagonal form of the electron Hamiltonian is given in Eq. (3).
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1. The Fermi surface

The electron band energies in Eq. (3) are solutions to the secular equation

x0 + x1ε + x2ε
2 + ε3 = 0, (A7)

where the coefficients are

x0 = μ3 − μJ2
sdS2 − μ2εnm + J2

sdS2εnm − 4μt2 − 8t2t2 + 4(−μ + εnm )t2
2

+2
[
(−μ − σJsdS)t2 − 4t2t2 + 2(−μ + εnm )t2

2

]
cos (2kya) + 2 cos (2kxa)

{
(−μ + σJsdS)t2 − 4t2t2 + 2(−μ + εnm )t2

2

+2t2[−2t2 + (−μ + εnm )t2] cos (2kya)
}
, (A8a)

x1 = 3μ2 − J2
sdS2 − 2μεnm − 4

(
t2 + t2

2

) − 2t2 cos (2kxa) − 4t2
2 cos (2kxa) − 2t2

2 cos (2kxa − 2kya)

−2t2 cos (2kya) − 4t2
2 cos (2kya) − 2t2

2 cos (2kxa + 2kya), (A8b)

x2 = 3μ − εnm. (A8c)

The Fermi surface is the contour defined by ε = 0 such that Eq. (A7) reduces to x0 = 0. We solve for kx and ky explicitly
to find

ky = 1

2a
arccos

(−α − γ cos (2kxa)

β + δ cos (2kxa)

)
(A9a)

and conversely

kx = 1

2a
arccos

(−α − β cos (2kya)

γ + δ cos (2kya)

)
. (A9b)

Here,

α = μ3 − μJ2
sdS2 − μ2εnm + J2

sdS2εnm − 4μt2 − 8t2t2 + 4(−μ + εnm )t2
2 , (A10a)

β = 2
[
(−μ − σJsdS)t2 − 4t2t2 + 2(−μ + εnm )t2

2

]
, (A10b)

γ = 2
[
(−μ + σJsdS)t2 − 4t2t2 + 2(−μ + εnm )t2

2

]
, (A10c)

δ = 4t2[−2t2 + (−μ + εnm )t2]. (A10d)

2. Sample the Fermi surface

We solve the superconducting gap equation (12) by em-
ploying a Fermi surface average. This requires a uniform
sampling of the Fermi surface. To that end, we parametrize
the Fermi surface in Eq. (A9a) as

kx = t, ky = 1

2a
arccos

(−α − γ cos (2ta)

β + δ cos (2ta)

)
, (A11)

where t ∈ [−π/2a, π/2a]. For a fixed segment �t along the
kx axis, the corresponding segment along the Fermi surface is

�s = �t

√(
dkx

dt

)2

+
(

dky

dt

)2

, (A12)

where

dky

dt
= − 1√

1 − ( α+γ cos (2ta)
β+δ cos (2ta) )2

(
γ β − δα

)
sin (2ta)

[β + δ cos (2ta)]2
. (A13)

Now, setting �s constant and sample Eq. (A11) at intervals

�t = �s√
1 + ( dky

dt

)2
(A14)

gives a uniform distribution along the Fermi surface.

APPENDIX B: MAGNON HAMILTONIAN

We consider the Hamiltonian in Eq. (4) and rewrite the spin
operators as

SA,x
i = 1

2

(
SA,+

i + SA,−
i

)
, SA,y

i = 1

2i

(
SA,+

i − SA,−
i

)
, (B1a)

SB,x
j = 1

2

(
SB,+

j + SB,−
j

)
, SB,y

j = 1

2i

(
SB,+

j − SB,−
j

)
. (B1b)

Then, we quantize the spin operators to linear order using

SA,+
i =

√
2Sai, SB,+

j =
√

2Sb†
j, (B2a)

SA,−
i =

√
2Sa†

i , SB,−
j =

√
2Sb j, (B2b)

SA,z
i = (S − a†

i ai ), SB,z
j = (−S + b†

jb j ), (B2c)

where S is the magnitude of the localized spins. To diagonal-
ize the Hamiltonian, we use the Fourier transform

ai = 1√
N

∑
q

aqe−iq·ri , (B3)

with the same convention for the b operator. We use the
Holstein-Primakoff transformation and subsequent Fourier
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FIG. 8. The magnon modes with Jnm/JAB = −0.5, Jd/JAB = 0,
and Kz/Jd = 0.01. Here, (a) shows ωα

q /JABS and (b) shows ωβ
q /JABS.

transform to find

Hm =
∑

q

{S[2Jnm cos (2qxa) + 2Jd cos (2qya)

− 2(Jd + Jnm )] + 4SJAB + 2SKz + Bz}a†
qaq

+ {S[2Jnm cos (2qya) + 2Jd cos (2qxa) − 2(Jd + Jnm )]

+ 4SJAB + 2SKz − Bz}b†
qbq

+ {2JABS[cos (qxa + qya) + cos (qxa − qya)]}aqb−q

+ {2JABS[cos (qxa + qya) + cos (qxa − qya)]}a†
qb†

−q.

(B4)

In a matrix form, the Hamiltonian is

Hm =
∑

q

(
a†

q b−q
)(A(q) B(q)

B(q) C(q)

)(
aq

b†
−q

)
, (B5)

where A, B,C can be read off from Eq. (B4). We di-
agonalize the Hamiltonian by introducing the Bogoliubov

transformation (
aq

b†
−q

)
=

(
uq vq

v∗
q u∗

q

)(
αq

β
†
−q

)
. (B6)

The transformation must respect bosonic commutation rela-
tions, which leads to the constraint

|uq|2 − |vq|2 = 1. (B7)

We choose

uq = i√
2

√
A + C√

(A + C)2 − 4B2
+ 1, (B8a)

vq = i√
2

√
A + C√

(A + C)2 − 4B2
− 1. (B8b)

The corresponding eigenvalues are

ωα
q = A − C

2
+ 1

2

√
(A + C)2 − 4B2 (B9a)

and

ωβ
q = C − A

2
+ 1

2

√
(A + C)2 − 4B2. (B9b)

These are shown in Fig. 8.

APPENDIX C: ELECTRON-MAGNON COUPLING

This section considers the s-d coupling between itinerant
electrons and localized spins. We consider the local coupling

Hem = Jsd

∑
i

Si · si, (C1)

where Si is the localized spin at site i and si =∑
σ,σ ′ c†

i,σ σσσ ′ci,σ ′ is the spin of the itinerant electrons at site
i. We use the Holstein-Primakoff transformation in Eq. (B2)
to find

Hem = Jsd

∑
i, j

{
√

2S(aic
†
i,↓ci,↑ + a†

i c†
i,↑ci,↓ + b†

jc
†
j,↓c j,↑ + b jc

†
j,↑c j,↓) + S[(c†

i,↑ci,↑ + c†
j,↓c j,↓) − (c†

i,↓ci,↓ + c†
j,↑c j,↑)]

+ [b†
jb j (c

†
j,↑c j,↑ − c†

j,↓c j,↓) − a†
i ai(c

†
i,↑ci,↑ − c†

i,↓ci,↓)]}. (C2)

Here, the first term describes an electron spin-flip process due to a single magnon. Because this term induces a spin flip, it is
restricted to scattering between altermagnetic domains in momentum space. We account for the second term in the electron
Hamiltonian in Eq. (2) because it will not induce any effective interaction but give rise to spin splitting. The third term is bilinear
in magnon operators. This term is often neglected. However, for altermagnets with large spin splitting, we expect the third term
to be the dominant contribution to superconductivity.

We Fourier-transform the electron-magnon terms in Eq. (C2) to find

Hem = Jsd

∑
k,q

{√
2S√
N

(aqc†
a,k+q,↓ca,k,↑ + a†

qc†
a,k−q,↑ck,↓ + b†

qc†
b,k−q,↓cb,k,↑ + bqc†

b,k+q,↑cb,k,↓)

+
∑

q′

1

N
[b†

q′bq(c†
b,k+q−q′,↑cb,k,↑ − c†

b,k+q−q′,↓cb,k,↓) − a†
q′aq(c†

a,k+q−q′,↑ca,k,↑ − c†
a,k+q−q′,↓ca,k,↓)]

}
. (C3)

In terms of band electron operators and magnon operators, the interaction is Hem = H (1)
em + H (2)

em with

H (1)
em = Jsd

√
2S√
N

∑
k,q

{[(

A

k+q,k,↓,↑uq + 
B
k+q,k,↓,↑v∗

q

)
αq + (


A
k+q,k,↓,↑vq + 
B

k+q,k,↓,↑u∗
q

)
β

†
−q

]
d†

k+q,↓dk,↑

+ [(

A

k+q,k,↑,↓u∗
q + 
B

k+q,k,↑,↓vq
)
α

†
−q + (


A
k+q,k,↑,↓v∗

q + 
B
k+q,k,↑,↓uq

)
βq

]
d†

k+q,↑dk,↓
}
. (C4)
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The second contribution is

H (2)
em =

∑
k,q,q′,σ

Jsdσ

N

[

B

k+q′−q,k,σ,σ (v∗
qvq′α−qα

†
−q′ + v∗

quq′α−qβq′ + u∗
qvq′β†

qα
†
−q′ + u∗

quq′β†
qβq′ )

− 
A
k+q′−q,k,σ,σ (u∗

quq′α†
qαq′ + u∗

qvq′α†
qβ

†
−q′ + v∗

quq′β−qαq′ + v∗
qvq′β−qβ

†
−q′ )

]
d†

k+q′−q,σ
dk,σ . (C5)

We introduced the electron coefficients 
A
k′,k,σ ′,σ ≡

q∗
a,k′,σ ′qa,k,σ and 
B

k′,k,σ ′,σ ≡ q∗
b,k′,σ ′qb,k,σ . We only consider

scattering on the Fermi surface, such that the band subscript
n is redundant.

APPENDIX D: EFFECTIVE INTERACTION

In this section, we derive an effective electron-electron
interaction mediated by the electron-magnon coupling. We do
so using a Schrieffer-Wolff transformation [54].

Let H0 = He + Hm and H1 = Hem such that we have H =
H0 + ηH1. Now, we let

H ′ = e−ηSHeηS (D1)

and expand to find

H ′ = H0 + η(H1 + [H0, S]) + η2[H1, S]

+ η2

2
[[H0, S], S] + O(η3). (D2)

To eliminate the linear term, we require

H1 + [H0, S] = 0. (D3)

To that end, we make the ansatz

S = SA
1 + SB

1 +
∑

σ

(
SA

2σ + SB
2σ

)
, (D4)

with

SA
1 = Jsd

√
2S√
N

∑
k,q

× [

A

k+q,k,↓,↑(xk,quqαq + yk,qvqβ
†
−q)d†

k+q,↓dk,↑

+
A
k+q,k,↑,↓(zk,qu∗

qα
†
−q + wk,qv

∗
qβq)d†

k+q,↑dk,↓
]
,

(D5a)

SB
1 = Jsd

√
2S√
N

∑
k,q

× [

B

k+q,k,↓,↑(xk,qv
∗
qαq + yk,qu∗

qβ
†
−q)d†

k+q,↓dk,↑

+
B
k+q,k,↑,↓(zk,qvqα

†
−q + wk,quqβq)d†

k+q,↑dk,↓
]
,

(D5b)

SA
2σ = Jsd

N

∑
k,q,q′

−σ (u∗
quq′xAσ

k,q,q′α
†
qαq′ + u∗

qvq′yAσ
k,q,q′α

†
qβ

†
−q′

+ v∗
quq′zAσ

k,q,q′β−qαq′ + v∗
qvq′wAσ

k,q,q′β−qβ
†
−q′ )

× (

A

k+q−q′,k,σ,σ d†
k+q−q′,σ dk,σ

)
, (D5c)

and

SB
2σ = Jsd

N

∑
k,q,q′

σ
(
v∗

qvq′xBσ
k,q,q′α−qα

†
−q′ + v∗

quq′zBσ
k,q,q′α−qβq′

+ u∗
qvq′yBσ

k,q,q′β
†
qα

†
−q′ + u∗

quq′wBσ
k,q,q′β

†
qβq′

)
× (


B
k+q−q′,k,σ,σ d†

k+q−q′,σ dk,σ

)
. (D5d)

The condition in Eq. (D3) determines the parameters

xk,q = 1

εk,↑ − εk+q,↓ + ωα
q
, (D6a)

yk,q = 1

εk,↑ − εk+q,↓ − ω
β
q

, (D6b)

zk,q = 1

εk,↓ − εk+q,↑ − ωα
q
, (D6c)

wk,q = 1

εk,↓ − εk+q,↑ + ω
β
q

, (D6d)

and

xAσ
k,q,q′ = 1

εk,σ − εk+q−q′,σ − ωα
q + ωα

q′
, (D7a)

yAσ
k,q,q′ = 1

εk,σ − εk+q−q′,σ − ωα
q − ω

β

−q′
, (D7b)

zAσ
k,q,q′ = 1

εk,σ − εk+q−q′,σ + ωα
q′ + ω

β
−q

, (D7c)

wAσ
k,q,q′ = 1

εk,σ − εk+q−q′,σ − ω
β

−q′ + ω
β
−q

, (D7d)

xBσ
k,q,q′ = 1

εk,σ − εk+q−q′,σ − ωα
−q′ + ωα−q

, (D8a)

yBσ
k,q,q′ = 1

εk,σ − εk+q−q′,σ − ωα
−q′ − ω

β
q

, (D8b)

zBσ
k,q,q′ = 1

εk,σ − εk+q−q′,σ + ωα−q + ω
β

q′
, (D8c)

wBσ
k,q,q′ = 1

εk,σ − εk+q−q′,σ − ω
β
q + ω

β

q′
. (D8d)

The C2z symmetry in Eq. (1a) leads to ω−q = ωq. The case
ωα

q = ω
β
q distinguishes these parameters from their analogs in

conventional antiferromagnets.
The effective interaction is

Heff = η2

2
[H1, S]. (D9)
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This commutator gives rise to several terms. We consider the quartic terms in electron operators because these terms constitute
an effective electron-electron interaction. We consider scattering processes on the Fermi surface between electrons of opposite
momentum only. The resulting interaction is

He−e =
∑
k,k′

V (1)
k,k′d

†
k′,↑d†

−k′,↓d−k,↓dk,↑ +
∑

k,k′,σ

V (2)
k,k′,σ d†

k′,σ d†
−k′,σ d−k,σ dk,σ , (D10)

with

V (1)
k,k′ = J2

sdS

N

[
1

ωα
k+k′

(

A

k′,k,↑,↓
A
k′,k,↓,↑|uk′+k|2 + 
B

k′,k,↑,↓
B
k′,k,↓,↑|vk′+k|2

)

+ 1

ω
β

k+k′

(

A

k′,k,↑,↓
A
k′,k,↓,↑|vk′+k|2 + 
B

k′,k,↑,↓
B
k′,k,↓,↑|uk′+k|2

)

+
(

1

ωα
k+k′

+ 1

ω
β

k+k′

)
uk+k′vk+k′

(

A

k′,k,↑,↓
B
k′,k,↓,↑ + 
B

k′,k,↑,↓
A
k′,k,↓,↑

)]
(D11)

and

V (2)
k,k′,σ = J2

sd

N2

∑
Q

(

A

k′,k,σ,σ
|v Q−(k′−k)

2
||u Q+(k′−k)

2
| − 
B

k′,k,σ,σ
|v Q+(k′−k)

2
||u Q−(k′−k)

2
|)2

yAσ

k,
Q+(k′−k)

2 ,
Q−(k′−k)

2

. (D12)

Here, the first term is an interaction between electrons of
opposite spins. This term cannot give rise to zero-momentum
Cooper pairs for spin-polarized bands and, thus, not a robust
superconducting state. However, the interaction in Eq. (D11)
could be relevant for weak altermagnets. In this case, there
is no PT symmetry relating 
A and 
B as for conventional
antiferromagnets. This is interesting because it could lead to
an intrinsic squeezing-enhanced superconducting state. For
conventional antiferromagnets, this behavior is reserved for
uncompensated interfaces [52,53]. In the second term, we in-
troduced Q = q + q′. In the following, we consider potential
superconductivity arising from the interaction in Eq. (D12).

APPENDIX E: SUPERCONDUCTIVITY

To estimate the critical temperature and the k dependence
of superconducting gap �k,σ , we consider the linearized gap
equation

�k,σ = −
∑

k′
Vk,k′,σ

�k′,σ

εk′,σ
tanh

(
βεk′,σ

2

)
. (E1)

In the continuum limit, the sum is equivalent to an integral
over the Brillouin zone:

�k,σ = − N

ABZ

∫
BZ

dk′Vk,k′,σ
�k′,σ

εk′,σ
tanh

(
βεk′,σ

2

)
. (E2)

We now assume that the effective interaction and the gap are
constant perpendicular to the Fermi surface for |εk| < ωM and
zero otherwise. The integral separates into one part perpendic-
ular to the Fermi surface, and one parallel to the Fermi surface.
We get

�k‖,σ = − 2N

ABZ

∫
dk′

‖

∣∣∣∣ dε

dk′
⊥

∣∣∣∣
−1

Vk‖,k′
‖,σ�k′

‖,σ

×
∫ ωM

0
dε

tanh βε/2

ε
. (E3)

Here, ωM is the magnon cutoff frequency. We solve for the
largest eigenvalue of the equation

− 2N

ABZ

∫
dk′

‖

∣∣∣∣ dε

dk′
⊥

∣∣∣∣
−1

Vk‖,k′
‖,σ �k′

‖,σ = λ�k‖,σ . (E4)

Equivalently, we have

− 2NSFS

NsampABZ

∑
k′

‖

∣∣∣∣ dε

dk′
⊥

∣∣∣∣
−1

Vk‖,k′
‖,σ�k′

‖,σ = λ�k‖,σ . (E5)

The number of points N in the Brillouin zone in the numerator
cancels to the denominator in Vk,k′,σ . The area of the Brillouin
zone is ABZ = π2. We sample the Fermi surface uniformly
at intervals given by Eq. (A14) with a total of Nsamp points.
Now, Eq. (E5) has multiple eigenvalues. We pick out the
largest one because it determines the critical temperature. The
corresponding eigenvector gives the k dependence of the gap
�k,σ . We get

1 = λeff

∫ ωM

0
dε

tanh βcε/2

ε
, (E6)

where βc is the inverse critical temperature. The critical
temperature is then related to the largest eigenvalue shown in
Eq. (13).

APPENDIX F: ALTERMAGNETISM DUE TO ORDERING
OF LOCAL ORBITALS

The main text considers the interplay between magnetic
and nonmagnetic sites as an origin of altermagnetic properties.
Anisotropic ordering of local orbitals is a different mechanism
that can potentially induce an altermagnetic state.

In this section, we briefly consider the mechanism of or-
bital ordering as the origin of altermagnetism. To that end,
we employ a tight-binding model with anisotropic hopping
parameters on the lattice in Fig. 9(a).
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FIG. 9. (a) A two-dimensional altermagnet, with lattice sites that
reflect an ordering of local atomic or molecular orbitals. The or-
bital ordering breaks the PT symmetry to allow for altermagnetic
properties. (b) The electron dispersion for the tight-binding model in
Eq. (F1) with t ′

2/t = 1, t2/t = 0.4, JsdS/t = 0.4, and μ/t = 0. The
bands are spin split due to the anisotropic hopping parameter.

We capture the electron properties of the orbital altermag-
net through the tight-binding model

He = td
∑

〈i, j〉,σ
c†

i,σ c j,σ + t2
∑

〈〈i, j〉〉,σ
c†

i,σ c j,σ + t ′
2

∑
〈〈i, j〉〉,σ

c†
i,σ c j,σ

− Jsd

∑
i,σ,σ ′

Si · c†
i,σ σσσ ′ci,σ ′ − μ

∑
i,σ

c†
i,σ ci,σ . (F1)

Here, td is the hopping parameter for diagonal hopping, and
t2 and t ′

2 denote hopping along the solid and dotted lines in
Fig. 9(a), respectively.

The electron eigenvalues are

ε1(k) = Ae + Ce −
√

4B2
e + (Ce − Ae ± JsdS)2 − μ,

(F2a)

ε2(k) = Ae + Ce +
√

4B2
e + (Ce − Ae ± JsdS)2 − μ,

(F2b)

where (+) is for the spin-up bands and (−) is for the spin-
down bands. The parameters are defined as

Ae(k) = t2 cos (kxa) + t ′
2 cos (kya), (F3a)

Be(k) = t[cos (kxa + kya) + cos (kxa − kya)], (F3b)

Ce(k) = t2 cos (kya) + t ′
2 cos (kxa). (F3c)

The spin splitting can be found directly from Eq. (F2) for both
bands. It is

�ss(k) = ±
[√

4B2
e + (Ce − Ae + JsdS)2

−
√

4B2
e + (Ce − Ae − JsdS)2

]
, (F4)

where we use (+) for the upper bands and (−) for the lower
bands.
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