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Quasistatic magnetization evolution in the compensated ferrimagnetic half-metal Mn2RuxGa
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Exploring anisotropy and diverse magnetization dynamics in specimens with vanishing magnetic moments
presents a significant challenge using traditional magnetometry, as the low resolution of existing techniques
hinders the ability to obtain accurate results. In this study, we delve deeper into the examination of magnetic
anisotropy and quasistatic magnetization evolution in Mn2RuxGa (MRG) thin films, as an example of a
compensated ferrimagnetic half-metal, by employing anomalous Hall effect measurements within a tetragonal
crystal lattice system. Our research proposes an innovative approach to accurately determine the complete set
of anisotropy constants of these MRG thin films. To achieve this, we perform anomalous Hall voltage curve
fitting, using torque models under the macrospin approximation, which allow us to obtain room-temperature out-
of-plane anisotropy constants K1 = 4.0 × 104 J m−3 (K1/M = 0.655 T) and K2 = 2.54 × 104 J m−3 (K2/M =
0.416 T), along with a weaker in-plane anisotropy constant K3 = 3.48 × 103 J m−3 (K3/M = 0.057 T). By
additionally employing first-order reversal curves and classical Preisach hysteresis (hysterons) models, we are
able to validate the efficacy of the macrospin model in capturing the magnetic behavior of MRG thin films.
Furthermore, our investigation substantiates that the complex steady-state magnetization behavior of MRG thin
films can be effectively modeled using a combination of hysteronic and torque models. This approach facilitates
the exploration of both linear and nonlinear steady-state magnetization evolution, in the presence of an external
magnetic field and/or current-induced effective fields, generated by the spin-orbit torque and spin transfer torque
mechanisms. The detailed understanding of the quasiequilibrium magnetization behavior is a key prerequisite
for the exploitation of in-phase and out-of-phase resonance modes in this material class, for high-bandwidth
modulators/demodulators, filters, and oscillators for the high-GHz and low-THz frequency bands.
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I. INTRODUCTION

Spintronics-based devices have emerged as highly promis-
ing candidates for next-generation telecommunication appli-
cations due to their potential for efficient control of magnetic
moments via electrical methods, ultrafast operating speeds,
and ultralow power dissipation [1]. In the pursuit of these
capabilities, antiferromagnetic (AFM) materials have demon-
strated exceptional advantages over their ferromagnetic (FM)
counterparts when incorporated into spintronic devices [2,3].
FM materials are limited by their large stray field interactions
and slow switching speeds (on the order of nanoseconds)
[4,5], which hampers their utility in memory and switching
devices. In contrast, AFM materials project no stray fields
and possess ultrafast spin dynamics (on the order of a few
picoseconds to hundreds of picoseconds) [6], making them
attractive for spintronics applications. However, the control
and detection of magnetization in AFM materials remain chal-
lenging due to their zero magnetic moment and zero Fermi
level spin polarization.

To address this technological gap, compensated ferrimag-
netic half-metal (CFHM) [7,8] materials have emerged as
an excellent alternative to AFM materials. Similar to AFM
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materials, CFHMs also consist of two antiferromagnetically
coupled spin sublattices, and their spin contribution can be
conveniently tuned by adjusting the composition and/or tem-
perature. Moreover, due to the presence of inequivalent spin
sites, these sublattices contribute unequally at the Fermi level,
resulting in a semiconducting band gap in one of the spin
channels and a zero band gap in the other [9]. This dispar-
ity gives rise to a high spin polarization for the conduction
electrons.

At the magnetic compensation point, CFHMs exhibit
behavior akin to AFM materials, demonstrating ultrafast mag-
netization dynamics. However, unlike AFM materials, the
detection and manipulation of CFHM magnetization remain
feasible due to the distinct responses of the two spin sublat-
tices to electrical and optical excitation [10–12]. These unique
characteristics of CFHM pave the way for the development
of novel spintronics devices with improved performance and
functionalities.

Following theoretical predictions [13], the first experimen-
tal observation of a CFHM thin film was achieved with the
Mn2RuxGa (MRG) class of materials [9]. MRG crystallizes
in the inverse-Heusler XA structure, space group F 4̄3m, as
depicted in Fig. 1. Within this structure, Mn occupies two
distinct and nonequivalent sublattice sites: 4a (Mn4a) and
4c (Mn4c). The magnetic moments of 4a and 4c sublat-
tices exhibit antiferromagnetic coupling, whereas moments
located on identical sites display ferromagnetic coupling.
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FIG. 1. Schematic representation of the crystal structure of the
MRG compound (Mn2RuGa). The structure features four interpene-
trating face-centered-cubic lattices, with Mn4a (red) atoms occupying
the 4a Wyckoff positions and Mn4c (green) atoms at the 4c posi-
tions. Ru (black) and Ga (blue) atoms are situated at the 4d and 4b
Wyckoff positions, respectively. The magnetic moments at the Mn4a

and Mn4c sites exhibit antiferromagnetic coupling. In this depiction,
both the 4c and 4d positions are fully occupied by Mn and Ru atoms,
respectively.

Due to the nonequivalent crystallographic surroundings, the
magnetic moments of both sublattices display quite dis-
tinct temperature-dependent characteristics. The site-specific
magnetic moment attributable to Mn4a possesses a weaker
temperature dependence in contrast to the Mn4c sublattice
moment [14]. As such, it is possible to attain an ideal magnetic
compensation for MRG by modulating its composition and/or
inducing crystal lattice distortion.

MRG displays pronounced c-axis magnetic anisotropy due
to the evanescence of magnetic moments, with an anisotropy
field surpassing 14 T in proximity to the compensation point.
Furthermore, the Fermi level of MRG is predominantly influ-
enced by the electronic states originating from Mn situated
at the 4c position, subsequently dictating the transport phe-
nomena via Mn4c electrons [15]. Additionally, MRG displays
half-metallic properties, as corroborated by density functional
theory (DFT) calculations [16] and point contact Andreev
reflection (PCAR) spectroscopy (spin polarization obtained
as high as P > 60 %) [9,10]. The highly spin polarized
carriers lead to a large anomalous Hall effect (AHE) [15]
and magneto-optic Kerr effect (MOKE) [11,17] even at the
perfect magnetic compensation. Therefore, the distinctive
amalgamation of a vanishing net magnetic moment, high spin
polarization at the Fermi level, and high magnetic anisotropy
designates MRG as a promising contender material for active
layers of next-generation spintronics devices.

By employing MRG as an active layer in the spin-
oscillator, subterahertz (THz) chip-to-chip communication
could be achieved, as its spin excitations were found to re-
side in the necessary THz gap [18]. The sub-THz excitations
of MRG were ascribed to its low magnetic moment, high
uniaxial anisotropy field, and low Gilbert damping [18,19].
In addition, the tunability of the anisotropy constant and
the moment in MRG afford the flexibility to modify the
resonance frequencies of oscillators constructed with MRG.
Consequently, determining the anisotropy constants of MRG
thin films is a crucial preliminary step in examining their mag-
netization dynamics under the influence of external stimuli.

Investigating anisotropy and other magnetization dynamics
in a sample with a negligible magnetic moment is unattainable
using conventional magnetometry techniques (VSM, SQUID,
etc.) due to insufficient resolution and sensitivity. Further-
more, for a sample with an extremely small magnetic moment
(M), both the anisotropy field (Ha = 2K/M) and the coer-
cive field (Hc) typically diverge, rendering the measurement
of magnetic anisotropy unfeasible with exceedingly large
magnetic fields (μ0H > 14 T) [15]. Generally, anisotropy is
assessed by applying an external magnetic field at a specific
angle (θH ) to the magnetic easy axis and monitoring the
corresponding changes in physical properties such as magne-
tization [20–22], anomalous Hall effect (AHE) [23,24], and
magneto-optical properties [25–27]. The acquired data are
then conventionally fitted using the torque balance method,
which ultimately yields the anisotropy constants of the
specimen.

In this study, an analysis of magnetic anisotropy and
steady-state magnetization evolution in MRG thin films, fea-
turing a tetragonal crystal structure, is conducted through
electrical transport measurement techniques (AHE). MRG
demonstrates a pronounced uniaxial out-of-plane anisotropy
and a small yet significant fourfold in-plane anisotropy, which
originates from substrate-induced compressive strain. MRG
exhibits a substantial anomalous Hall effect, alongside a high
magnetic anisotropy field and high Fermi-level spin polar-
ization, a combination that enables direct probing of the
anisotropy in MRG thin films via electrical means. The ma-
nipulation of the magnetization vector (M) of MRG within
a three-dimensional (3D) space, under the influence of a
magnetic field, enables the examination of various anisotropy
constants of the film. To characterize the equilibrium or
dynamic response of the magnetization vector within an ap-
plied or induced effective field, accounting for the magnetic
anisotropy of the sample is crucial. Generally, the equation of
motion for magnetization is spatially nonuniform (described
by a micromagnetic model) or, in a much simpler case,
spatially uniform (explained by a macrospin model). This
study employs the anomalous Hall effect to examine magnetic
anisotropy in MRG, within the macrospin model framework,
in combination with the hysteronic model, with finite mag-
netic viscosity and negligible interaction field.

This paper commences with a discussion of the sample
preparation and characterization techniques employed in this
study (Sec. II). Subsequently, Sec. III A introduces the mod-
eling of hysteresis in MRG under a classical Preisach model
and the first-order reversal curves (FORCs) method, wherein
the validity of the macrospin model for MRG is established
within the FORC and Preisach frameworks. A comprehensive
torque model for evaluating the anisotropy constants of MRG
using AHE is explored in Sec. III B. Moreover, Sec. III C ex-
amines various intricate steady-state magnetization evolutions
of MRG through a “combined” Preisach and torque model.
Lastly, conclusions are drawn in Sec. IV.

II. EXPERIMENTAL DETAILS

Epitaxial thin films of Mn2RuxGa were fabricated using
a dc magnetron sputtering system on a 10 × 10 mm2

MgO (001) substrate. The films were cosputtered in an inert
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environment (argon gas) from Mn2Ga and Ru targets onto
the substrate, which was maintained at 320 ◦C. Additional
details regarding film growth and characterization can be
found in a separate publication [10]. This study focuses
on the x = 0.9 stoichiometry and a film thickness of
approximately 40 nm. The compensation temperature (Tcomp)
of this sample is considerably higher than room temperature,
at Tcomp ∼ 350 K, as determined by Quantum Design MPMS

5-XL
R© superconducting quantum interference device

(SQUID) magnetometry measurements. To prevent oxidation,
the films were capped in situ with approximately ∼3 nm
of amorphous AlOx, deposited at room temperature. The
substrate-induced compressive strain (c/a ≈ 1.02, where a
and c represent the in-plane and out-of-plane lattice constants
of the tetragonal MRG crystal structure, respectively)
facilitates the out-of-plane magnetocrystalline anisotropy
in the film. To investigate the transport properties, the
films were patterned into micron-sized (60 × 20 μm2) Hall
bars, using UV photolithography and Ar-ion milling. A
subsequent round of lithography and metal deposition was
performed to establish the contact pads and to minimize the
series resistance contribution of the corresponding contacts,
consisting of Ti (5 nm)/Au (50 nm).

The electronic transport properties were measured using
the Quantum Design physical property measurement system
(PPMS R©) in the temperature range of 2 � T � 300 K and
magnetic-field strengths of |μ0H | � 14 T. The longitudinal
and transverse voltages were measured by applying a lock-
in demodulation technique at the first harmonic with low
excitation frequency, typically fAC ∼ 517 Hz, which was sig-
nificantly smaller than the resonance frequencies of MRG. To
determine the angular dependence of the resistivity, measure-
ments were taken on a rotating platform within the PPMS,
with an angular resolution of 0.01 deg. Additionally, first-
order reversal curves (FORCs) were measured using a field
resolution of 5 mT at room temperature in a 1 T GMW R©
electromagnet.

III. RESULTS AND DISCUSSION

A. Hysteresis model

This section discusses the approach taken to model the
switching of the magnetization (magnetic hysteresis) using
the classical Preisach (hysterons) model. Hysteresis modeling
has been an active area of research for decades, due to both
physical and mathematical interest. The magnetic hystere-
sis of ferromagnetic materials is the most famous example
of hysteresis. It is widely accepted that the multiplicity of
metastable states is the origin of hysteresis. Consequently,
a micromagnetic model must be considered for hysteresis
modeling. In 1935, Preisach [28] proposed a classical mi-
cromagnetic mathematical approach to describe the hysteretic
effect. The Preisach model (PM) employs a large number of
interacting magnetic entities (referred to as hysterons), each
of which has a rectangular hysteresis loop [Fig. 2(a)]. These
hysterons are characterized by the operator Rh,k (x), where x
is an arbitrary input variable, such as an applied magnetic
field. Hysteresis arises from the collective behavior of numer-
ous hysterons, which switch fully at a discrete applied field.

FIG. 2. Illustration of the Preisach model. (a) A depiction of an
elementary hysteron, a key component of the Preisach model, which
exhibits unequal reversal fields with values h and k. The hysteron’s
state is determined by the input variable x, as well as its history and
strength. Hysteresis results from the collective interaction of numer-
ous hysterons. (b) The discrete Preisach model of hysteresis, where
a large number of hysterons are assumed to be connected in parallel,
each with a corresponding weighting factor φ(h, k). In this model,
x represents an arbitrary excitation variable (e.g., applied magnetic
field), and y signifies the resulting hysteretic physical property (e.g.,
magnetic moment).

The value of Rh,k (x) relies on the applied field history. For
instance, if the applied field (x) starts from the saturation state
(x = +∞), Rh,k (x) initiates at Rh,k (+∞) = +1. The value of
Rh,k (x) transitions to −1 when the applied field falls below the
value h, and Rh,k (x) returns to +1 when the field value exceeds
k. Typically, the switching fields h and k are not identical.

The interaction field experienced by a hysteron is defined
by Hu = (h + k)/2, resulting in an asymmetric elementary
hysteron. In contrast, a hysteron with no interaction is sym-
metric. The coercive field of a hysteron is defined as Hc =
(h − k)/2. In a realistic sample, the hysteresis property is a
weighted sum of a large number of hysterons, as described in
Eq. (1):

y(x) =
N∑

i=1

φ(hi, ki )Rhi,ki (x). (1)

Here, the weighting factor φ(h, k) represents the distribution
of the switching fields h and k and is commonly referred to as
the switching field distribution (SFD) or hysteron distribution
(HD). Figure 2(b) illustrates a schematic representation of the
Preisach model.

In the continuum limit, the discrete model is transformed
into the following expression:

y(x) =
∫∫

k�h
φ(h, k)Rh,k (x) dh dk, (2)

where x is an arbitrary variable (e.g., applied magnetic field)
and y is the resultant hysteresis output (e.g., magnetic mo-
ment, anomalous Hall voltage, etc.). The most challenging
aspect of the Preisach model involves uniquely defining the
distribution function φ(h, k). Nevertheless, for an assembly
of weakly interacting hysterons, it is possible to assume
that the distribution function φ(h, k) follows a specific sta-
tistical distribution. Common choices include the Gaussian
function [29,30], the Gauss-Lorentzian function [31], and the
log-normal distribution function [32], among others. How-
ever, this approach faces the issue of lacking justification for
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FIG. 3. Investigation of the FORC and Preisach models for MRG at 300 K. (a) FORC measurements of MRG using the AHE. The MHL is
depicted as a blue solid curve, acquired when the magnetic field is swept from ±1 T. A minor AHE curve is subsequently obtained by starting
from the saturation point and returning the magnetic field value to a lower field on the MHL, referred to as the reversal field (HR). The field is
then brought back to the saturation point, forming a single FORC curve (dashed red curve). This process is repeated for numerous values of HR

and applied magnetic field (H ), resulting in the FORC diagram covering the area within the MHL (black open circles). (b) FORC distribution
for MRG, derived using Eq. (3). The distribution is attained by fitting the FORC grid utilizing a local second-order polynomial. The distribution
is presented in transformed interaction field (Hu) and coercivity field (Hc) axes for convenience. (c) Interaction field (Hu) distribution of MRG
derived from the FORC distribution. A narrow Hu distribution, centered at μ0Hu = −0.01 T, highlights the absence of long-range interactions
(dipolar, etc.) between the hysterons comprising the MRG. (d) Resultant coercive field distribution Hc, centered at μ0Hc = 0.39 T, from the
FORC distribution (black curve) and the estimated coercive field distribution as per the Preisach model (red curve). The congruence between
the two curves validates the proposed Preisach model for the MRG system.

selecting one particular distribution over others [32]. An al-
ternative method entails using a linear combination of a set
of functions as a basis. The drawback of this approach is
the requirement of a large set of basis functions and their
coefficients to obtain a Preisach distribution with a relatively
continuous output (y) [33], which rapidly strains computa-
tional capabilities, even for modern computers.

The first-order reversal curves (FORCs) method offers an
experimental technique for obtaining a unique Preisach distri-
bution, as long as the sample of interest meets the necessary
and sufficient Mayergoyz conditions [34]. The FORC method
is both easily achievable experimentally and highly repro-
ducible, given that it begins by saturating the sample each
time. It has been employed to examine various magnetic sys-
tems, such as permanent magnets [35,36], geological samples
[37,38], nanowires [39,40], and more. Moreover, FORC can
differentiate between interacting and noninteracting single

domain (SD), pseudo-single-domain (PSD), and multido-
main (MD) systems [37,41]. In fact, the FORC method
can be extended to any system exhibiting hysteresis be-
havior, including ferroelectric samples [42,43]. Additionally,
FORC studies on certain magnetic systems can be com-
plemented by AHE measurements, where electrical probing
presents a decisive advantage over standard magnetic moment
measurements [44].

The FORC measurement using AHE commence by satu-
rating the sample in a sufficiently high positive magnetic field.
Subsequently, the field is decreased to a lower field value on
the main hysteresis loop (MHL), referred to as the reversal
field (HR), and the Hall resistance Rxy(H, HR) is measured by
sweeping the applied field (H) back to the saturation field.
The resulting AHE resistance, Rxy(H, HR), constitutes a minor
curve within the MHL [Fig. 3(a)]. This procedure is repeated
for numerous values of HR and H . The FORC distribution
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is acquired through the second-order mixed derivative, as
defined by Eq. (3):

φ(H, HR) = −1

2

∂2

∂H∂HR
[Rxy(H, HR)]. (3)

The FORC distribution was assessed through the applica-
tion of a locally fitted second-order polynomial surface. A
gradient smoothing factor was incorporated into the algo-
rithm to suppress numerical artifacts. Conventionally, FORC
diagrams are depicted in terms of the coercivity field (Hc)
and the interaction field (Hu), which can be derived us-
ing Hc = (HR − H )/2 and Hc = (HR + H )/2. The resulting
FORC diagram is displayed in Fig. 3(b), where a central ridge
is observed around μ0Hu = −0.01 T and μ0Hc = 0.39 T.
Figure 3(c) illustrates the local interaction field distribution
of the MRG. A narrow distribution of Hu, with a central
point at μ0Hu = −0.01 T, emphasizes the lack of any sig-
nificant interactions (dipolar, etc.) between the elementary
units (hysterons) that comprise the MRG. Consequently, in the
absence of interparticle interactions, the overall system can
be reasonably approximated using the Stoner-Wohlfarth (SW)
model [45].

The coercive field distribution of the FORC diagram is
depicted in Fig. 3(d), with the peak of the distribution centered
at μ0Hc = 0.39 T. In the absence of interactions, coercive
field distribution also represents the switching field distri-
bution (SFD) of hysterons. A statistical analysis of SFD
was conducted within the framework of the Preisach model.
For this analysis, a pseudo-Voigt distribution is employed,
defined as

V (Hc, Hc0 , �, η) = ηG(Hc, Hc0 , �) + (1 − η)L(Hc, Hc0 , �),

(4)

where, G(Hc, Hc0 , �) and L(Hc, Hc0 , �) are normalized Gaus-
sian and Lorentzian functions. � is the common full width
at half-maximum (FWHM), and Hc0 is the peak center. η

(0 � η � 1) serves as a weighting factor that transitions the
overall profile between pure Gaussian and pure Lorentzian
distributions by adjusting the factor from 1 to 0, respectively.

The coercive field distribution within the FORC diagram
can be suitably fitted using Eq. (4). The elongated tail of the
coercivity distribution is attributable to the magnetic viscosity
resulting from the thermal fluctuations of metastable states.
In MRG, magnetic viscosity predominantly stems from the
rotation of the magnetization vector, as contributions from
domain wall motion are substantially hindered by defects and
disorder present within the film [12]. Therefore, viscosity can
be expressed as the sum of exponentially decaying metastable
states. Convolution of these states with the pseudo-Voigt func-
tion results in the Preisach distribution or switching field
distribution, as demonstrated in Eq. (5):

D(Hc, Hc0 , �, η, τ ) =
∫ ∞

−∞
V [(Hc − ξ ), Hc0 , �, η]

1

τ

×
[

exp

(−ξ

τ

)]
dξ, (5)

where τ represents the magnetic viscosity parameter, mea-
sured in units of magnetic field. Figure 3(d) provides clear
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FIG. 4. Hysteresis of MRG characterized using the Preisach
model. The experimentally acquired AHE hysteresis loop (black
circles) recorded at 300 K, obtained when the applied magnetic field
was swept perpendicular to the film plane. The estimated hysteresis
(red curve), derived from the Preisach model [Eqs. (2) and (5)],
demonstrates a high degree of agreement with the experimental data,
effectively capturing the key features of the observed hysteresis loop.

evidence of a strong agreement between the experimentally
obtained coercive field distribution under the FORC method
and the theoretical prediction provided by the Preisach distri-
bution [Eq. (5)]. This finding supports the conclusion that the
distribution described by Eq. (5) can be safely considered as a
unique Preisach distribution of the MRG samples. It is worth
noting that appropriate normalization methods (amplitude or
arial) must be implemented in order to accurately signify the
deterministic switching of hysterons. These findings not only
contribute to a better understanding of the switching behavior
of MRG samples, but they also have important implications
for the development of more robust models for other similar
systems.

Upon obtaining the requisite hysteron distribution, a hys-
teresis curve for the MRG can be seamlessly derived by
integrating this distribution into the Preisach model [Eq. (2)].
Figure 4 demonstrates a remarkable congruence between the
experimental AHE hysteresis data obtained at 300 K and the
fit generated through the Preisach model. Furthermore, this
model has been expanded to encompass out-of-plane hys-
teresis measurements of MRG at various other temperatures.
Figure 5 illustrates the AHE hysteresis loops and correspond-
ing Preisach distributions at select temperature values, such as
200, 100, and 5 K. As evidenced by these results, the model
captures the experimental intricacies with remarkable preci-
sion, thereby underscoring its ability to accurately represent
the extensive range of hysteresis observed in MRG using
with only a limited number of parameters (Hc0 , �, η, and τ ).
Additional insights into the magnetic properties can also be
gleaned from this model. Figure 6 depicts the variations in
the center point (Hc0 ) and magnetic viscosity (τ ) as functions
of temperature for hysteresis curves measured at a diverse
temperature range. A notably weak dependency of the mag-
netic viscosity parameter on temperature is observed, which
can be ascribed to the dominant influence of anisotropy on the
overall energy landscape of MRG. Consequently, any weaker
thermodynamic fluctuations exert a negligible impact on the
low-frequency magnetization dynamics, causing the magnetic
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FIG. 5. Temperature-dependent hysteresis of MRG character-
ized using the Preisach model. The experimentally recorded AHE
hysteresis loops (black circles) measured at 200, 100, and 5 K are
presented in panels (a), (c), and (e), respectively, with their cor-
responding Preisach model estimations (red curves) capturing the
experimental data in great detail. The estimated Preisach distribution
of each model is depicted in panels (b), (d), and (f), providing
insights into the hysteron distributions and their temperature-
dependent behavior.

domains of MRG to remain frozen over a wide temperature
range.

The relationship between the center point (Hc0 ), which is
also known as the sample’s coercivity, and temperature is
characterized by two distinct regimes. At elevated tempera-
tures, the coercive field experiences an increase due to the
diminishing net moment as it approaches the compensation
point (Tcomp = 375 K); conversely, at lower temperatures, the
rise in effective anisotropy prevails.

B. Torque model

In the investigation of magnetization dynamics, employing
the macrospin approximation, serves as a highly effective
approach for analysis. In this approximation, the spatial vari-
ation of the magnetization remains constant throughout the
equation of motion. The static and quasistatic magnetization
evolution of MRG can be accurately represented under the
macrospin approximation, as it accounts for the absence of
hysteron interaction, which is clearly illustrated in Fig. 3(c).
The torque model is constructed based on the macrospin
approximation, where the equilibrium direction of the mag-
netization is determined by counterbalancing the torque that
arises from anisotropy fields with the Zeeman torque. For the
tetragonal MRG system, the torque balance equation can be
efficiently derived from the magnetic anisotropy free-energy
expression, in which θM and ϕM represent the polar and az-
imuthal angles of the magnetization vector M:

E = K1 sin2(θM ) + K2 sin4(θM ) +K3 sin4(θM ) cos(4ϕM )

− μ0H · M. (6)

Here, the first- and second-order uniaxial out-of-plane
anisotropy constants are denoted by K1 and K2, respectively,

(a)
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FIG. 6. Temperature-dependent analysis of coercivity and mag-
netic viscosity in MRG. (a) The center-point (Hc0 ) of the Preisach
distribution, which also represents the sample’s coercivity, as a
function of temperature. The value of Hc0 increases for both high-
and low-temperature ranges. The increase at higher temperatures
is attributed to the approach towards the compensation tempera-
ture (Tcomp = 375 K), while at lower temperatures the rise in the
anisotropy constant leads to an increase in the central-point value.
The solid line serves as a guide for the data points. (b) Viscosity
parameter (τ ) as a function of temperature. This relationship suggests
that magnetic viscosity remains approximately independent within
the measured temperature range, indicating that the magnetic do-
mains for MRG are essentially frozen over a wide temperature range.

while K3 signifies the fourfold in-plane anisotropy constant.
By evaluating the extrema of Eq. (6) with respect to θM and
ϕM , the equilibrium magnetization direction can be deter-
mined. For instance, the polar equilibrium position can be
ascertained by solving the subsequent equation:

∂E

∂θM
= 2K1 + [4K2 + 4K3 cos(4ϕM )] sin2(θM )

− μ0HM sin(θH − θM )

sin(θM ) cos(θM )
= 0. (7)

In the aforementioned equation, it is assumed that the in-plane
anisotropy (K3) is relatively weak; therefore, M adheres to the
applied magnetic field (H) along the azimuthal direction with
a slight delay, i.e., ϕM ≈ ϕH . Here, the polar angle and the
azimuthal angle of the applied magnetic field are represented
by θH and ϕH , respectively. In this work, we utilize the AHE
to examine the anisotropy constants, which is particularly
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sensitive to the out-of-plane component of the Mn4c moment,
therefore

Vxy ∝ M cos(θM ),

⇒ cos(θM ) = Vxy

V N
xy

= vz, (8)

where V N
xy denotes the AHE voltage when the magnetization

is aligned with the normal to the sample (θM = 0), and vz

represents the normalized AHE voltage. Consequently, the
equilibrium condition [Eq. (7)] is reduced to

2K1

M
+

[
4K2

M
+ 4K3

M
cos(4ϕM )

](
1 − v2

z

)

= μ0H

[
vz sin(θH ) − √

1 − v2
z cos(θH )

vz

√
1 − v2

z

]
. (9)

To determine the values of K1, K2, and K3, rotational scans
were conducted in various geometric configurations.

It is important to recognize that the recorded transverse
resistance consists of five distinct contributions, which include
the ordinary Hall effect (OHE), the anomalous Hall effect
(AHE), the planar Hall effect (PHE), the ordinary Nernst
effect (ONE), and the anomalous Nernst effect (ANE). These
contributions are represented in Eq. (10) [46,47]:

Rxy = ROHE
xy + RAHE

xy + RPHE
xy + RONE

xy + RANE
xy . (10)

In the context of MRG, the ordinary Nernst effect (RONE
xy )

and the anomalous Nernst effect (RANE
xy ) were effectively min-

imized by employing an exceedingly small input bias current
signal (IRMS ≈ 50 μA). This approach ensured the absence
of any significant thermal gradient within the observed sam-
ple. To further mitigate the temperature gradient across the
Hall bar, temperatures were stabilized using a helium partial
pressure (P ∼ 100 Torr) within a PPMS tool. The sample
was carefully rotated at a very slow rate to minimize tem-
perature destabilization that could arise from friction within
the sample’s rotator gears. The ordinary Hall effect (RONE

xy )
was determined by measuring the slope of the AHE at high
magnetic fields (|μ0H | > 8 T), as illustrated in Fig. 7(a). The
Hall coefficient calculated for MRG yielded a value of RH =
−4.41 × 10−10 m3 C−1, which corresponds to a carrier con-
centration ne = 1.42 × 1022 cm−3. In MRG, the Hall effect is
predominantly governed by the minority carrier at the Fermi
level due to the material’s high spin-polarization [9,15].

The planar Hall effect (RPHE
xy ) was evaluated by rotating

the magnetic field within the plane of the sample. Figure 7(b)
displays the AMR and the PHE measured at room temperature
in the presence of a magnetic field with a value of 1.9 T. The
observed PHE is three orders of magnitude smaller than the
recorded AHE, thus allowing it to be safely disregarded from
Eq. (10). As a result, the primary dominant contribution to the
transverse Hall resistance is due to the AHE. Nevertheless,
OHE has also been considered in the model to acknowledge its
significant contribution, particularly at high applied magnetic
fields.

To investigate the out-of-plane anisotropy constants (K1

and K2), the AHE was conducted in the measurement geom-
etry depicted in Fig. 8(a). In this configuration, the sample
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FIG. 7. AHE, AMR, and PHE measurements of MRG at 300 K
using a micron-sized (60 × 20 μm2) Hall bar. (a) AHE is recorded
with the magnetic field applied perpendicular to the sample within a
range of ±14 T. The AHE hysteresis loop exhibits a coercivity value
of 0.39 T. The ordinary Hall effect (OHE) contribution of MRG is
evaluated by calculating the slope of the curve at high magnetic
fields (|μ0H | > 8 T). (b) AMR and PHE of MRG are measured
at 300 K when a 1.9 T magnetic field is rotated within the sample
plane. The PHE (of the order of a few milliOhm) has a contribution
three orders of magnitude smaller than that of AHE. Consequently,
the PHE contribution from the transverse Hall effect can be safely
disregarded.

was rotated in such a way that the applied magnetic field
effectively rotated within the yz-plane. Figure 8(b) presents
the three rotational AHE loops measured at T = 300 K, un-
der constant applied magnetic fields of 1, 2, and 14 T. The
acquired data exhibit two distinct regimes: the first regime
showcases a continuous change in the resistance (nonhys-
teretic segments, for θH < 90◦, θH > 270◦, and in the vicinity
of θH = 180◦), attributable to the smooth coherent rotation
of the magnetization against the anisotropy field, while the
second regime displays an abrupt change in the resistance
(hysteretic segments near θH = 90◦ and 270◦) as a result of the
reversal of the magnetic moment, transitioning either from the
negative normal direction of the sample to the positive normal
direction, or vice versa.

The nonhysteretic portions of the data were fitted using the
torque model. Since the anisotropy constants are independent
of the applied external field (at least up to the first order),
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FIG. 8. AHE measurements at 300 K in two different geometric arrangements to evaluate the out-of-plane anisotropy constants (K1, K2)
and in-plane anisotropy constant (K3) of MRG. (a) Out-of-plane rotational measurement geometry for investigating K1 and K2. In this
configuration, a constant applied magnetic field (H ) is effectively rotated in the yz-plane, varying the field angle θH and consequently changing
the magnetization angle θM , which is recorded using AHE. (b) Rotational AHE data as a function of field angle (θH ) for constant applied
magnetic fields of 1, 2, and 14 T. Each loop contains two distinct regimes: a hysteretic part attributed to the abrupt switching of magnetization,
and a nonhysteretic part due to the coherent rotation of magnetization experiencing net torque. The detailed fits to these data are presented in
Fig. 10. (c) The recorded nonhysteretic segments of curves (scatter plots) for θH < 90◦ are fitted with the balanced torque model (solid lines),
given by Eq. (9). Anisotropy constants K1/M = 0.655 T, K2/M = 0.416 T are obtained by fitting these AHE curves. (d) In-plane measurement
geometry for investigating K3, where the field is effectively rotated within the sample plane (i.e., θH ≈ 90◦ and ϕH is varied), resulting in the
modulation of θM as a function of ϕH . (e) In-plane AHE data (black circles) as a function of field rotation angle (ϕH ) for a field value of 1 T.
The four crests and troughs in the curve are associated with the fourfold in-plane anisotropy of MRG. The unequal amplitude of oscillation
is attributed to sample offset (sample plane slightly tilted away from the xz-plane). Incorporating sample offset in the torque model provides
an excellent estimation of in-plane rotational AHE (red curve), with the estimated K3/M = 0.057 T. (f) In-plane AHE data (black circles)
as a function of ϕH for an applied field of 1.5 T. The estimated curve (red curve) is obtained for K1/M = 0.655 T, K2/M = 0.416 T, and
K3/M = 0.057 T.

the nonhysteretic segments of the data should be modeled
using common fitting parameters. Figure 8(c) illustrates the
recorded data alongside the corresponding best fits utilizing
common anisotropy parameters. The data align well with the
model, yielding anisotropy constants of K1

M = 0.655 T and
K2
M = 0.416 T, where M denotes the magnitude of saturation
magnetization. The saturation magnetization of the sample at
300 K, as determined through SQUID measurements, is quan-
tified at 61 kAm−1. Consequently, the first- and second-order
out-of-plane anisotropy constants of MRG at 300 K are K1 =
4.0 × 104 J m−3 and K2 = 2.54 × 104 J m−3, respectively. It is
crucial to note that in this measurement geometry, the AHE
is insensitive to in-plane anisotropy due to the absence of
azimuthal rotation of magnetization. The in-plane anisotropy
constant (K3) can be examined in a measurement geometry
where the azimuthal direction of magnetization is varied.

Progressing with the study, the in-plane anisotropy was ex-
amined using the AHE in the measurement geometry depicted

in Fig. 8(d). In this configuration, the sample was rotated in
such a way that the applied magnetic field effectively rotated
within the plane of the sample (xz-plane). The presence of
in-plane anisotropy causes the AHE signal to oscillate as a
function of the azimuthal angle (ϕM) of the magnetization,
revealing the fourfold anisotropy of MRG. Figures 8(e) and
8(f) display the scans obtained at 300 K when constant mag-
netic fields of 1 and 1.5 T were applied in the plane of the
sample, respectively. The unequal amplitude of oscillation
arises from a small offset (∼ 6 deg) of the sample from the
xz-plane, which subsequently causes sample wobbling during
rotation and introduces an additional term—a nonzero normal
component—affecting the magnetization vector position θM .
The equilibrium position of the magnetization vector, under
the influence of the external magnetic field, is numerically
obtained using the torque model with a correction for wob-
bling taken into consideration (the implementation involved
employing Rodrigues’ rotation formula, which utilizes the
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FIG. 9. In-plane field loop study for the combined hysteresis and torque model at 300 K. (a) Measurement geometry of in-plane field loop
study, where the magnetic field is swept between ±14 T in the sample plane (θH ≈ 90◦), along the z-axis. (b) Resultant experimentally obtained
AHE curve (black circles). An unavoidable sample offset (δ) with respect to the field axis (z) leads to this intricate magnetization evolution,
where the magnetization direction switches sign when the normal component of the field exceeds the sample’s coercivity. The insets illustrate
the geometrical alignment of magnetization and applied magnetic field when the field angle (θH ) forms an acute angle with the sample’s normal
direction n̂ (right inset) and an obtuse angle with n̂ (left inset). Paths 1© and 3© represent portions of the curve where magnetization experiences
coherent rotation, while paths 2© and 4© display the behavior when magnetization dynamics is dominated by switching events. The estimated
AHE (red curve) within the combined Preisach and torque (CPT) model shows excellent agreement with the data. (c) Coercivity distribution
(hysteron distribution) derived from the CPT model. This distribution curve also exhibits a strong resemblance to the hysteron distribution
curve obtained when the magnetic field is applied perpendicular to the sample [as shown in Fig. 3(d)], with the field axis scaled according
to Eq. (11). (d) AHE hysteresis data (black circles) modeled using an effective out-of-plane anisotropy approximation (red curve). Under this
approximation, the torque model is simplified with a single out-of-plane anisotropy field (Heff ). By directly incorporating a predetermined
hysteron distribution into the model, the complexity of the model is greatly reduced, with the added benefit of having a minimal number of
free parameters.

appropriate axis of rotation). The extracted value of the in-
plane anisotropy constant is K3

M = 0.057 T, or K3 = 3.48 ×
103 J m−3, which is an order of magnitude smaller than the
out-of-plane anisotropy constants K1 and K2. It is noteworthy
that an increase in field strength results in a more pronounced
hysteresis of AHE for the in-plane configuration [comparing
Figs. 8(e) and 8(f)]. This phenomenon occurs because, at
sufficiently high magnetic fields, the sample wobbling leads
to partial switching of magnetic moments. Modeling such
complex data, where both coherent rotation and magnetization
switching take place, can be accomplished by combining both
the Preisach and torque models.

C. Combined Preisach and torque (CPT) model

1. In-plane field hysteresis loop

The intricate quasistatic magnetization behavior can be
elucidated by combining the torque and Preisach models,
wherein the magnetic moment exhibits both coherent rotation
and abrupt switching events under the influence of suitable
stimuli. One such mixed behavior can also be observed when
a high magnetic field is swept within the plane of the sample.
To investigate this phenomenon, AHE was measured in the
measurement geometry depicted in Fig. 9(a). In this setup,
the magnetic field was swept within the plane of the sample
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(along the z-axis) from ±14 T. The recorded AHE signal
exhibits a combination of hysteretic and rotational behavior,
as shown in Fig. 9(b). Due to an unavoidable minor offset
(δ) of the sample while mounting it on the rotary stage of
the PPMS, the applied magnetic field does not lie exactly
within the plane of the sample [see the insets of Fig. 9(b)].
An offset of approximately θ ∼ 6 deg was present; the exact
offset value can be determined by fitting the AHE data. As
a result, the AHE signal has two distinct regimes: (i) when
the magnetic field (H) forms an acute angle with the nor-
mal to the sample (θH < 90 deg), a coherent rotation of the
magnetization vector is observed; and (ii) when the magnetic
field makes an obtuse angle with the normal (θH > 90 deg),
the switching of the magnetic moment occurs when the field
projection surpasses the coercive field. It should be noted that
the coercive field in these scenarios is scaled according to
Eq. (11):

Hc = Hcn

cos(θH )
, (11)

where Hcn represents the coercivity of the MRG sample when
the magnetic field is applied along the direction normal to the
sample plane (θH = 0).

A comprehensive trajectory of magnetization under the
influence of the applied magnetic field is meticulously demon-
strated in Fig. 9(b). This representation encompasses the
combined behavior of the rotation of magnetic moments and
their corresponding switching events, which can be effectively
described through Eq. (12);

Rxy = RTM
xy · RPM

xy , (12)

where RTM
xy and RPM

xy denote the respective contributions aris-
ing from the torque model [as explicated in Eq. (9)] and the
Preisach model [as detailed through Eqs. (2) and (5)]. To
determine the solution for Eq. (12), the Levenberg-Marquardt
algorithm was employed, while maintaining the anisotropy
constants K1/M at a fixed value of 0.655 T and K2/M at
0.416 T. The resultant estimated curve, in conjunction with
the data, is displayed in Fig. 9(b), which reveals an exceptional
congruence with the gathered data. Furthermore, Fig. 9(c)
depicts the estimated hysteron distribution for the correspond-
ing AHE curve, with the central point of distribution (Hc0 )
determined to be 3.88 T. Notably, this distribution curve also
exhibits a strong resemblance to the hysteron distribution
curve obtained when the magnetic field is applied perpendic-
ular to the sample [as shown in Fig. 3(d)], with the field axis
scaled according to Eq. (11). This consistency highlights the
robustness of the analysis and further validates the effective-
ness of the model.

Though the combined Preisach and torque (CPT) model,
as delineated by Eq. (12), effectively predicts the intricate
quasiequilibrium magnetization properties of MRG, imple-
menting this equation to depict complex quasiequilibrium
magnetic evolution presents a considerable computational
challenge due to the multiparameter nature of the equation.
Nevertheless, the awareness that the Preisach distribution
for a specific temperature can be independently determined
through a pure switching event [out-of-plane hysteresis curve,
Fig. 3(d)] allows for further simplification of the combined
model. This is achieved by further considering an effective
out-of-plane anisotropy field (Heff ) to resolve the pure torque

model component. The rationale for utilizing an effective
anisotropy field stems from the fact that MRG exhibits sub-
stantial and dominating out-of-plane anisotropy, which is also
evident from the steep square hysteresis loop observed when
the field is swept perpendicular to the sample [Fig. 7(a)].
Under this approximation, the equilibrium position of magne-
tization (M) can be attained by counterbalancing the torques
acting upon it [Eq. (13)],

M × μ0Heff = M × μ0H, (13)

where Heff and H represent the effective out-of-plane
anisotropy field and the applied external magnetic field, re-
spectively. In Fig. 9(d), the data and corresponding fit are
presented, which utilize the Heff model with a single free
parameter (Heff) and the Preisach model that has been deter-
mined previously. The calculated Heff value from the fitting
is 1.46 T. The model captures all details of the AHE, thereby
validating the proposed approximation. It is important to note
that by comparing Figs. 9(b) and 9(d), the subtle distinction
between the two models can be discerned. At high mag-
netic field values (|μ0H | � 5 T), the effective anisotropy field
model slightly deviates from the data and does not accurately
capture the curvature of the data as effectively as the complete
model [Fig. 9(b)]. This is due to the model’s assumption of
a unique fixed Heff value for all M orientations. In contrast,
the magnitude of Heff for a tetragonal crystal system relies on
the magnetization direction, and its magnitude typically varies
as M deviates from the out-of-plane direction (easy-axis).
Consequently, an Heff(θM ) is necessary to capture the data in
greater detail for all possible magnetic field values. Nonethe-
less, it is adequate to assume that a single fixed Heff performs
remarkably well, at least up to the magnetic field strength
employed in this study (14 T � |μ0H |). This approximation
offers a significant advantage in describing low-frequency
complex magnetization dynamics by substantially reducing
the number of free parameters in the model.

2. Out-of-plane rotational hysteresis loop

The efficacy of the CPT model is further substantiated by
applying it to magnetization in the quasisteady state, derived
from out-of-plane rotational hysteresis curves, as illustrated
in Fig. 10. In this experiment, AHE curves were acquired
utilizing the measurement geometry shown in Fig. 10(a). This
setup involves effectively rotating a constant applied magnetic
field within the yz-plane, causing the equilibrium position of
the magnetic moment (θM) to reside within the same plane.
A collection of AHE data, recorded at applied magnetic field
values of 1, 2, and 14 T, and their corresponding CPT fits,
are displayed in Figs. 10(b), 10(c), and 10(d), respectively.
The CPT model well-describes the data set across all applied
magnetic fields. It is important to note that as the magnitude
of the applied magnetic field escalates, the hysteretic contribu-
tion to the AHE starts to decrease relative to the nonhysteretic
contribution, resulting in a reduced hysteretic width. In cases
where the field strength reaches exceptionally high levels, the
Zeeman term prevails over the anisotropy term, thereby caus-
ing the magnetization to effectively align with the magnetic
field direction. Consequently, at a 14 T field, the hysteresis
width has virtually disappeared [Fig. 10(d)]. In the con-
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FIG. 10. Investigation of out-of-plane rotational hysteresis loop within the CPT model. (a) Measurement geometry where a constant
magnetic field is effectively rotated in the yz-plane. As a result, the magnetization angle (θM ) changes within the yz-plane as the field angle
(θH ) varies. Note that this set of data was already presented in Fig. 8(b). AHE loops as a function of θH for the applied field values of 1, 2, and
14 T are shown in (b), (c), and (d), respectively. The CPT model under the effective anisotropy (Heff ) approximation accurately captures the
behavior of the data at each field (red curves). All parameters, such as the effective out-of-plane anisotropy field (Heff) and the coefficients of
the hysteron distribution (Hc0 , �, η, and τ ), remain constant in the current CPT fitting approach. These parameters were determined beforehand
by fitting other AHE curves, as explained in the preceding sections.

text of the current CPT fitting approach, all parameters,
including the effective out-of-plane anisotropy field (Heff)
and the coefficients of hysteron distribution (Hc0 , �, η, and τ )
are maintained as constant values. These parameters have
been previously determined through the fitting of other AHE
curves, as elaborated upon in the preceding sections. As a
result, the derived fitting curve successfully captures both
the hysteretic and nonhysteretic aspects of the AHE curve
with remarkable precision, for both low (μ0H = 1 T) and
high applied magnetic fields (μ0H = 14 T), while virtually
eliminating the need for free parameters.

IV. CONCLUSION

In this work, we have developed a comprehensive method-
ology for determining the various magnetic anisotropy
constants of low-moment MRG thin films. To achieve this, we
initially investigated hysteretic phenomena using the Preisach
model, also known as the hysteron model. The applicabil-
ity of the Preisach model was subsequently experimentally
verified through the implementation of the first-order rever-
sal curves (FORCs) method, which enabled us to identify

the unique hysteron distribution of the sample under in-
vestigation. The FORC method provided crucial insights,
specifically highlighting the absence of long-range mag-
netic interactions within the hysterons, which allowed for
the utilization of the macrospin model (Stoner-Wohlfarth
model) to describe the quasiequilibrium magnetization be-
havior of MRG. Furthermore, the Preisach model confirmed
that MRG samples exhibit relatively weak variations in mag-
netic viscosity with temperature, signifying the presence
of a frozen domain structure. To determine the anisotropy
constants of the MRG samples, we employed a detailed
torque model within the macrospin approximation frame-
work. Anomalous Hall effect (AHE) measurements were
carried out at 300 K in various suitable geometries, which
facilitated the deduction of out-of-plane anisotropy constants
K1 = 4.0 × 104 J m−3 (K1/M = 0.655 T) and K2 = 2.54 ×
104 J m−3 (K2/M = 0.416 T), and an in-plane anisotropy con-
stant K3 = 3.48 × 103 J m−3 (K3/M = 0.057 T) through data
fitting with the torque model. Additionally, we successfully
investigated more complex quasistatic magnetization evo-
lution, characterized by the combination of hysteretic and
nonhysteretic components in AHE, using a combined Preisach
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and torque (CPT) model with virtually no free parameters.
Our study demonstrates the efficacy of this methodology not
only in determining the magnetic anisotropy of low mo-
ment magnetic samples (MRG), but also in explaining other
slow-varying complex magnetization dynamics within a uni-
fied model. The proposed method can be readily extended
to other magnetic systems that lack hysteronic interactions,
exhibit narrow hysteron distributions, and display frozen-
domain behavior. This comprehensive approach will undoubt-
edly prove valuable in studying both linear and nonlinear

low-frequency magnetization dynamics of MRG in external
fields and/or current-induced effective fields resulting from
spin-orbit torque/spin-transfer torque.
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