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Spectral evolution of the s = 1
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We employ spin-cluster perturbation theory to investigate the evolution of the spin excitation spectra of
the mixed-dimensional antiferromagnetic s = 1

2 Heisenberg models from the one-dimensional chain to the
two-dimensional square and honeycomb lattices by varying the spin interactions J⊥ across the chains relative
to J‖ along the chains. In addition to the well-defined magnon excitations, the spectra of the Néel phases
for both lattices exhibit anomalous high-energy continua that evolve continuously from the continuum of
one-dimensional chain through increasing J⊥. Notably, the key features of the continua at the two-dimensional
limit for J⊥/J‖ = 1 are well consistent with experimental observations in real materials. Our results indicate that
these high-energy continua in the Néel phases are a result of spinon deconfinement, which is further supported
by a random-phase-approximation analysis based on the spinon Hubbard models.
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I. INTRODUCTION

In conventional magnets with long-range magnetic orders,
low-energy magnetic excitations are described by spin-wave
theory, in which the elementary excitations are magnons
with integral spin s = 1. In contrast, in one-dimensional an-
tiferromagnetic (AFM) spin- 1

2 systems, such as the AFM
Heisenberg chain, quantum fluctuations destroy the long-
range orders and cause their elementary excitations to be
s = 1

2 quasiparticles called spinons [1]. Spinons are cre-
ated in pairs by spin-flip excitations, such as in inelastic
neutron scattering (INS) [2–6] or resonant inelastic x-ray
scattering experiments [7–10], which results in the spin ex-
citations exhibiting as two-spinon continua. For example,
in the Heisenberg spin- 1

2 chain with only nearest-neighbor
(NN) AFM exchange interaction, a prototypical system that
can be solved exactly based on the Bethe ansatz [11], the
spin-excitation spectrum appears as a complete continuum
[3,4,12,13]. The fractionalized spinon excitation is not only a
feature of the one-dimensional AFM spin chains but also ex-
ists in the two-dimensional quantum spin liquids [14–19], so
the two-spinon continua are key experimental signatures for
identifying the quantum spin liquid states. On the other hand,
based on the picture of spinons, a single magnon excitation
in the magnetically ordered phases can also be considered the
confinement of two spinons [20–37], which is analogous to
the confinement of quarks in particle physics where quarks are
bounded into baryons and mesons. Thus, the confinement and
deconfinement of the spinons in quantum magnetic systems
have attracted considerable interest in recent studies.

For the magnetically ordered phases, although the low-
energy magnon spectra predicted by linear spin-wave (LSW)
theory are well consistent with the experimental results, the
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high-energy anomalous continua have been observed recently
in INS experiments [21–23,38,39]. For example, an INS ex-
periment on the square-lattice compound Cu(DCOO)2 · 4D2O
has revealed a high-energy continuum around the (π, 0) point
in the Brillouin zone (BZ) [23], and a recent experiment on
the honeycomb-lattice compound YbCl3 has shown a more
remarkable continuum existing around the corners (K point)
of the BZ together with a relatively weak dome-shaped broad
continuum extending to the whole BZ [38]. Although the
nature of these anomalous continua is still under debate, there
has been intense discussion regarding the possibility of the co-
existence of conventional magnon excitations and deconfined
spinons [20–37].

The fact that both one- and two-dimensional spin systems
exhibit continua in their spectra motivates us to investigate
the connection between them. Two-dimensional systems can
be viewed as those composed of coupled one-dimensional
chains, so we can study the evolution of excitation spec-
tra from one to two dimensions by changing the interchain
couplings. This may reveal the deconfinement and confine-
ment of spinons from one to two dimensions and provide
insight into the possible mechanisms behind the continua
in two-dimensional magnetically ordered systems. Authors
of previous studies on coupled spin chains have suggested
that even small interchain interactions can stabilize long-
range orders [40–45]. When magnetic orders start to develop,
the confinement of the spinons will occur [5,46]. When the
interchain interaction is small, we can use a mean-field ap-
proximation to decouple the interchain interactions and map
the original system to separate chains with additional on-
site magnetic fields, which can result in the confinement of
spinons in the spin chains [42,47]. Moreover, experimental
realizations of quasi-one-dimensional spin systems provide
ideal platforms to study the physics in weakly coupled chains.
Theoretical predictions that small interchain interactions can
induce the confinement of the spinons have been supported
by INS experiments on such materials [5,5,6,33,48–51]. For
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instance, an INS experiment on ScCo2V2O8 [5], which is
believed to be a realization of the quasi-one-dimensional
spin- 1

2 XXZ model, has revealed long-range magnetic order,
loss of spectral weight of the two-spinon continuum, and
clear magnon dispersion at low temperatures. However, at
high temperatures, it exhibits one-dimensional features with
a complete two-spinon continuum. Thus, exploring the evo-
lution of spin-excitation spectra with interchain couplings is
also essential for understanding the spin dynamics of some
quasi-one-dimensional systems with nonnegligible interchain
exchange interactions.

In this paper, we utilize spin-cluster perturbation theory
(CPT) to study the evolution of spin excitation spectra from a
one-dimensional AFM chain to two-dimensional AFM square
and honeycomb lattices by increasing the interchain cou-
pling J⊥ from 0 to J⊥/J‖ = 1, where J‖ is the exchange
interaction along the chains. Our results show that a small
interchain coupling can induce long-range AFM order, which
is consistent with experimental observations in many quasi-
one-dimensional materials exhibiting AFM ordered ground
states at low temperatures [5,33,48–51]. The CPT results re-
veal that the continua, originating from spinon deconfinement
in the one-dimensional chain, continuously evolve as the sys-
tem transforms from the chain to two-dimensional lattices.
Notably, even in the AFM Néel state at the two-dimensional
limit (J⊥/J‖ = 1), there remains a distinct high-energy con-
tinuum in the spin excitation spectrum. Specifically, for the
square lattice, the continuum is mainly concentrated at the
(π, 0) point, while for the honeycomb lattice, the continuum
is distributed over a large area around the �′ point and forms
a dome shape with its maximal intensity at the K point. Ad-
ditionally, the magnon dispersions exhibit a local minimum at
the (π, 0) point of the square lattice and the K point of the
honeycomb lattice, which obviously deviates from the results
of LSW theory. The key features of the high-energy continua
and magnon dispersions at J⊥/J‖ = 1 agree well with the
results of INS experiments on square- and honeycomb-lattice
AFM materials [21–23,38]. The continuous evolution of the
continua from one to two dimensions suggests that the con-
tinua in two dimensions in certain momentum regions at high
energies are a result of partial deconfinement of the spinons,
and the local minima in the magnon dispersions arise from
the coupling between magnons and spinons. To further ver-
ify this viewpoint, we use the random-phase-approximation
(RPA) method to study the spinon Hubbard models, which
has been proven successful in studying the spin dynamics
of Heisenberg models [31,34,52,53]. Within the RPA calcu-
lations, the continua arise from the particle-hole excitations
corresponding to the two-spinon excitations. The RPA results
successfully reproduce all the key features of the continua
and magnon dispersions in the CPT results, thus providing
strong support for the continua at high energies of the AFM
Néel phases originating from the mechanism of partial spinon
deconfinement.

II. MODEL AND METHOD

The mixed-dimensional AFM Heisenberg model com-
posed of coupled spin chains we consider here is

given by

H = J‖
∑
〈i j〉‖

Si · S j + J⊥
∑
〈i j〉⊥

Si · S j, (1)

where J‖ (J⊥) denotes the NN exchange interaction along
(across) the one-dimensional chains, and 〈i j〉‖(〈i j〉⊥) repre-
sents the corresponding bonds.

To obtain the reliable spin dynamical structure factor of
the model in Eq. (1), we employ the CPT method for the
spin systems [26,37]. The CPT method combines the exact
diagonalization (ED) of a small cluster to capture short-range
correlations and a perturbative treatment of intercluster cou-
plings to obtain properties of the infinite lattice. The key
advantage of the CPT method lies in its ability to approx-
imate the excitation spectrum in the thermodynamic limit,
thereby overcoming the limitation of the ED method, which
is confined to handling small-sized systems, while the CPT
method does not exactly consider the strongly correlated ef-
fects beyond the small clusters. Initially, the CPT method was
used to study the single-particle excitation spectrum of the
strongly correlated electron systems [54–58]. To extend the
CPT method to the spin system, we map the spin- 1

2 operators
to the hard-core bosonic operators [59]:

S+
i = b†

i , S−
i = bi, Sz

i = b†
i bi − 1

2 , (2)

where b†
i and bi are the creation and annihilation operators

of the hard-core boson. The hard-core bosonic operators obey
the following commutation relations:

[bi, b j] = [b†
i , b†

j] = 0, [bi, b†
j] = δi j (1 − 2b†

i bi ), (3)

and the hard-core constraint: the eigenvalue of ni = b†
i bi is 0

or 1. The spin Hamiltonian in Eq. (1) can be rewritten in the
form of the hard-core bosonic operators as

H = 1

2
J‖

∑
〈i j〉‖

(b†
i b j + H.c.)

+ J‖
∑
〈i j〉‖

nin j − 2J‖
∑

i

ni

+ 1

2
J⊥

∑
〈i j〉⊥

(b†
i b j + H.c.)

+ J⊥
∑
〈i j〉⊥

nin j − 2J⊥
∑

i

ni. (4)

Now we can use the bosonic version of the CPT method
[60,61]. In the CPT method, the original lattice is divided
into identical clusters, which form a superlattice. Conse-
quently, we can rewrite the Hamiltonian as H = Hc + V ,
where Hc is the cluster Hamiltonian and V represents the
coupling between different clusters. Afterward, the original-
lattice Green’s function in matrix form is given by

g(k̃, ω + iη) = G(ω + iη)[1 − V (k̃)G(ω + iη)]−1, (5)

where k̃ is the wave vector in the BZ of the superlattice and ω

is the frequency. Here, η is a broadening parameter, G(ω + iη)
is the cluster Green’s function and can be calculated by the ED
at zero temperature [62], and V (k̃) can be written as V (k̃)μν =∑

R V 0R
μν eik̃·R, where R is the superlattice index and μ, ν are
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FIG. 1. (a) and (b) are clusters used in cluster perturbation theory
(CPT) calculations for J⊥/J‖ � 0.5 to tile the square and honeycomb
lattices, respectively. (c) Path consisting of the high-symmetry points
in the Brillouin zone (BZ) used to illustrate the excitation spectra for
the honeycomb lattice.

the site indices in a cluster. Since in the CPT method the
intercluster coupling in V should be quadratic, we perform the
following mean-field approximation on the NN interactions
[26,37]:

nin j → 〈ni〉n j + ni〈n j〉. (6)

Due to the fact that the original-lattice translation symmetry
is broken in the CPT method, we carry out a periodization
procedure and the Green’s function is given by

gcpt(k, ω + iη) = 1

L

∑
μν

exp[−ik · (rμ − rν )]gμν (k̃, ω + iη),

(7)

where L is the number of sites in a cluster. Here, k denotes the
wave vector in the BZ of the original lattice, and it can be ex-
pressed as k = k̃ + K , where K is the reciprocal vector of the
superlattice. The spin-dynamical structure factor S+−(k, ω) is
then given by

S+−(k, ω) = − 1

π
Imgcpt(k, ω + iη), (8)

where η = 0.15J‖ is used to determine the broadening of the
spectrum.

As the CPT method does not exactly consider the strongly
correlated effects beyond the small clusters, the obtained re-
sults still exhibit finite-sized effects [63]. In the following
calculations for the square and honeycomb lattices, we em-
ploy two types of clusters. For the regime of weak interchain
coupling where J⊥/J‖ < 0.5, we use a 2 × 12 cluster. For
J⊥/J‖ � 0.5, we use the clusters as shown in Figs. 1(a) and
1(b), which maintain the point group symmetry of the original
lattices as much as possible. All the calculations are carried
out at zero temperature.

III. RESULTS

A. CPT results

Let us first discuss the case of the square lattice. For
J⊥ = 0, the model becomes a set of completely decoupled
spin chains, which has been well investigated by analytical
and numerical methods [1,11,12,64]. In this case, the ground
state is magnetically disordered due to the strong quantum
fluctuations, and the elementary excitations are fractionalized
s = 1

2 spinons, which correspondingly results in a contin-
uum of spin-excitation spectra. As shown in Fig. 2(a), the
CPT method successfully reproduces the broad two-spinon

FIG. 2. Dynamical structure factor S+−(q, ω) for the square-
lattice Heisenberg model. (a)–(f) correspond to J⊥/J‖ values of 0,
0.2, 0.4, 0.6, 0.8, and 1, respectively. The white solid lines represent
the linear spin-wave (LSW) dispersion with the 1/S correction. The
white dashed line in (f) indicates the lower boundary of the contin-
uum. The unit of the color bar is 1/J||.

continuum for J⊥ = 0 that is consistent with previous theo-
retical studies [12,65–67] and experimental observations [4].
When the interchain interactions are turned on, the cou-
pling between chains will lead to the confinement of spinons
via the inducing of an attractive interaction between spinon
pairs and results in a magnetically ordered state [5]. In our
calculation, we find that the AFM Néel transition, character-
ized by a nonzero average value of Sz on each site, occurs
at Jc

⊥ = 0.025J‖, which is consistent with the experimental
results of many quasi-one-dimensional materials exhibiting
magnetic order at low temperatures [5,5,6,33,48–51]. Accord-
ing to the Bethe ansatz solution [11], the ground state of the
one-dimensional AFM Heisenberg model already possesses
quasi-long-range order with a spin-spin correlation function
that decreases very slowly, as 1/r up to logarithmic cor-
rections, so a small interchain coupling J⊥ can induce true
long-range order. When J⊥ > Jc

⊥, gaps develop along the
momentum direction from (π, 0) to (π, π ) with the only
exception at (π, π ) [see Fig. 2(b)]. The openings of these
gaps are attributed to the effect of the interchain couplings,
which produces the dispersion of the spinons in the direc-
tion perpendicular to the chains, and it provides a necessary
condition for the Goldstone mode of the magnetic ordered
phase at the (π, π ) point. In the same way, excitation spectra
also appear along the (0, 0) to (0, π ) direction. In Figs. 2(b)–
2(f), we also plot the magnon dispersion as a solid white
line, which is calculated by LSW theory with 1/S correction
[68]. One can see that the excitation spectra along the (π, 0)
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FIG. 3. Evolution of the energy distribution of S+−(q, ω) for the
square-lattice Heisenberg model with J⊥/J‖. (a) q = (π, 0). (b) q =
(π/2, π/2).

to (π, π ) and (0, 0) to (0, π ) directions follow qualitatively
the magnon dispersion, suggesting their magnon character.
However, the energy of the magnons calculated by the CPT
method is significantly lower than that predicted by LSW
theory for a small J⊥ [see Figs. 2(b) and 2(c)]; this dis-
tinction is most notable in the vicinity of the (π, 0) point.
This indicates that the quantum fluctuations are strong for a
small J⊥ and have the most significant impact on the spin
excitation around the (π, 0) point. Moreover, the continuum
along (π, 0) to (π, π ) remain. With the further increase of the
interchain coupling, the continuum becomes weaker, while
the spectral intensity of the magnon becomes stronger and
the magnon dispersion is more consistent with LSW theory
with 1/S correction [Figs. 2(d)–2(f)], which is intimately re-
lated to the enhancement of AFM order. We notice that the
spectrum exhibits a saddle point fixed at the (π, 0) point,
and the broad continuum evolves smoothly from one to two
dimensions. As shown in Fig. 2(f), at the two-dimensional
limit (J⊥ = J‖), the saddle point at the (π, 0) point becomes a
local minimum in the magnon dispersion, whereas in contrast,
the magnon dispersion in LSW theory is flat. Meanwhile, al-
though the continuum becomes very weak overall at J⊥ = J‖,
it still retains significant intensities around the (π, 0) point
at high energies. These unconventional magnetic excitation
characteristics in the AFM Néel phase obtained from the
CPT calculations for J⊥ = J‖, including the presence of a
local minimum in the magnon dispersion at the (π, 0) point
and the existence of a high-energy continuum around the
same point, are qualitatively consistent with the experimental
observations in Cu(DCOO)2 · 4D2O [23], a well-established
example of the square-lattice NN Heisenberg AFM model
with J⊥ = J‖ = 6.11 meV. The results for J⊥ = J‖ are also
consistent with the previous theoretical findings obtained from
the variational Monte Carlo [23,25] and stochastic series ex-
pansion quantum Monte Carlo [24] approaches. To examine
the weak continuum in two dimensions more closely, we
present the evolutions of the spectra at (π, 0) and (π/2, π/2)
points in Figs. 3(a) and 3(b), respectively. For J⊥ = 0, the line
shape significantly deviates from the character of the single
magnon excitation, namely, the Lorentz line shape. Instead, it
consists of a complete two-spinon continuum, which is con-
sistent with the exact results obtained using the Bethe ansatz
[3,4,11,12]. As J⊥ increases, the spectra become closer to a
standard Lorentz line shape, indicating that the elementary
excitation changes from spinon to magnon. However, even
for J⊥ = J‖, a noticeable non-Lorentzian tail remains in the

FIG. 4. Dynamical structure factor S+−(q, ω) for the
honeycomb-lattice Heisenberg model. (a)–(f) correspond to
J⊥/J‖ values of 0, 0.2, 0.4, 0.6, 0.8, and 1, respectively. The white
solid lines represent the linear spin-wave (LSW) dispersion with
the 1/S correction. The white dashed line in (f) indicates the lower
boundary of the continuum. The unit of the color bar is 1/J||.

spectrum at (π, 0), which represents a residual two-spinon
continuum. In contrast, at the (π/2, π/2) point, the spec-
trum has already evolved into a Lorentzian line shape with
a very small non-Lorentzian tail when J⊥/J‖ is increased to
0.2. Thus, our results support that the high-energy continuum
observed by INS in Cu(DCOO)2 · 4D2O [23] originates from
the deconfinement of spinons due to quantum fluctuations.

As is widely recognized, the honeycomb lattice exhibits
stronger quantum fluctuations than the square lattice, owing
to its lower coordination number. This is reflected in the fact
that the system only displays AFM order when J⊥/J‖ reaches
0.04 in our calculation, a threshold clearly higher than that
for the square lattice. The evolution of the excitation spectra
with interchain coupling J⊥/J‖ is illustrated in Fig. 4. It is
evident that the magnon dispersion calculated using the CPT
method exhibits clearly significant deviations from the pre-
dictions of LSW theory shown as the white solid line in the
figure, particularly near the K and M (M ′) points, which is a
clear indication of the strong quantum fluctuations present on
the honeycomb lattice. Although, like the square lattice, the
continuum weakens as J⊥/J‖ increases and the low-energy
one-magnon excitations can be described by LSW theory
with 1/S correction, there remains a more evident vestigial
continuum than the square lattice even at the two-dimensional
limit with J⊥/J‖ = 1. A dome-shaped continuum with the
upper boundary centering the �′ point can be seen clearly
and is consistent with the experimental observations in YbCl3

[38]. We find that this dome-shaped continuum evolves con-
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FIG. 5. Evolution of the energy distribution of S+−(q, ω) for the
honeycomb-lattice Heisenberg model with J⊥/J‖. (a) at K point.
(b) at M ′ point.

tinuously from the spinon continuum in the one-dimensional
case. Furthermore, as shown in Fig. 4(f) for J⊥/J‖ = 1, the
intensity of the continuum near the K point is significantly
higher than those at other points. To make it clearer, we
present the evolution of the spectra at K and M ′ points in
Figs. 5(a) and 5(b), respectively. At the M ′ point, as J⊥ in-
creases, the spectra become closer to a standard Lorentz line
shape corresponding to the one-magnon excitations, and the
small non-Lorentzian tail shifts to higher energies. In contrast,
at the K point, the non-Lorentzian tail does not show an
obvious decease as J⊥ increases, and the line shape of the
spectrum at J⊥/J‖ = 1 does not differ significantly from that
in the one-dimensional limit with J⊥/J‖ = 0. This indicates
that the spin excitations around the K point have obvious
spinon-deconfinement characteristics, and there is even no
well-defined one-magnon excitation. In contrast to the square
lattice (Fig. 3), we find that the spectra on the honeycomb
lattice display more pronounced continua deviating from the
magnon excitations (Fig. 5), reflecting the fact that the hon-
eycomb lattice possesses stronger quantum fluctuations than
the square lattice. Moreover, as shown in Fig. 4(f), our CPT
results demonstrate that the K point is a local minimum of
the one-magnon dispersion. This finding is consistent with
the experimental observation in YbCl3 [38], which can be
effectively described by the NN AFM Heisenberg model with
J⊥ = J‖ = 0.421 meV. In contrast, according to LSW theory,
the one-magnon dispersion at the K point is expected to pos-
sess a local maximum, represented by the solid white line in
Fig. 4(f). On the other hand, we notice that this local minimum
moves from M to K as J⊥/J// is increased from 0 to 1, while
the local minimum of in LSW theory is always at the M point
without moving.

B. Comparisons between CPT and RPA results

Our CPT results indicate a close connection between the
deconfinement of spinons and the anomalous continua in the
two-dimensional Heisenberg model on the square and honey-
comb lattices, via a systematic study of the spectrum evolution
from one to two dimensions. To further support this view-
point, we use the RPA method to analyze the spin-excitation
spectra in the spinon Hubbard models. Evidently, in these
models, the confinement and deconfinement of spinons give
rise to magnons and continua, respectively. By comparing the
CPT and RPA results, we can gain a deeper understanding of
the origin of the anomalous continua in the two-dimensional
Heisenberg models.

The spinon Hubbard model we consider here is

H = H0 + U
∑

i

ni↑ni↓, (9)

where H0 is the free part of the spinon Hamiltonian. For
the square lattice, the π -flux resonating-valence-bond (RVB)
ansatz is employed [69]:

H0 =
∑

i∈A,σ

(t‖ f †
iσ fi±x̂σ + eiπ/2t⊥ f †

iσ fi±ŷσ + H.c.), (10)

where the sum only applies to one sublattice and f †
iσ ( fiσ ) is

the creation (annihilation) operator of the spinon with spin σ

at site i. For the honeycomb lattice, the uniform RVB ansatz
is used [30]:

H0 =
∑
〈i j〉‖σ

(t‖ f †
iσ f jσ + H.c.) +

∑
〈i j〉⊥σ

(t⊥ f †
iσ f jσ + H.c.). (11)

Here, t‖ and t⊥ are the NN hoppings on the intrachain and
interchain bonds, respectively, while 〈i j〉‖ and 〈i j〉⊥ represent
the corresponding bonds.

To investigate the spin excitation of the AFM Néel phase,
we decoupled the Hubbard interaction with the AFM order
parameter, resulting in the following mean-field Hamiltonian:

HMF =
∑
〈i j〉σ

(ti j f †
iσ f jσ + H.c.) − U

∑
i

mi(ni↑ − ni↓). (12)

Here, mA = −mB = m represents the AFM order parameter,
where A and B denote the two sublattices. For the square
lattice, the mean-field dispersion is given by

E±(k) = ±εk

= ±
√

4
(
t2
‖ cos2 kx + t2

⊥ cos2 ky
) + U 2m2, (13)

while for the honeycomb lattice, the dispersion takes the form:

E±(k) = ±εk

= ±
√

|t‖[exp(ik · δ1) + exp(ik · δ2)] + t⊥|2 + U 2m2,

(14)

where δ1 = (−
√

3
2 ,− 3

2 ) and δ2 = (
√

3
2 ,− 3

2 ). Furthermore, the
AFM order parameter satisfies the self-consistent constraint
1
U = 1

N

∑
k

1
εk

, where N is the number of lattice sites.

The bare-spin susceptibility for the mean-field Hamilto-
nian is expressed as follows:

χ0,+−
αβ (q, iωn)

= 1

Nc

∫ β

0
exp(iωnτ )〈Tτ [S+

α,q(τ )S−
β,−q(0)]〉0, (15)

where α, β = A, B are the sublattice labels, Nc is the number
of the unit cells, and S+/−

α,q = ∑
R exp[iq · (R + rα )]S+/−

α,R , with
R the unit cell index and rα the position of the α sublattice in
a unit cell. The RPA spin susceptibility is given by [52,53,
70–72]

χ+− = χ0,+−[1 − Uχ0,+−]−1. (16)
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FIG. 6. Spectral functions obtained from the random-phase-
approximation (RPA) calculations for the spinon Hubbard models
on the square and honeycomb lattices. (a)–(c) for the square lattice
with t⊥/t‖ = 0.6, 0.8, and 1, respectively. (d)–(f) for the honeycomb
lattice with t⊥/t‖ = 0.6, 0.8, and 1, respectively. The unit of the
color bar is 1/|t|||.

Here, χ0,+− and χ+− are matrices:

χ0,+− =
[

χ0,+−
AA χ0,+−

AB
χ0,+−

BA χ0,+−
BB

]
, χ+− =

[
χ+−

AA χ+−
AB

χ+−
BA χ+−

BB

]
.

(17)

Then we obtain the dynamical structure factor S+−(q, ω) =
Imχ+−(q, ω + iη)/π with χ+−(q, iωn) = ∑

ab χ+−
ab (q, iωn),

and we focus on the spin dynamics at zero temperature. Our
RPA analysis focuses on the AFM Néel phase, and we select
three relatively large interchain hoppings with t⊥/t‖ values of
0.6, 0.8, and 1.0, for which the AFM order parameter remains
relatively stable. Thus, we will fix the order parameter values,
which will not qualitatively affect our subsequent analysis.
For the square lattice, we set the mean-field AFM order pa-
rameter to m = 0.3. As shown in Figs. 6(a)–6(c) and 7, the
RPA analysis based on the spinon Hubbard model reproduces
all of the basic characteristics of the spin-excitation spec-
tra obtained from the above CPT calculations based on the
Heisenberg model. The magnon dispersion and its evolution
with the interchain coupling in the RPA and CPT results
are qualitatively consistent, especially that the saddle point is
fixed at the (π, 0) point and evolves into a local minimum
at t⊥/t‖ = 1 and J⊥/J‖ = 1. In both CPT and RPA results,
the continua above the magnon dispersions are predominantly
concentrated in the regions around the (π, 0) and (π, π )
points, and the overall spectral weights of the continua are
weakened with the increase of the interchain coupling. Like

FIG. 7. (a) and (b) Dynamical structure factors for the square
lattice at the two-dimensional limit from cluster perturbation theory
(CPT) and random-phase-approximation (RPA) methods, respec-
tively. (c) and (d) Dynamical structure factors for the honeycomb
lattice at the two-dimensional limit from the CPT and RPA methods,
respectively.

the two-dimensional Heisenberg model with J⊥/J‖ = 1, the
two-dimensional spinon Hubbard model with t⊥/t‖ = 1 also
has a significant continuum at the (π, 0) point that is close
to the magnon in energy. In the RPA analysis of the spinon
Hubbard model, the minimum of the continuum at the (π, 0)
point comes from the two-spinon excitations composed of the
two lowest-energy spinons at (±π/2,±π/2) [see Eq. (13)],
whose momentum difference is exactly (±π, 0) and (0,±π ).
Since the two-spinon continuum and the single-magnon exci-
tation are closest in energy at the (π, 0) point, the coupling
between them is strongest at this point. As a result, it is most
likely that one magnon will decay into two spinons, leading
to the deconfinement of spinons. Additionally, the coupling
between magnon and spinon creates a local minimum at
the (π, 0) point in the magnon dispersion. Equation (13)
shows that the momentum position of the minimum of the
spinon dispersion remains unchanged with variations in the
interchain coupling, which explains why the local minimum
of the magnon dispersion is fixed at the (π, 0) point and
does not change with the interchain couplings in both CPT
and RPA results. Furthermore, the lowest-energy spinons at
(±π/2,±π/2) can not only produce the minimum of the two-
spinon continuum at the (π, 0) point but also the minimum
at the (π, π ) point [see Fig. 6(c)]. This observation is also
consistent with the CPT result [see Fig. 2(f)].

For the honeycomb lattice, the spectra with the mean-field
order parameter of m = 0.25 are presented in Figs. 6(d)–6(f).
The same as the square lattice, the RPA analysis of the spinon
Hubbard model for the honeycomb lattice also captures the
key features of the spin-excitation spectra obtained from the
CPT calculations of the Heisenberg model described above.
Both the RPA and CPT results reveal that the magnon dis-
persion has a local minimum in the M-K direction, and the
position of the minimum shifts with the change of the inter-
chain couplings. In both cases where t⊥/t‖ = 1 and J⊥/J‖ =
1, this minimum is located at the K point. This local minimum
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of the magnon dispersion also comes from the magnon-spinon
coupling, as there is a minimum of the two-spinon continuum
close to the magnon energy at the same momentum point.
According to Eq. (14), the location of the minimum in the
spinon dispersion changes with t⊥, causing a corresponding
shift in the minimum of the two-spinon continuum and conse-
quently resulting in the change of the minimum of the magnon
dispersion as well. At t⊥/t‖ = 1, the minimum of the two-
spinon continuum moves to the K point, resulting in a strong
coupling between magnons and spinons and consequently the
spinon deconfinement. This explains why both experimental
observations and CPT calculations show the most significant
continuum at the K point for J⊥/J‖ = 1. Additionally, as
shown in Fig. 6(f), we note that the dome-shaped structure
of the continuum as well as the characteristics of its lower
boundary are consistent with the results obtained from CPT
calculations based on the Heisenberg model [Fig. 4(f)].

Therefore, according to the above discussion, the compar-
ison between the CPT and RPA results (also refer to Fig. 7)
further supports the spinon-deconfinement mechanism as the
origin of the anomalous continuum observed in experiments
in the AFM Néel states. Moreover, the agreement between the
CPT and RPA results provides a more lucid explanation of the
mechanism.

IV. SUMMARY

In this paper, we used the spin-CPT method to investigate
the evolution of the spin-excitation spectrum of the mixed-
dimensional Heisenberg model on square and honeycomb
lattices by varying J⊥/J‖. We uncover detailed evolutions of
the spectra of two-spinon continua and magnons with J⊥/J‖.
At the two-dimensional limit with J⊥/J‖ = 1, there remains
a distinct high-energy continuum in the AFM Néel phases.
Specifically, for the square lattice, the continuum is mainly
concentrated at the (π, 0) point, and for the honeycomb lat-
tice, a dome-shaped continuum around the �′ point is formed
with its maximal intensity at the K point. Our results suggest

that the continuum at high energies in the two-dimensional
limit results from the deconfinement of spinons. To further
support this mechanism, we use the RPA method to obtain
the spin-excitation spectra of the spinon Hubbard models in
the AFM Néel phases. All the key features of the continua
and magnon dispersions in the CPT result are successfully
reproduced in the RPA calculations, where the continua arise
from the particle-hole excitations corresponding to the two-
spinon excitations. Thus, our results reveal that the continua
at high energies of the AFM Néel phases originate from the
mechanism of the spinon deconfinement.
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APPENDIX: DETAILED COMPARISONS OF CPT AND RPA
RESULTS AT SPECIFIC MOMENTA

In the main text, we present the spin-dynamical structure
factors obtained from the CPT and RPA calculations along
the paths consisting of high-symmetry lines in the BZ. Here,
we provide the energy distributions of the dynamical structure
factors at special momenta to facilitate a detailed compar-
ison between the results obtained from the CPT and RPA
calculations at the two-dimensional limit (with J⊥/J‖ = 1 and
t⊥/t‖ = 1). In Figs. 7(a) and 7(b), we display the dynamical
structure factors at three momenta for the square lattice from
the CPT and RPA methods, respectively. It is evident that the
non-Lorentzian tails at high energies in both cases are consis-
tent, including their onset energies and the distributions. The
dynamical structure factors for the honeycomb lattice from the
CPT and RPA methods are presented in Figs. 7(c) and 7(d),
respectively. Like the square lattice, the onset energies and
distributions of the high-energy continua obtained from the
CPT and RPA calculations also demonstrate good consistency.
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