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Interaction-energy landscapes of kagome and honeycomb lattices
of dipole-coupled magnetic nanoparticles
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The collective magnetic behaviors of dipole-coupled magnetic nanoparticles organized in periodic two-
dimensional kagome and honeycomb lattices are investigated theoretically. The extended nanostructures are
modeled by considering finite unit cells containing nanoparticles with periodic boundary conditions. The energy
landscapes (ELs) of the ensembles are systematically explored as a function of the orientation of all the NP
moments by calculating the local minima and first-order saddle points connecting them. The low-lying magnetic
orders and elementary reorientation transitions are identified. The thus obtained kinetic networks and discon-
nectivity graphs of the ELs reveal profound differences in the topology of the networks of stationary states. One
observes that the honeycomb nanostructures are typically good structure seekers with starlike kinetic networks
and palm-tree-like disconnectivity graphs. They have a continuously degenerate ground state, which is the center
of the network and directly connected to all excited metastable states. In contrast, kagome nanostructures show
a particular form of bad structure seeker, which is known as the latticelike stationary-point network. In this case,
from a local perspective, the degree distribution among the LM is extremely homogeneous, with no centers or
hubs through which relaxation can be funneled. Furthermore, from an energy perspective, no hierarchy among
the low-energy metastable states can be identified.
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I. INTRODUCTION

Recent progress in the synthesis, self-assembly, and struc-
turing of magnetic nanoparticles (NPs) has made it possible
to fabricate artificial two-dimensional (2D) materials consist-
ing of size-controlled and geometrically organized nanoscale
magnets [1–5]. These systems constitute a highly dynamic
and demanding current field of research, which addresses a
number of challenging questions not only from a fundamental
perspective but also in view of practical applications. Indeed
the combination of finite-size effects, reduced dimensionality,
and frustrating interactions gives rise to new magnetic phe-
nomena that hold significant importance for potential uses in
spintronics, memory devices, and high-density data storage
[6–9].

The magnetic properties of NP ensembles are conditioned
by a number of factors, among which the size and compo-
sition of the NPs, the type and strength of their interactions,
and their geometrical arrangement deserve special attention.
Pioneering studies into nanoscale magnetism, which primarily
aimed to understand the impact of size, structure, and compo-
sition of individual nanoscale magnets, have revealed several
fascinating effects, such as the remarkable enhancements of
the spin moments, orbital moments, and magnetocrystalline
anisotropy in small transition-metal clusters, or the onset of
magnetism in clusters of nonmagnetic solids [10–19]. Further-
more, in more recent years, there has been a growing interest
in understanding the collective magnetic response of extended
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nanostructures composed of NP ensembles [4,5,20–25]. From
this perspective, two qualitatively distinct regimes can be
identified, depending on the relative strength of single-particle
local energies and interparticle couplings. In situations where
the interactions are relatively weak, the magnetic properties
of the ensembles are primarily governed by individual particle
attributes such as magnetization and anisotropy. The dynamics
of such a system largely consists of local reorientations of the
magnetic moments of individual NPs. As a result, the specific
arrangement of the NPs is rather unimportant. A considerably
more intricate and demanding scenario emerges when the
interactions between particles are substantial, for example,
in nanostructures composed of closely packed, highly sym-
metric NPs having weak magnetocrystalline anisotropies. In
this case, a change in the orientation of the magnetic moment
of one NP unavoidably leads to modifications in the mag-
netic order of adjacent particles. The cooperative magnetic
behavior of the entire system becomes evident. Even the most
basic transitions between two nearby metastable configura-
tions involve reorientations of many NPs moments [26–28].
Clearly, the geometrical arrangement of the particles in the
nanostructure and its point-group and translational symme-
tries, or the absence thereof, become crucial. The physical
consequences are expected to be particularly important for
the dipole-coupled NP ensembles investigated in this paper,
since these interactions are both long range and frustrating
[21,25–30].

Earlier studies of the magnetic properties of 2D NP
ensembles have revealed a diverse range of captivating
physical phenomena including phase transitions, continu-
ous ground-state degeneracies, and order-by-disorder effects
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[20,21,29–34]. In addition, remarkable nonequilibrium phe-
nomena have been identified such as slowing down, ergodicity
breaking, memory effects, and aging [35–38]. Recently, the
behavior of 2D ensembles of magnetic NPs has been inves-
tigated by considering all possible periodic Bravais-lattice
geometries, namely, square, triangular, rectangular, rhom-
bic, and oblique lattices [39]. This study has revealed a
remarkable dependence of the interaction-energy landscapes
on the structural arrangement of the NPs. It has also estab-
lished interesting correlations between the different collective
magnetic behaviors and the specific point-group symmetries.
Nevertheless, the properties of more complex nanostructures,
which cannot be reduced to simple Bravais lattices, remain
largely unexplored [40,41]. Two NP arrangements of consid-
erable theoretical and practical interest are the honeycomb
and kagome lattices. From the point of view of translations,
both structures share the symmetry of the triangular Bravais
lattice. However, the bases are different: dimers or hexagons
for the honeycomb lattice and triangles for the kagome lat-
tice. These differences profoundly affect the local point-group
symmetries and are expected to have a significant influence
on the physical behavior [31,40–42]. It is the goal of the
present work to investigate the collective magnetic proper-
ties of honeycomb and kagome ensembles of magnetic NPs
by characterizing their ELs and by correlating their mag-
netic behaviors to the underlying point-group and translational
symmetries. Apart from the fundamental theoretical signifi-
cance of establishing links between structural NP organization
and collective magnetic behavior, this study is expected to
serve as a benchmark for assessing the physics in more re-
alistic scenarios including, for example, structural disorder,
particle-size distributions, or magnetic anisotropies.

The remainder of the paper is organized as follows. In
Sec. II, the model is introduced and the various methods
employed for the characterization of the ELs are presented.
The results for honeycomb and kagome lattices are presented
and discussed in Sec. III, by contrasting in particular their
metastable magnetic configurations, kinetic networks, and
disconnectivity graphs. The paper is closed in Sec. IV with
a summary of the main conclusions and by pointing out some
relevant extensions and implications of the present study.

II. THEORETICAL MODEL AND METHODS

The interaction energy of a system of classical dipole-
coupled magnetic moments �μk , which are located at the lattice
positions �rk , is given by

E = μ0

8π

∑
k �=l

[ �μk · �μl

r3
kl

− 3
(�μk · �rkl )(�μl · �rkl )

r5
kl

]
, (1)

where the vector �rkl = �rk − �rl connects lattice sites k and l , rkl

is the corresponding Euclidean distance, and μ0 is the vacuum
permeability. In the present model the magnetic moments
�μk have a fixed modulus. Their orientations are defined by
the polar and azimuthal angles θk and ϕk . Extended nanos-
tructures are described by considering a finite number N of
nanoparticles in a unit cell with periodic boundary conditions.

A. Stationary points

The static and dynamic properties of a magnetic NP ensem-
ble are governed by its underlying EL, which in the present
case depends on the 2N degrees of freedom {θk, ϕk | k =
1, . . . , N} defining the orientation of the magnetic moments
�μk in space. A most practical way to simplify this intricate
and complex multivariable function is to discretize it into
its stationary states, specifically, its local minima (LM) and
first-order saddle points or transition states (TSs) [43,44].
These stationary points form an interconnected network that
allows us to describe the long-time stochastic dynamics of the
system by focusing on the rare and mostly collective processes
while disregarding the short-time fluctuations of the magnetic
moments around the local minima.

The LM and TSs are identified using the following proce-
dure, which has been adapted from the methodology outlined
in Ref. [45]. At first, an initial set of metastable states is
created by performing a number of local optimizations of the
interaction energy starting from random configurations [46].
Then, the following steps are executed sequentially.

(i) Select a local minimum from the set of stationary states
that has not yet been used for identifying new stationary states.

(ii) Perform an eigenvector-following search starting
along a specific eigenvector of the Hessian Ĥ at this LM
[43,47]. Typically, the eigenvectors associated with the lowest
eigenvalues of Ĥ are chosen, since these directions yield the
smallest energy increase as one moves away from the LM.

(iii) Upon finding a TS, the two adjacent LM are de-
termined by stepping away from the TS in the directions
that are parallel and antiparallel to the sole unstable mode
and, starting from there, by performing the corresponding
Limited-memory Broyden-Fletcher-Goldfarb-Shanno algo-
rithm (L-BFGS) minimizations.

(iv) Most often, one of the two LM identified in the previ-
ous step coincides with the initial LM. In this case the other
LM and TSs are added to the set of stationary states. If not,
the TSs and LM are disregarded.

(v) The algorithm advances by selecting a different eigen-
vector and repeating steps (ii)–(iv). Once a certain number of
eigenvectors νe have been tried (in this work νe = 10), the
algorithm goes back to step (i) and a new LM is taken into
consideration.
The algorithm terminates after all LM in the database have
been used as initial states. The result is the aimed set of
stationary points of the EL.

B. Kinetic networks

The set of all LM and TSs of an energy landscape con-
stitutes a connected network, often referred to as the kinetic
network (KN) of the system. It can be visualized by an undi-
rected graph, where the nodes represent the LM and the edges
the elementary transitions that connect two LM through a
first-order TS. Several properties can be calculated in order
to characterize the various kinetic networks, thus allowing
one to compare the topology of the ELs in different physical
situations. The degree n(i) of node i is the number of nodes
which can be reached from the node i by a single elementary
transition. It is given by the number of edges or TSs connect-
ing node i with any other node. As the size of these networks
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may vary strongly, it is sound to introduce the degree density

ρ(i) = n(i)

NLM − 1
, (2)

where NLM is the total number of LM in the network. Nodes
with large values of ρ(i) are known as hubs. Very often they
play a central role in the dynamics of complex systems, since
the relaxation across significant portions of the EL can be
funneled through them.

Another important network property is the distance di j be-
tween nodes i and j, which is defined as the smallest number
of steps or edges required to establish a connection between
them. The average path distance 〈d〉 calculated over all pairs
of nodes provides a measure of the overall extent of a network.
Complementary information from a local perspective is ob-
tained by assessing the level of clustering within the network.
An established measure of this is the transitivity

C = 3 × number of triangles

number of triads
, (3)

which represents the probability that in a triad of nodes
(i �= j �= k), where i is connected to j and j is connected to
k, also i and k are directly connected [48].

C. Disconnectivity graphs

The concept of a disconnectivity graph (DG), introduced
Becker and Karplus, offers a valuable means to visualize and
analyze complex ELs by focusing on the energies of the LM
and the energy barriers that separate them [49]. Several exam-
ples of DGs are shown in Sec. III. The physical interpretation
of these graphs becomes clear once the procedure employed to
generate them is outlined (see also Refs. [43,49]). For a given
energy E , the LM with energies lower than E form distinct
sets termed superbasins. Within each of these superbasins, the
minimum energy path (MEP) between any pair of LM never
exceeds the energy E . Typically, one starts the procedure by
selecting a value E that is slightly above the energy of the
global minimum. In the absence of degeneracies, only one
superbasin containing the global minimum is accessible at
this energy. But if the ground state is n-fold degenerate, one
starts from n separate superbasins. As the energy E is progres-
sively raised, additional LM are found whose energy is lower
than E . However, note that these new LM cannot be linked
with each other or to the lower-lying ones without exceeding
E as long as E remains lower than the separating energy
barriers. Consequently, the number of superbasins tends to
increase initially. Nevertheless, at some point, for even larger
E , the superbasins start to merge with each other, since the
separating energy barriers along the connecting MEP can be
overcome. Ultimately, at considerably higher energies, just
a single superbasin remains, containing all the LM of the
system, provided that the energy barriers are finite.

In practice, the DGs are constructed by applying the pre-
viously outlined analysis at predefined evenly spaced values
of E , which are indicated on the y axis. For each energy E ,
a superbasin is depicted as a vertical segment. Two segments
are connected with each other, if they share at least one local
minimum. Since the positions of the superbasins along the
horizontal x axis have no physical meaning and are a priori

arbitrary, they are chosen in order to optimize the readability
of the graph. Usually, superbasins separated by smaller energy
barriers are closer than those separated by larger barriers. As a
result, a treelike graph is formed, where the end point of each
branch reflects the energy of the corresponding local mini-
mum and the junction of two branches indicates the energy
barrier separating them. In the following section representa-
tive examples of DGs are discussed in some detail.

III. RESULTS

The primary purpose of this section is to identify the char-
acteristic magnetic properties of dipole-coupled magnetic NPs
forming perfectly periodic kagome or honeycomb lattices by
analyzing the corresponding interaction-energy landscapes.
The thus obtained insights are particularly important con-
cerning the relation between magnetic behavior and lattice
symmetry from a fundamental point of view. Moreover, they
are very useful as a reference for understanding the con-
sequences of structural disorder, which is inherent to any
realistic experimental sample [50].

The extended nanostructures are modeled with finite unit
cells having N magnetic NPs and periodic boundary condi-
tions. To simplify comparisons between different ensembles,
the energies are measured in units of the dipole-interaction en-
ergy εDD of a pair of parallel nearest-neighbor (NN) magnetic
moments which are perpendicular to the vector connecting
them. This is given by

εDD = μ0

8π

μ2

λ3
, (4)

where λ is the nearest-neighbor distance. For instance, to give
an order of magnitude, in a system composed of ferromagnetic
particles with a diameter r = 3 nm and a nearest-neighbor
distance λ = 5 nm, we have εDD = 1.4 meV.

A. Honeycomb lattice

The 2D honeycomb lattice is defined by a triangular
Bravais lattice with primitive translation vectors

�e1 =
√

3λ(0, 1) and �e2 =
√

3

2
λ(

√
3, 1), (5)

with a basis consisting of two sites A and B whose coordinates
are

�eA = (0, 0) and �eB = λ

2
(1,−

√
3), (6)

where λ is the nearest-neighbor distance. This lattice has a D3

point-group symmetry with respect to each lattice site, which
consists of 6 different symmetry operations: the identity E ,
the 2π/3 rotations C3 and C2

3 around the axis perpendicular
to the lattice plane, and the three reflections across the planes
defined by the NN bonds and the lattice normal. In addition,
the honeycomb lattice has a D6 point-group symmetry with
respect to the center of each hexagon. This involves 12 differ-
ent symmetry operations: the identity E ; the π/3 rotations C6,
C2

6 , C3
6 , C4

6 , and C5
6 around the axis perpendicular to the lattice

plane; and the six reflections across the planes perpendicular
to the lattice and passing either through the middle of the NN
bonds forming the hexagon or through two opposite corners
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FIG. 1. Low-lying metastable magnetic configurations of a peri-
odic honeycomb lattice with N = 54 dipole-coupled NPs in the unit
cell. The circles indicate the position of the particles and the arrows
the orientations of the magnetic moments within the xy plane. In pan-
els (a) and (b), examples of the continuously degenerate ground state
are shown with microvortex angles (a) ηMV = 0 and (b) ηMV = π/2.
The magnetic configurations of the first- and second-excited states
are shown in panels (c) and (d), respectively.

of the hexagon. Finally, as any monolayer planar structure,
the lattice is invariant upon reflection across the lattice plane.

Figure 1 shows representative magnetic configurations of
the degenerate ground states and of the first- and second-
excited states of the honeycomb lattice as obtained with
N = 54 MNPs in the unit cell. In all these configurations
the magnetic moments are strictly parallel to the lattice xy
plane. In fact, our energy minimizations starting from ran-
dom spin orientations always yield local minima with only
in-plane moments. The same holds for the obtained first-order
saddle points and the associated minimum energy paths. This
can be explained by the strong tendency of dipolar interac-
tions to favor head-to-tail magnetic moment arrangements and
flux closure (magnetic shape anisotropy). Furthermore, it is
consistent with the already-mentioned reflection symmetry
with respect to the lattice plane. The latter implies that the
local dipolar fields acting on the magnetic moments �μk are
always parallel to the xy plane when all the �μk are in-plane.
Consequently, the energy increases quadratically whenever a
�μk is rotated out of the xy plane [39,50,51]. In Fig. 1, one
observes that the ground-state configurations, Figs. 1(a) and
1(b), are vortexlike with a vanishing, flux-closing magneti-
zation in each hexagon. Consequently, the total magnetization
of the nanostructure is also zero. If one decomposes the lattice
into different hexagons, as sketched in Fig. 1(a), one observes
that all hexagons have the same microvortex (MV) magnetic
order. This magnetic configuration can be characterized by a
single parameter ηMV, which defines the orientation of every
magnetic moment �μk (k = 1, . . . , 6) in any given hexagon
through the polar angle ϕk formed by �μk and the positive x
axis. Explicitly, we have

ϕk =
{
−ηMV + 2π

3
, ηMV + 2π

3
, −ηMV − 2π

3
, ηMV

− 2π

3
, −ηMV, ηMV

}
, (7)

for k = 1, . . . , 6, where ηMV is arbitrary (ηMV ∈ [0, 2π ]) and
the labeling of the NPs is anticlockwise starting from the NP
located at the rightmost corner of each hexagon. Examples
are shown in Fig. 1(a), which corresponds to ηMV = 0, and
Fig. 1(b), which corresponds to ηMV = π/6. In a perfectly
periodic lattice, the above-described ground-state MV con-
figuration is continuously degenerate with respect to ηMV

[29]. This is a consequence of the D3 point-group symme-
try at the lattice sites of the honeycomb lattice. The same
type of symmetry-conditioned continuous degeneracy appears
whenever the local symmetry group contains a Cn axis with
n > 2, which renders the xy representation irreducible, as
already observed in periodic square and triangular lattices
[31,50]. The continuous degeneracy is removed by thermal
fluctuations, structural disorder, and distortions, in which case
specific values of ηMV are stabilized, an effect known as
order-by-disorder [29,52,53]. For example, finite-temperature
fluctuations break the continuous degeneracy of the lattice by
stabilizing the angles ηMV = nπ/6, with n = 0, . . . , 5 [29].
It is interesting to note that the thermally induced stabi-
lization is much weaker in the honeycomb lattice than in
the square lattice, where the angle between stabilized ori-
entations (π/2) is larger. This is consistent with the idea
that the barriers separating metastable states increase as their
structural differences become more important (Hammond’s
postulate) [54].

In contrast to the ground state, the excited metastable states
of the honeycomb lattice have finite degeneracies, which can
be understood by taking into account the D6 point-group
symmetry with respect to the centers of the hexagons, the
translational symmetries, and the time-reversal symmetry of
the underlying Hamiltonian. The first-excited configuration,
shown in Fig. 1(c), consists of vortices similar to the ground
state combined with stripes of antiparallel arrangements of
the magnetic moments. In this case the total magnetization
vanishes as well. Since the translational symmetry of the
magnetic order is partly reduced, one finds that 9 out of the
27 possible translations within the unit cell yield a different
degenerate configuration [see Fig. 1(c)]. These translations
together with the C6 rotations of the D6 group explain the
54fold degeneracy of the first metastable state. The other
symmetry operations (reflections and time-reversal) do not
yield any additional configurations.

The second-excited state illustrated in Fig. 1(d) also con-
sists of flux-closing vortexlike arrangements of the magnetic
moments. However, in contrast to the lower-lying states,
the second-excited configuration presents no periodicity at
all within the considered unit cell. Consequently, all 27
translations within the unit cell yield different degenerate
configurations. Combined with the C6 rotations of the D6

group and with time-reversal symmetry, this raises the total
degeneracy of the second metastable configuration to 324.
The reflections of the D6 group do not yield any new states.
Overall, 13 qualitatively distinct metastable states have been
found for the ensemble illustrated in Fig. 1 (N = 54). All of
them have important degeneracies which can be explained by
similar considerations. The largest degeneracy observed for
the considered unit cell is 648. This occurs when all trans-
lations, rotations, and also reflections yield distinct magnetic
configurations.
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FIG. 2. (a) Kinetic network of a periodic honeycomb lattice with N = 54 dipole-coupled NPs in the unit cell. The degenerate ground
state is represented by a red circle. The nth level of degenerate metastable states are grouped into the gray circles labeled En. The transitions
towards the ground state are highlighted in black, whereas the transitions among the excited states are indicated in gray. (b) Corresponding
disconnectivity graph, where the degenerate states are also grouped into a single branch and the degeneracies are given by the numbers at the
end of each branch. Notice that the energies are measured in units of εDD [see Eq. (4)].

Previous studies have shown that ensembles of dipole-
coupled magnetic moments have complex energy landscapes
containing significant numbers of local minima and in-
termediate transition states [39,50,55]. For the honeycomb
ensemble illustrated in Fig. 1, we find in total NLM = 4915
local minima, if the continuously degenerate ground state is
counted as one, and NTS = 22 908 transition states connecting
them. A first insight into the topology of the energy landscape
is provided by the kinetic network shown in Fig. 2(a). The
nodes, which represent the LM, and the edges, which rep-
resent the TSs, display the connectivity among the LM. For
the sake of clarity, degenerate LM have been grouped into
a single node. Direct transitions between degenerate LM are
sometimes possible as indicated by the gray loops in Fig. 2(a).
One observes that the ground state is at the very center of the
network (red node). It is a throughout-reaching hub, directly
connected to all the excited metastable states and has a degree
density ρ = 1. In contrast, the direct transitions among the
excited metastable states are very few, with degree densities of
the order of ρ ≈ 10−3. The resulting kinetic network is star-
like with a very small transitivity C 	 10−3 as there are only
a small number of connections among some of the excited
metastable states and therefore the KN is nearly bipartite.
The starlike topology of the KN implies that the distance
between any pair of metastable states is very small. In fact,
each excited configuration is directly connected to the ground
state (d = 1) and requires at most two elementary transitions
(d = 2) to reach any other excited state. The resulting average
path distance 〈d〉 = 1.99 is thus extremely short.

From a physical perspective, the topology of the kinetic
network of honeycomb ensembles is characteristic of systems
where the relaxation dynamics is particularly fast and un-
hindered irrespectively of the initial configuration, since the
ground state is at the center of the network and only one ele-
mentary transition is required to reach it from any metastable
state. In addition, the relaxation towards the ground state is ex-
tremely funneled, as the connectivity among the excited states
is very small. Thus, elementary transitions between pairs
of excited states are relatively unlikely. One concludes that
honeycomb NP arrangements are extremely good structure
seekers. A comparable behavior has been found in periodic

square and triangular lattices, whose ground states are also
continuously degenerate [39,50]. Furthermore, taking into ac-
count the results of Ref. [50], it is reasonable to expect that
weakly disordered honeycomb nanostructures should behave
in a similar way.

Kinetic networks certainly offer us a most useful insight
on the connectivity among the metastable states of a sys-
tem. However, they give no information on the energies of
the metastable states and on the energy barriers separating
them, which are also crucial for the dynamics. This important
complementary perspective is provided by the disconnectiv-
ity graphs introduced in Sec. II C and shown in Fig. 2(b).
To improve the readability of the DG, the degenerate LM
are grouped in a single branch, with the corresponding de-
generacy being indicated at the end of each branch. The
continuously degenerate ground state can be easily identi-
fied at the bottom of the DG, clearly separated from the
excited metastable states which all have significantly higher
energies. Notice, that the downhill energy barriers from the
excited states towards the ground state are comparatively
small, typically at least 25 times smaller than the barri-
ers in the opposite upward direction. The sole exception is
the first-excited state for which the downhill barrier 
E↓ =
0.05 εDD is only around 5 times smaller than the uphill barrier

E↑ = 0.24 εDD. Therefore, the relaxation from any initial
state will be rapid and irreversible, even at low temperatures,
as in good structure seekers. The results confirm our analysis
of the kinetic networks. They are in good agreement with the
behavior found in other highly symmetric periodic lattices,
such as the square and triangular lattices [39].

B. Kagome lattice

The kagome lattice is a triangular Bravais lattice defined
by the primitive translation vectors

�e1 = λ(2, 0) and �e2 = λ(1,
√

3), (8)

with a basis consisting of triangles with coordinates

�eA = (0, 0) and �eB = λ(1, 0), and �eC = λ

2
(1,

√
3),

(9)
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FIG. 3. Metastable magnetic configurations of a periodic kagome lattice with N = 27 dipole-coupled NPs in the unit cell. The circles
indicate the position of the particles, while the arrows indicate the orientation of the magnetic moments within the xy plane. Examples of the
6-fold degenerate ground state are shown in panels (a) and (d). The other subfigures illustrate different degenerate magnetic configurations of
the first-excited state, in which the changes with respect to the ground states are highlighted in gray.

where λ is the nearest-neighbor distance. In other words, the
kagome lattice is a triangular lattice of triangles (see Fig. 3).

As already discussed in the previous section, all the
magnetic moments in the relevant magnetic configurations,
including LM, TSs, and MEPs, lie within the xy plane. This
is a consequence of the nature of the dipolar interaction and
the reflection symmetry of the NP arrangement across the
lattice plane. Examples of the low-lying magnetic configu-
rations of a kagome lattice having N = 27 NPs in the unit
cell are illustrated in Fig. 3. Previous studies have shown
that the ground state is 6-fold degenerate as a result of the
C3 rotational symmetry with respect to the centers of the
triangles together with time-reversal symmetry [40,41]. The
ground-state magnetic configurations reflect the translational
symmetry of the underlying triangular Bravais lattice. Indeed
the magnetic order is entirely defined by the orientation of �μk

in one of the basis triangles. The magnetic moments in all the
other triangles are oriented in the same way [see Figs. 3(a) and
3(d)]. This defines three sublattices, which we denote as A, B,
and C, within which the magnetic moments are all parallel.
In Table I, the polar angles ϕA, ϕB, and ϕC between �μk in the
three sublattices and the x axis are given for all six degen-
erate ground states. One observes that the angles 
ϕ = 0.64
between the magnetic moments in each triangle are relatively
small. Consequently, the ground-state magnetization is finite.
Normalized per unit cell it amounts to μ = 0.87.

TABLE I. The angles ϕA, ϕB, and ϕC defining the orientation of
the magnetic moments at the sublattices A, B, and C of a kagome
lattice with N = 27 NPs in the unit cell for the six degenerate ground-
state configurations [40]. The configurations 1 and 4 are illustrated
in Figs. 3(a) and 3(d), respectively.

1 2 3 4 5 6

ϕA 3.55 0.41 3.78 0.64 2.09 5.24
ϕB 4.19 1.05 2.51 5.65 2.73 5.87
ϕC 4.82 1.68 π 0.00 1.46 4.60

From a local perspective, the kagome lattice can be re-
garded as an arrangement of horizontal and oblique chains of
NPs, in which each NP is at the crossing of two chains (see
Fig. 3). The magnetic order in the first-excited state, which is
illustrated in Figs. 3(b), 3(c), 3(e), and 3(f), can be pictured
in terms of these chains. One observes that the orientations
of the magnetic moments in the first metastable configuration
are, for the most part, very similar to the ones found in one of
the ground states. The magnetic orders in Figs. 3(b) and 3(c)
are very similar to those in Fig. 3(a), whereas the magnetic
orders in Figs. 3(e) and 3(f) are similar to those in Fig. 3(d).
The actual excitation consists of rotating the magnetic mo-
ments of a complete horizontal chain [Figs. 3(b) and 3(e)]
or of an oblique chain [Figs. 3(c) and 3(f)]. The magnetic
moments along these specific chains, which are highlighted
in gray in Fig. 3, are rotated by 
ϕ 	 1.62 with respect to
their ground-state orientation, such that the component of
the magnetization along the chain is reversed. Furthermore,
it is important to note that, starting from any ground-state
configuration, only excitations along two of the three chain
directions are observed. For instance, in the case of the ground
state depicted in Fig. 3(a), only the excitations along the chain
directions highlighted in Figs. 3(b) and 3(c) are possible. In
fact, in order that the rotation of the moments along a chain
yields a metastable configuration, the nearly head-to-tail ar-
rangement of the magnetic moments needs to be preserved
and the resulting angles ϕk of �μk in the triangles need to be
close to those in one of the ground states (see Table I). Conse-
quently, in the kagome lattice illustrated in Fig. 3, each ground
state is connected to six different first-excited states, which
corresponds to choosing one of the three different chains
along the two directions. In larger unit cells with a greater
number of NP chains, the ground states are connected to the
corresponding larger number of excited states. Furthermore,
it is most interesting to observe that, upon rotating the mag-
netic moments along the chains with respect to one ground
state, some of the short-range correlations found in a different
ground state are locally restored (i.e., showing a different set
of ϕA, ϕB, and ϕC given in Table I). Compare, for instance, the

224412-6



INTERACTION-ENERGY LANDSCAPES OF KAGOME AND … PHYSICAL REVIEW B 108, 224412 (2023)

FIG. 4. Kinetic network of a periodic kagome lattice with
N = 27 dipole-coupled NPs in the unit cell. The 6-fold degenerate
ground states are highlighted by red dots, the first-excited states by
blue dots, and the second-excited states by green dots. The local
minima having higher energies are represented by the smaller black
dots. The edges connecting the dots indicate the elementary transi-
tions between the LM across first-order saddle points. Notice that the
degree distribution among the nodes is very homogeneous and that
the network lacks any hubs or centers through which relaxation could
be funneled.

configurations shown in Figs. 3(a), 3(b), and 3(d) [40]. Thus,
the first-excited states are always a mixture of two different
ground states.

The metastable states with higher energies are obtained by
rotating additional chains of magnetic moments along chains
with different directions. Thus, short-range magnetic orders
within the triangles are found which correspond to more
than two different ground states. For instance, second-excited
states can be obtained from the ground state shown in Fig. 3(a)
by combining the first-excited states displayed in Figs. 3(b)
and 3(c). Consequently, the second excitation is 54-fold de-
generate, which amounts to the number of ground states times
the number chains with proper orientations, in the present unit
cell (6 × 9, see Fig. 3). Higher-excited metastable states can
be obtained in a similar way by successive moment rotations
along different chains.

Figure 4 shows the kinetic network of the kagome lattice
illustrated in Fig. 3. It consists of NLM = 258 nodes repre-
senting the LM and NTS = 676 edges representing elementary
transitions between the LM across first-order saddle points.
The 6-fold degenerate ground states are represented by red
dots, the first-excited states are indicated by blue dots, and the
second-excited states are indicated by green dots. The higher-
energy excited states are indicated by black dots. Comparison
with the honeycomb lattice [Fig. 2(a)] reveals remarkable
differences. While in the honeycomb lattice the continuously
degenerate ground-state was at the center of the KN, directly
connected to all metastable states, in the kagome arrange-
ment the degree distribution among all nodes is extremely
homogeneous. In fact, with very few exceptions, each LM

is connected to exactly six other LM. This behavior can be
explained by the nature of the excitations as discussed in
previous paragraphs. For instance, if one considers the ground
state shown in Fig. 3(a), excitations can only occur along the
horizontal chains of NPs or along the oblique chains of NPs
[see Figs. 3(b) and 3(c)]. Similar considerations explain the
magnetic order in the other metastable states. In this context it
is worth noting that no elementary transition has been found
where the magnetic moments along more than one chain of
NPs are rotated simultaneously. Changes in the magnetic or-
der where the moments of more than one chain rotate are, of
course, possible but they involve multiple elementary transi-
tions.

In Fig. 4 one observes that the ground state and low-lying
LM form a ring-like structure, which reflects the 6-fold de-
generacy of the ground state. The higher-energy LM have
been placed at the center of the KN shown in Fig. 4 merely
for the sake of clarity. They do not constitute the center of
the network from the perspective of network science. In fact,
the kinetic network of the kagome lattice does not exhibit any
center or hub through which the dynamics could be funneled,
as it is the case in the honeycomb lattice. In the context of
network science one refers to this type of network as being
latticelike, since the degree of all nodes is small and nearly
the same. This implies that the distance between nodes can
be very large [56,57]. Indeed, one may furthermore note that
the average path distance 〈d〉 = 4.4 is comparatively large and
that the KN is bipartite (C = 0). In summary, kagome systems
are very much the opposite of good structure seekers, in strong
contrast to the honeycomb, square, or triangular ensembles,
for example (see Sec. III A and Refs. [39,50]).

The DG of the kagome NP lattice is shown in Fig. 5.
One observes that the energies of the 6-fold degenerate
ground state (E0 = −4.778 εDD) and of the 36-fold degen-
erate first-excited metastable state (E1 = −4.774 εDD) are
extremely close yet the magnetic orders in these states are
distinct, as previously discussed. Notice, moreover, that all
these magnetic configurations are remarkably stable locally.
They are separated from the adjacent metastable states by
comparatively large energy barriers: 
E0 = 0.154 εDD and

E1 = 0.135 εDD. The 54-fold degenerate second-excited
states lie at an appreciably higher energy E2 = −4.706 εDD,
while the remaining LM have much higher energies E3 =
−4.636 εDD and E4 = −4.635εDD. The energy profiles are,
in general, quite asymmetric, as in the honeycomb lattice.
However, notice that the downhill barriers are much larger
than those in the honeycomb ensemble, although they are still
small in comparison to the much bigger uphill barriers.

Qualitatively, the DG of the kagome ensemble shown in
Fig. 5 can be divided into two parts. The upper part including
the states with the higher energies E3 and E4 resembles a
palm tree as found, for instance, in the honeycomb lattice.
Consequently, the relaxation out of these states is expected
to be unhindered and fast towards the low-energy states, even
at relatively low temperatures. In contrast, the lower part of
the DG shows no hierarchy among the LM. Instead, one
finds a large number of LM having extremely close energies
and large energy barriers separating them. In addition, the
analysis of the KN has shown that the distances in configura-
tional space between these low-energy LM are large, as given
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FIG. 5. Disconnectivity graph of the energy landscape of a periodic kagome lattice with N = 27 dipole-coupled NPs in the unit cell, which
contains NLM = 298 local minima. The colors indicate the ground states (red), first-excited states (blue), second-excited states (green), and
higher-energy LM (black), as in Fig. 4. The energies on the y axis are given in units of εDD [see Eq. (1)].

by the important number of elementary transitions between
them. Therefore, one expects a very slow relaxation dynam-
ics involving trapping and an extremely difficult approach to
equilibrium.

Calculations on larger systems have also been performed
in order to assess how the results are affected by the unit-cell
size and the periodic boundary conditions. The thus obtained
magnetic configurations are extremely similar to those pre-
viously described in this work. This applies in particular to
the ground state, whose 6-fold degeneracy does not change.
However, the number of low-lying LM increases most rapidly
as the number of NPs in the unit cell is increased. For instance,
in the case of N = 48 NPs, we find a 48-fold degenerate
first-excited state, a 36-fold degenerate second-excited state,
and a 36-fold degenerate third excited state, whose energies
are all extremely close to the ground-state energy and which
are all separated from each other by important energy barriers.
This confirms and in fact strengthens the validity of the anal-
ysis presented in previous paragraphs. Concerning the energy
barriers between the LM, one observes that their height 
E
increases, as expected, as a function of N , while the ratio

E/N tends to decrease. In sum, the calculations show that
considering larger unit cells does not affect our conclusions in
a qualitative way.

IV. CONCLUSION

The energy landscapes of dipole-coupled magnetic
nanoparticles organized in two-dimensional periodic hon-
eycomb and kagome lattices have been investigated. The
corresponding ergodic networks of local minima and con-
necting transition states have been determined and analyzed
in some detail. Remarkable specific properties as well as
strong qualitative differences in the physical behavior of these
systems have been revealed. Honeycomb lattices are shown
to be very good structure seekers. In this case one observes
that almost any metastable magnetic configuration can evolve
into the continuously degenerate ground state by overcoming
a relatively small energy barrier through a single first-order
transition state. The kinetic networks of these nanostruc-
tures are starlike and the disconnectivity graphs resemble
palm trees. One concludes that the magnetic behavior of

honeycomb lattices of magnetic NPs are qualitatively very
close to that observed for periodic square and triangular lat-
tices [39]. In contrast, kagome lattices of magnetic NPs show
a large number of low-energy metastable states, which have
very similar energies and are separated by large energy barri-
ers. The corresponding kinetic networks of stationary points
resemble periodic lattices, where all the nodes representing
the LM have a very similar small number of direct links to
other nodes, the average path distance between nodes is large,
and no hubs or hierarchy among the nodes can be identi-
fied. The disconnectivity graphs show that the relaxation from
high-energy configurations towards the low-energy part of the
EL should be relatively fast. However, the large multiplicity
of metastable states with very similar low energies and the
presence of large energy barriers separating them should re-
sult in trapping and in an extremely slow relaxation towards
equilibrium.

The main purpose of this paper has been to characterize
the collective magnetic behavior of dipole-coupled magnetic
nanoparticles organized in specific two-dimensional periodic
structures. It would be very interesting to extend the present
investigations by taking into account a number of addi-
tional magnetic effects. For example, one could incorporate
local energy contributions, such as shape-induced and mag-
netocrystalline anisotropies of individual nanoparticles, as
well as the coupling to external magnetic fields, in order
to quantify how they compete with the dipolar interactions.
This is expected to result in significant changes in the col-
lective magnetic response of the different NP arrangements.
Further developments include a more detailed description of
the magnetostatic interactions through higher-order multipole
contributions, which should be significant when the shape of
the nano-objects is far from spherical. Finally, the study of
other forms of interparticle interactions, for instance, those
mediated by a metallic support, represent a further challenging
research direction.
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Onbaşlı, M. d’Aquino et al., Opportunities and challenges for
spintronics in the microelectronics industry, Nat. Electron. 3,
446 (2020).

[9] S. D. Sloetjes, E. S. Digernes, A. Stromberg, F. K. Olsen, A. D.
Bang, A. T. N’Diaye, R. V. Chopdekar, E. Folven, and J. K.
Grepstad, Effects of array shape and disk ellipticity in dipolar-
coupled magnetic metamaterials, Phys. Rev. B 104, 134421
(2021).

[10] K. Lee, J. Callaway, and S. Dhar, Electronic structure of small
iron clusters, Phys. Rev. B 30, 1724 (1984).

[11] K. Lee, J. Callaway, K. Kwong, R. Tang, and A. Ziegler, Elec-
tronic structure of small clusters of nickel and iron, Phys. Rev.
B 31, 1796 (1985).

[12] I. M. L. Billas, J. A. Becker, A. Chatelain, and W. A. de Heer,
Magnetic moments of iron clusters with 25 to 700 atoms and
their dependence on temperature, Phys. Rev. Lett. 71, 4067
(1993).

[13] J. P. Bucher, D. C. Douglass, and L. A. Bloomfield, Magnetic
properties of free cobalt clusters, Phys. Rev. Lett. 66, 3052
(1991).

[14] R. A. Guirado-López, J. Dorantes-Dávila, and G. M. Pastor,
Orbital magnetism in transition-metal clusters: From Hund’s
rules to bulk quenching, Phys. Rev. Lett. 90, 226402
(2003).

[15] G. M. Pastor, J. Dorantes-Dávila, and K. H. Bennemann, Size
and structural dependence of the magnetic properties of small
3d-transition-metal clusters, Phys. Rev. B 40, 7642 (1989).

[16] G. M. Pastor, J. Dorantes-Dávila, S. Pick, and H. Dreysse,
Magnetic anisotropy of 3d transition-metal clusters, Phys. Rev.
Lett. 75, 326 (1995).

[17] M. Muñoz-Navia, J. Dorantes-Dávila, D. Zitoun, C. Amiens, N.
Jaouen, A. Rogalev, M. Respaud, and G. M. Pastor, Tailoring

the magnetic anisotropy in CoRh nanoalloys, Appl. Phys. Lett.
95, 233107 (2009).

[18] D. C. Douglass, A. J. Cox, J. P. Bucher, and L. A. Bloomfield,
Magnetic properties of free cobalt and gadolinium clusters,
Phys. Rev. B 47, 12874 (1993).

[19] W. A. de Heer, P. Milani, and A. Chatelain, Spin relaxation in
small free iron clusters, Phys. Rev. Lett. 65, 488 (1990).

[20] D. Schildknecht, L. J. Heyderman, and P. M. Derlet, Phase
diagram of dipolar-coupled XY moments on disordered square
lattices, Phys. Rev. B 98, 064420 (2018).

[21] S. K. Baek, P. Minnhagen, and B. J. Kim, Kosterlitz-Thouless
transition of magnetic dipoles on the two-dimensional plane,
Phys. Rev. B 83, 184409 (2011).

[22] B. Alkadour, J. I. Mercer, J. P. Whitehead, B. W. Southern,
and J. van Lierop, Dipolar ferromagnetism in three-dimensional
superlattices of nanoparticles, Phys. Rev. B 95, 214407 (2017).

[23] M. Varón, M. Beleggia, T. Kasama, R. J. Harrison, R. E. Dunin-
Borkowski, V. F. Puntes, and C. Frandsen, Dipolar magnetism
in ordered and disordered low-dimensional nanoparticle assem-
blies, Sci. Rep. 3, 1234 (2013).

[24] P. Torche, C. Munoz-Menendez, D. Serantes, D. Baldomir,
K. L. Livesey, O. Chubykalo-Fesenko, S. Ruta, R. Chantrell,
and O. Hovorka, Thermodynamics of interacting magnetic
nanoparticles, Phys. Rev. B 101, 224429 (2020).

[25] E. H. Sánchez, M. Vasilakaki, S. S. Lee, P. S. Normile, M. S.
Andersson, R. Mathieu, A. López-Ortega, B. P. Pichon, D.
Peddis, C. Binns, P. Nordblad, K. Trohidou, J. Nogués, and
J. A. D. Toro, Crossover from individual to collective mag-
netism in dense nanoparticle systems: Local anisotropy versus
dipolar interactions, Small 18, 2106762 (2022).

[26] P. J. Jensen and G. M. Pastor, Dipole coupling induced magnetic
ordering in an ensemble of nanostructured islands, Phys. Status
Solidi A 189, 527 (2002).

[27] P. J. Jensen and G. M. Pastor, Low-energy properties of two-
dimensional magnetic nanostructures: Interparticle interactions
and disorder effects, New J. Phys. 5, 68 (2003).

[28] G. M. Pastor and P. J. Jensen, Elementary transitions and mag-
netic correlations in two-dimensional disordered nanoparticle
ensemble, Phys. Rev. B 78, 134419 (2008).

[29] S. Prakash and C. L. Henley, Ordering due to disorder in dipolar
magnets on two-dimensional lattices, Phys. Rev. B 42, 6574
(1990).

[30] P. Politi, M. G. Pini, and R. L. Stamps, Dipolar ground state of
planar spins on triangular lattices, Phys. Rev. B 73, 020405(R)
(2006).

[31] D. Schildknecht, M. Schütt, L. J. Heyderman, and P. M. Derlet,
Continuous ground-state degeneracy of classical dipoles on reg-
ular lattices, Phys. Rev. B 100, 014426 (2019).

[32] B. E. Skovdal, G. K. Palsson, P. C. W. Holdsworth, and B.
Hjorvarsson, Emergent tricriticality in magnetic metamaterials,
Phys. Rev. B 107, 184409 (2023).

[33] D. Mehta, C. Hughes, M. Schröck, and D. J. Wales, Potential
energy landscapes for the 2D XY model: Minima, transition
states and pathways, J. Chem. Phys. 139, 194503 (2013).

[34] D. Mehta, C. Hughes, M. Kastner, and D. J. Wales, Potential
energy landscapes of the two-dimensional XY model: Higher-
index stationary points, J. Chem. Phys. 140, 224503 (2014).

[35] T. Jonsson, J. Mattsson, C. Djurberg, F. A. Khan, P. Nordblad,
and P. Svedlindh, Aging in a magnetic particle system,
Phys. Rev. Lett. 75, 4138 (1995).

224412-9

https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/PhysRevLett.111.057204
https://doi.org/10.1038/ncomms9278
https://doi.org/10.1038/s41567-017-0027-2
https://doi.org/10.1021/acs.nanolett.8b01789
https://doi.org/10.1088/1742-6596/292/1/012002
https://doi.org/10.1038/s41928-020-0461-5
https://doi.org/10.1103/PhysRevB.104.134421
https://doi.org/10.1103/PhysRevB.30.1724
https://doi.org/10.1103/PhysRevB.31.1796
https://doi.org/10.1103/PhysRevLett.71.4067
https://doi.org/10.1103/PhysRevLett.66.3052
https://doi.org/10.1103/PhysRevLett.90.226402
https://doi.org/10.1103/PhysRevB.40.7642
https://doi.org/10.1103/PhysRevLett.75.326
https://doi.org/10.1063/1.3272000
https://doi.org/10.1103/PhysRevB.47.12874
https://doi.org/10.1103/PhysRevLett.65.488
https://doi.org/10.1103/PhysRevB.98.064420
https://doi.org/10.1103/PhysRevB.83.184409
https://doi.org/10.1103/PhysRevB.95.214407
https://doi.org/10.1038/srep01234
https://doi.org/10.1103/PhysRevB.101.224429
https://doi.org/10.1002/smll.202106762
https://doi.org/10.1002/1521-396X(200202)189:2<527::AID-PSSA527>3.0.CO;2-C
https://doi.org/10.1088/1367-2630/5/1/368
https://doi.org/10.1103/PhysRevB.78.134419
https://doi.org/10.1103/PhysRevB.42.6574
https://doi.org/10.1103/PhysRevB.73.020405
https://doi.org/10.1103/PhysRevB.100.014426
https://doi.org/10.1103/PhysRevB.107.184409
https://doi.org/10.1063/1.4830400
https://doi.org/10.1063/1.4880417
https://doi.org/10.1103/PhysRevLett.75.4138


DAVID GALLINA AND G. M. PASTOR PHYSICAL REVIEW B 108, 224412 (2023)

[36] M. Sasaki, P. E. Jönsson, H. Takayama, and H. Mamiya, Aging
and memory effects in superparamagnets and superspin glasses,
Phys. Rev. B 71, 104405 (2005).

[37] D. Parker, V. Dupuis, F. Ladieu, J.-P. Bouchaud, E. Dubois, R.
Perzynski, and E. Vincent, Spin-glass behavior in an interacting
γ -Fe2O3 nanoparticle system, Phys. Rev. B 77, 104428 (2008).

[38] M. Vasilakaki, G. Margaris, D. Peddis, R. Mathieu, N. Yaacoub,
D. Fiorani, and K. Trohidou, Monte Carlo study of the superspin
glass behavior of interacting ultrasmall ferrimagnetic nanopar-
ticles, Phys. Rev. B 97, 094413 (2018).

[39] D. Gallina and G. M. Pastor, Theory of the collective behavior
of two-dimensional periodic ensembles of dipole-coupled mag-
netic nanoparticles, Phys. Rev. B 107, 184407 (2023).

[40] M. S. Holden, M. L. Plumer, I. Saika-Voivod, and B. W.
Southern, Monte Carlo simulations of a kagome lattice with
magnetic dipolar interactions, Phys. Rev. B 91, 224425 (2015).

[41] M. Maksymenko, V. R. Chandra, and R. Moessner, Classical
dipoles on the kagome lattice, Phys. Rev. B 91, 184407 (2015).

[42] O. Benton, Ordered ground states of kagome magnets with
generic exchange anisotropy, Phys. Rev. B 103, 174425 (2021).

[43] D. J. Wales, Energy Landscapes: Applications to Clusters,
Biomolecules and Glasses (Cambridge University, Cambridge,
England, 2004).

[44] J. P. K. Doye and D. J. Wales, The effect of the range of the
potential on the structure and stability of simple liquids: From
clusters to bulk, from sodium to C60, J. Phys. B 29, 4859 (1996).

[45] M. A. Miller, J. P. K. Doye, and D. J. Wales, Structural relax-
ation in Morse clusters: Energy landscapes, J. Chem. Phys. 110,
328 (1999).

[46] J. Nocedal, Updating quasi-Newton matrices with limited stor-
age, Math. Comp. 35, 773 (1980).

[47] J. C. Mauro, R. J. Loucks, and J. Balakrishnan, A simplified
eigenvector-following technique for locating transition points
in an energy landscape, J. Phys. Chem. A 109, 9578 (2005).

[48] R. D. Luce and A. D. Perry, A method of matrix analysis of
group structure, Psychometrika 14, 95 (1949).

[49] O. M. Becker and M. Karplus, The topology of multidi-
mensional potential energy surfaces: Theory and application

to peptide structure and kinetics, J. Chem. Phys. 106, 1495
(1997).

[50] D. Gallina and G. M. Pastor, Disorder-induced transforma-
tion of the energy landscapes and magnetization dynamics
in two-dimensional ensembles of dipole-coupled magnetic
nanoparticles, Phys. Rev. X 10, 021068 (2020).

[51] Besides the planar magnetic configurations with in-plane �μk ,
which yield the low-energy magnetic configurations for dipolar
interactions and thus represent the physically most relevant part
of the EL, attention should, in principle, be paid to the perpen-
dicular configurations, in which all the �μk are normal to the
xy plane, because in these cases the dipolar fields at the lattice
sites are also perpendicular to the lattice plane. Consequently,
all perpendicular configurations are stationary points of the EL.
We have, therefore, explicitly analyzed the nature of these sta-
tionary points by diagonalizing the Hessian matrix for a number
of representative configurations including ferromagnetic (FM)
and antiferromagnetic (AFM) perpendicular orders. The results
show that these configurations are higher-order saddle points
with relatively high energies. For instance, the FM perpendicu-
lar configuration of the honeycomb lattice is a 75th-order saddle
point whose energy is 
E = 11.04 εDD above the ground state.
Moreover, the AFM perpendicular configuration is a 35th-order
saddle point with 
E = 2.12 εDD. These values should be com-
pared with the barrier energies between in-plane configurations,
which are of the order of 0.1εDD.

[52] J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, Order as an
effect of disorder, J. Phys. Fr. 41, 1263 (1980).

[53] C. L. Henley, Ordering due to disorder in a frustrated vector
antiferromagnet, Phys. Rev. Lett. 62, 2056 (1989).

[54] G. S. Hammond, A correlation of reaction rates, J. Am. Chem.
Soc. 77, 334 (1955).

[55] D. Gallina and G. M. Pastor, Structural disorder and col-
lective behavior of two-dimensional magnetic nanostructures,
Nanomaterials 11, 1392 (2021).

[56] A. L. Barabási, Network Science (Cambridge University, Cam-
bridge, England, 2016).

[57] M. E. J. Newman, Networks (Oxford University, Oxford, 2010).

224412-10

https://doi.org/10.1103/PhysRevB.71.104405
https://doi.org/10.1103/PhysRevB.77.104428
https://doi.org/10.1103/PhysRevB.97.094413
https://doi.org/10.1103/PhysRevB.107.184407
https://doi.org/10.1103/PhysRevB.91.224425
https://doi.org/10.1103/PhysRevB.91.184407
https://doi.org/10.1103/PhysRevB.103.174425
https://doi.org/10.1088/0953-4075/29/21/002
https://doi.org/10.1063/1.478067
https://doi.org/10.2307/2006193
https://doi.org/10.1021/jp053581t
https://doi.org/10.1007/BF02289146
https://doi.org/10.1063/1.473299
https://doi.org/10.1103/PhysRevX.10.021068
https://doi.org/10.1051/jphys:0198000410110126300
https://doi.org/10.1103/PhysRevLett.62.2056
https://doi.org/10.1021/ja01607a027
https://doi.org/10.3390/nano11061392

