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Unraveling the connection between high-order magnetic interactions and local-to-global spin
Hamiltonian in noncollinear magnetic dimers
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A spin Hamiltonian that characterizes interatomic interactions between spin moments is highly valuable in
predicting and comprehending the magnetic properties of materials. Here, we explore a method for explicitly
calculating interatomic exchange interactions in noncollinear configurations of magnetic materials considering
only a bilinear spin Hamiltonian in a local scenario. Based on density-functional theory calculations of dimers
adsorbed on metallic surfaces, and with a focus on the Dzyaloshinskii-Moriya interaction (DMI) which is
essential for stabilizing chiral noncollinear magnetic states, we discuss the interpretation of the DMI when
decomposed into microscopic electron and spin densities and currents. We clarify the distinct origins of spin
currents induced in the system and their connection to the DMI. In addition, we reveal how noncollinearity
affects the usual DMI, which is solely induced by spin-orbit coupling, and DMI-like interactions brought about
by noncollinearity. We explain how the dependence of the DMI on the magnetic configuration establishes a
connection between high-order magnetic interactions, enabling the transition from a local to a global spin
Hamiltonian.

DOI: 10.1103/PhysRevB.108.224408

I. INTRODUCTION

In order to calculate the magnetic properties of a given
system or material, one of the most used approaches is to
start from a spin Hamiltonian that describes the interatomic
interactions between the atomic spins. This approach—the
atomistic approach—assumes that it is possible to identify
well-defined regions in the material where the magnetization
density is more or less unidirectional and sizable only close
to an atomic nucleus. One of the best examples of a spin
Hamiltonian is the generalized bilinear classical spin model,
which is written as

H = −
∑
〈i j〉

[Ji j �ei · �e j + �Di j · (�ei×�e j ) + �ei ·Ai j · �e j], (1.1)

where Ji j is the scalar Heisenberg exchange coupling pa-
rameter between the spins at atoms i and j, �Di j is the

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

Dzyaloshinskii-Moriya interaction (DMI) vector, Ai j is the
symmetric anisotropic interaction term, and �ei and �e j are
unit vectors describing the directions of the atomistic spin
moments at site i and j, respectively. The summation is made
over pairs of atoms 〈i j〉. Many methods have been proposed in
the recent literature regarding how to calculate these parame-
ters [1–5]. A widely used such method is the one proposed in
Refs. [6,7] and recently reviewed in Ref. [2]. We will refer
to this approach as the Liechtenstein-Katsnelson-Antropov-
Gubanov (LKAG) method. It is based on the magnetic force
theorem [6,8], which assumes that an effective spin Hamilto-
nian accurately describes the energy landscape of the atomic
spin configurations sufficiently close to the magnetic ground
state. In other words, the electronic Kohn-Sham Hamiltonian
can be mapped onto a (classical) spin Hamiltonian since the
variation of the total energy of the electronic subsystem can
be expressed in terms of variations only of occupied single-
particle states.

It is known that in all LKAG-like approaches the in-
teratomic exchange coupling parameters depend on the
underlying magnetic state from which they are calculated.
This becomes especially clear when the magnetic state is
allowed to have noncollinear order, since then this magnetic
state can be varied continuously and the corresponding varia-
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tion of the calculated bilinear interatomic exchange coupling
parameters is obvious [9]. Another way to view this is to say
that the mapped spin model is local, which means that it is
only valid for small magnetic variations around the reference
magnetic state.

This is in contrast to the concept of a global spin model,
which is valid for all possible spin configurations. It has
been argued that such a global model is possible if it also
incorporates higher-order spin interactions beyond bilinear
couplings, i.e., multiple interactions. It has been shown that
such terms appear naturally in a perturbative approach where
the reference state is nonmagnetic, in contrast to the magnetic
reference state in LKAG [10]. However, a disadvantage with
such an approach is that the perturbation from the reference
state can be considerable. In contrast, the LKAG approach
leads to a slow convergence in terms of multispin interactions.
[11–14]. The convergence of a multispin model eventually be-
comes a combinatorial problem, and it becomes very difficult
to reach completeness, i.e., to determine how many multispin
interactions should be considered. With increasing complexity
of the multispin interactions, it becomes hard to get a clear
grasp of their origin and physical meaning.

In this paper we have chosen to simplify the magnetic
structure as far as possible. Even in such a simple system
as a magnetic dimer, with a varying noncollinear magnetic
configuration, the bilinear interactions are heavily reference-
state dependent and the corresponding spin model is hence
nontrivial [15]. In the mapping to a spin model for magnetic
dimers, two complementary approaches will be compared.
First, the reference state is taken explicitly into account in an
LKAG-like approach and the magnetic interactions are calcu-
lated as a function of the magnetic configuration. Second, we
will recast the bilinear interactions as a reference-state inde-
pendent spin model with higher-order interactions, by means
of sum rules of the Green’s function. In this way, we can
illustrate the connection between the magnetic-configuration-
dependent and multispin representations in the case of dimers,
by explicitly showing how the DMI interaction behaves in
the two pictures, and simultaneously provide insight into its
microscopic origins.

More specifically, we have developed a technique to calcu-
late the interactions described in Eq. (1.1) for any magnetic
configuration considering only a bilinear spin Hamiltonian
[9,16]. The dependence of these parameters on the magnetic
configuration has been revealed, which can be interpreted
as the emergence of high-order terms folded onto a bilinear
Hamiltonian expression as the noncollinear magnetic texture
arises. In this way, one does not have access to the multispin
perspective of the problem, but on the other hand, one can con-
sider a simple solution to study the magnetic properties locally
in configuration space. This approach (technique), combined
with atomistic spin dynamics, has been shown to significantly
refine the comparison between theory and experiment when
considering properties of excited states, such as the magnon
softening induced by temperature effects, as demonstrated in
Refs. [17,18]. Moreover, in Refs. [9,16] we have shown that
these interactions can be seen in terms of spin/charge density
and spin/charge currents. It was recently demonstrated that
the DMI calculated from a noncollinear magnetic configura-
tion can have a large magnitude [9,16] and, most importantly,

have a nonchiral behavior, which appears to contradict the
original works of Moriya and Dzyaloshinskii [19,20]. This
observation has contributed to a vivid discussion [13,21] about
the mechanisms behind these interactions and their possible
equivalence to high-order terms and/or multispin interactions
in a global model. A more extensive discussion on spin Hamil-
tonians and how to correctly map them from an electronic
Hamiltonian can be found in Ref. [2] and references therein.

This paper is organized as follows: In Sec. II, we dis-
cuss the DMI structure—determined through first-principles
calculations—and its relation to spin and charge currents.
In Sec.III A, we use the real-space linear-muffin-tin-orbital
formalism in the atomic-sphere approximation (RS-LMTO-
ASA) method [22–26] to ascertain the magnetic states and
interactions for each system addressed. Section III B explores
the impact of structural relaxations on the present paper’s con-
clusions. Section III C examines the origins of spin currents
and their association with the DMI. Section III D presents the
DMI between two spin moments across various magnetic con-
figurations, with a focus on the effect of noncollinearity on the
DMI. Finally, in Sec. III E, we delve into the magnetic depen-
dence of the DMI, highlighting its connection with high-order
magnetic interactions and the transition from local-to-global
spin Hamiltonians.

II. METHOD

The Kohn-Sham equation, which has the form of a single-
particle Schrödinger equation, can be written as

i
∂ψ

∂t
= Hψ,

(2.1)
H = −∇2 + V (r) − [ �Bxc(r) + �Bext(r)] · �σ ,

where V (r) is the effective potential, �Bext(r) and �Bxc(r) are
the external magnetic field and the exchange-correlation field,
respectively, which couple to the electrons’ spin, and �σ stands
for the Pauli spin matrices {σx, σy, σz}. Note that Rydberg
units are used here: h̄ = 2m = e2/2 = 1 (it is also noteworthy
that in Appendix A we use a different definition of the wave
function, using capital �). From the Kohn-Sham Hamilto-
nian, one can calculate the Green’s function as

G(z) = (z − H )−1, (2.2)

where z ∈ C. Note that G(z) can be decomposed into intersite
terms Gi j , since G(z) = ∑

i j |φi〉Gi j〈φ j | with local functions
|φi〉 at site i, which can be further decomposed into spin
components as

Gi j = G0
i j + �Gi j · �σ , (2.3)

where �Gi j is a vector with the components of Gη
i j where the

index η enumerates both the scalar spin-independent Green’s
function as well as the components of the spin-dependent
vector Green’s function of Eq. (2.3), i.e., η can be either 0,
x, y, or z. We will refer here to G0

i j as the charge part and to
�Gi j as the spin part of the Green’s function. Note that one can
further decompose the components of the Green’s function
into terms that are either even or odd under time-reversal
symmetry [27]. This can be done by introducing Gηκ

i j where
the second index κ can be viewed as an indicator of whether
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or not the terms are time-reversal invariant, i.e., κ can be 0 or
1 (the exact relation is explained below). This decomposition
of the Green’s function can be summarized as

Gη
i j = Gη0

i j + Gη1
i j , (2.4)

where G00
i j and �G1

i j are time-reversal invariant while G01
i j and

�G0
i j are not. Sometimes it is convenient to write the x, y, or z

components of the Green’s function as vectors, i.e., �Gκ . This
decomposition also plays a useful role in how the Green’s
function behaves under site exchange, since in a real local
basis [27] we have that

Gηκ
i j = (−1)κGηκ

ji
T
. (2.5)

In fact, it has been shown that these two index Green’s
functions are decomposed in terms that produce local charge
densities G00 or spin densities �G0, and charge currents G01

and spin currents �G1, respectively [2]. Once the Green’s func-
tion is given, the (integrated) density of states and the grand
canonical potential (	) of the electronic subsystem can also
be determined.

As a next step, and as reviewed in Ref. [2], one can intro-
duce a small variation of the atomic spin at site i and derive the
variation of the grand potential compared to a reference state
(the ground state). The same procedure can be done at the
level of a spin Hamiltonian and then the variation of the spin
Hamiltonian δH can be compared with the variation of the
grand canonical potential δ	. One can make small rotations
of the spins at site i and j, which is equivalent to a one-site
rotation at site i and another one-site rotation at site j, while
an extra—interacting—term also appears due to the fact that
the rotations are made simultaneously. This interacting term,
which is given by Eq. (5.43) in Ref. [2], gives a direct way to
derive the exchange formulas. Note that the derivation of the
LKAG exchange formula in the seminal paper of Ref. [7] was
also based on the two-site variation strategy. For this reason,
we follow here the same strategy for the case of DMI vectors.
After the derivation, with the sign convention of Eq. (1.1), one
gets for the DMI term that

�Di j = 4

π
Re

∫
TrL

(
Bi G00

i j B j �G1
ji + Bi G01

i j B j �G0
ji

)
dε, (2.6)

where Bi is introduced by Eq. (5.1) in Ref. [2] by utilizing the
fact that under small perturbations the responding perturbation
in the electronic potential, which is purely spin dependent, can
be divided into local changes of the spin-polarized potential in
a given region around the atomic sites where the moments are
varied. Note that in this paper we mainly focus on the DMI
interaction; however, the explicit derived expressions for the
Heisenberg Ji j and the symmetric anisotropic interaction Ai j

can be also found in Ref. [2].

III. RESULTS

A. Magnetic ground states

In order to investigate and quantify the different contri-
butions to the Heisenberg exchange interactions as well as
the DMI, we here present a systematic study of magnetic

TABLE I. Values of J12 and D12 = | �D12| (mRy) calculated from
their respective ground state. Here, θ12 is the angle between the spin
moments of atom i and j.

J12 D12 θ12 (deg)

Cr2/Cu(001) −26.56 0.03 180
Mn2/Cu(001) −3.20 1.72 174
Fe2/Cu(001) 9.56 0.50 1
Cr2/Pt(001) −5.74 0.10 175
Mn2/Pt(001) −2.31 0.14 180
Fe2/Pt(001) 2.49 1.20 7
Cr2/W(001) 0.88 0.13 5
Mn2/W(001) 1.31 0.15 357
Fe2/W(001) −0.07 0.10 205

dimers on several nonmagnetic surfaces. Specifically, we per-
formed density-functional theory (DFT) calculations, using
the RS-LMTO-ASA method (see computational details in
Appendix C), for Cr, Mn, and Fe dimers on surfaces where
spin-orbit effects are expected to be significant [Pt(001) and
W(001)] or weak [Cu(001)].

Initially, we performed self-consistent calculations to de-
termine the electronic and magnetic ground states of the
systems studied. Details of this calculation are given in Ap-
pendix C. All dimers are found to have a canted magnetic
configuration as a ground state, either close to antiferromag-
netic (AFM) or ferromagnetic (FM), as shown in Table I.

After determining the magnetic ground state for each dimer
through our self-consistent process, we calculated the mag-
netic interactions using the ground state as the reference state.

Note that the amplitude of θ12 is proportional to | �D12|
J12

. This
proportionality is the highest for Fe on W(001), where the
total DMI is actually stronger than the isotropic exchange.

B. Relaxation and band-filling effects

The magnetic interactions of Cr and Fe dimers on Pt(001)
have also been also calculated in Ref. [10]. In order to com-
pare their findings with our calculations, structural relaxation
must be considered. In that work, the authors obtained that the
dimers relax approximately 30% towards the surface, which
can considerably change both J12 and �D12. Since a structural
relaxation can alter the hybridization and the charge transfer
between the deposited dimers and the substrate, one can an-
alyze the magnetic exchange interaction as a function of the
band filling and from there infer the sensitivity of such interac-
tions. An estimate of the band-filling effect can be obtained by
looking at the energy dependence of the exchange interactions
close to the Fermi energy. We have calculated both J12 and �D12

as a function of energy for Cr and Fe on Pt(001) and the result
is shown in Fig. 1.

The J12(E ) and D12(E ) curves for both systems, shown in
Fig. 1, exhibit steep slopes around the Fermi energy, which
suggest that the exchange interactions are indeed highly sen-
sitive to relaxation effects. In fact, even a limited change of
the band filling can result in a change of the sign of the
Heisenberg exchange of the Fe dimer as well as of the DMI for
both dimers, which can effectively alter the magnetic ground

224408-3



RAMON CARDIAS et al. PHYSICAL REVIEW B 108, 224408 (2023)

FIG. 1. Energy dependence of the magnetic interactions J (E )
and Dy(E ). The values for E = EF are the actual values for the cal-
culated magnetic interactions. The interactions are calculated using
the ferromagnetic case as a reference.

state of the dimer. Indeed, when performing calculations for
Fe and Cr dimers on a Pt(001) surface with a ∼35% inward
relaxation, we found that the J12 sign varies in comparison
to the unrelaxed systems (data not shown). This suggests
antiferromagnetic and ferromagnetic couplings, respectively,
consistent with the findings in Ref. [10]. The same effect was
found for a Mn nanochain on Au(111) [28]. Nevertheless,
the main aim of this paper is to study the microscopic origin
of the DMI interaction for different magnetic configurations
and the effects of structural relaxation would not change the
conclusions reached in this work.

C. Collinear versus noncollinear currents

It is known that the DMI emerges due to an intrinsic spin
current induced by the spin-orbit coupling (SOC) [29]. This
can be seen in Eq. (2.6), since the spin-current part of the
Green’s function appears explicitly. In this formalism, the
DMI is split into two different contributions: DS ∝ Gη1

i j , repre-
senting the spin-current-induced contribution, and DC ∝ G01

i j ,
representing the charge-current-induced contribution, respec-
tively. In the presence of a spin phase, the difference between
the two spin moments, i.e., a noncollinear magnetic configu-
ration, along with electron coherence, leads to a spin current
flowing between the atoms. A key aspect of this behavior is
the noncommutativity of the SU(2) spin algebra [30]. In the
dimer case, this leads to a spin current polarized perpendicu-
larly to the plane of rotation. This spin current is spontaneous
and induces a torque on the spin moments analogously to what
the spin current induced by SOC does. These torques play a
significant role in determining the system’s magnetic ground
state. In the case of a triangular trimer, the noncollinearity

FIG. 2. Illustration of the spin currents in a magnetic dimer. The
dimer bond axis is along the x direction while the z axis is along the
surface normal. The atoms’ spin moments (Si, Sj) are represented
by arrows. On top, the plane xz containing the noncollinear magnetic
structure is parallel to the bond, and on the bottom, the spin moments
are rotating in the yz plane, perpendicular to the bond. �jnoncol and �jSOC

denote the spin currents induced by the noncollinearity of the spin
moments and the SOC, respectively.

also gives rise to a charge current, if the scalar spin chiral-
ity (�ei × �e j ) · �ek is different than zero [30]. However, since
our study focuses solely on dimers, the DC has a minimal
impact on the total DMI. This is explored in more detail in
Appendix A, in Eq. (A15), where we obtain that

�js ∝ (�e1 × �e2). (3.1)

This spin current induced by the noncollinearity introduces an
extra term in the DMI, leading to two distinct contributions.
For example, we considered two rotations in different planes,
depicted in Fig. 2: (top) in the xz plane and (bottom) in the yz
plane. For a (001) surface, if the bond between the two atoms
is the x axis, a DMI is found in the y direction Dy according
to Moriya rules [31]. If the rotation described in Fig. 2(a) is
performed, a spin current in the y direction emerges and then
one can see a total DMI with both contributions, the SOC
and the noncollinear, being in the y direction. Conversely,
if the rotation shown in Fig. 2(b) is done instead, the spin
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current induced by the noncollinearity, according to Eq. (3.1),
is in the x direction and then one can see two independent
contributions that are not parallel. For the rotation of the spin
moments specified in Fig. 2(b), one can analyze the contribu-
tions separately.

In Appendix B we derive the reference dependence of both
the two independent types of Dzyaloshinskii-Moriya interac-
tions, that differ in the origin of the spin currents, i.e., either
noncollinearity or spin-orbit coupling.

D. Dzyaloshinskii-Moriya interactions

In order to understand the dependence of the DMI with re-
spect to both the angle between the spin moments of the dimer
atoms, θ , as well as to the SOC, we performed calculations
of the DMI considering the rotational plane shown in Fig. 2
(bottom). In this configuration, the different contributions to
the DMI are perpendicularly aligned and can be studied sep-
arately. We consider one spin moment fixed along the z axis
while the other one rotates around the x axis with an angle
θ . In this case, the noncollinearity will induce a spin current
in the x axis giving rise to what we have termed a DMI-like
contribution to the exchange interaction [9,16]. A finite value
of the SOC will induce a spin current parallel to the mirror
plane between the atoms giving a finite DMI along the y axis.
The calculated angular dependences of Dx and Dy are shown
in Fig. 3. One can see that in the absence of SOC (dashed line),
the Dy is immediately zero, while the DMI-like term (Dx) is
still finite. Taking Eq. (1.1), we can write the energy coming
from each term as

EDx = Dx(�ei × �e j )
x, (3.2)

EDy = Dy(�ei × �e j )
y, (3.3)

where the superscript x and y designates the corresponding
Cartesian component of the vector product between the two
spin moments. It is possible to see in Fig. 3 that the Dy has
the property of Dy(θ ) = Dy(−θ ), while the DMI-like term
Dx does not, i.e., Dx(θ ) = −Dx(−θ ). According to Eqs. (3.2)
and (3.3) combined with the fact that the vector product is
odd in θ , EDx will have the same value for both θ and −θ ,
while EDy will have the same magnitude but a different sign.
It means that in this particular setup, Dy is responsible to lift
the degeneracy between two different rotational senses (chiral
interaction), while Dx acts as an extra term to the total energy
coming from the �ei × �e j contribution. It is important to point
out that both the DMI (Dy) and the DMI-like term (Dx) are
configuration dependent, but only Dy is fully dependent on
SOC. The substrates Cu, Pt, and W have an ascending strength
of SOC, which does not necessarily explicitly translate to an
ascending magnitude of the Dy. This is expected since the
DMI is a result of a complex interplay of various factors
beyond the strength of SOC, e.g., band filling [32]. On the
other hand, the DMI-like Dx term is seen to have an inversely
proportional relationship with the SOC, being the weakest for
the dimers on W(001). In the particular case of the dimer, the
spin current that flows between �ei and �e j induces a spin accu-
mulation proportional to �ei × �e j , which induces a torque into
the spin moments contributing to the final magnetic ground
state. Note that, in general, the DMI (Dy) is only weakly

dependent on the magnetic configuration, which should reflect
in just a small variance of the ground state angle between the
spin moments. However, in some special cases, e.g., Cr and
Fe on Cu(001), the DMI changes sign. In this case, it means
that the system has a different chirality which is analogous to
the change of FM to AFM ordering if the isotropic exchange
goes from positive to negative, respectively, as seen in the Fe
dimer case [11].

E. From local-to-global representation

The spin Hamiltonian, commonly known as the Heisenberg
Hamiltonian, is described by a set of parameters which are
expected to be sufficient to describe the whole energy land-
scape of a given system, such as that the total energy is a
function of the spin moment directions only, �ei, as described
in Eq. (1.1). There are several works in the literature where
a simple bilinear spin Hamiltonian is not enough to describe
the total energy, therefore, high-order terms can be needed
as a correction to the Hamiltonian. For instance, if only the
isotropic exchange is considered for a simple dimer, the total
energy should be described as a linear function of cos(θ ), i.e.,
as Edimer = −J cos(θ ), where J is the isotropic exchange and
θ is the angle between the spin moments of the atoms. In
certain scenarios, as shown in Ref. [33], higher-order terms
such as cos2(θ ) are important. Consequently, the energy is
better described as Edimer = −J1 cos(θ ) − J2 cos2(θ ), where
J2 is now a biquadratic term. This was also the case found
for an Fe dimer [11,15], a chiral biquadratic pair interaction
[10] and more complex systems such an Fe monolayer on
Ir(111) [34]. Therefore, to find the correct Hamiltonian can
be a complicated task.

The concept of a local Hamiltonian is discussed in
Refs. [2,12,14] and relies on the magnetic parameters cal-
culated from a given magnetic reference state. The magnetic
interactions are, in this description, a function of the magnetic
texture of the system. The positive aspect of this approach is
that only a bilinear Hamiltonian is needed. In Appendix B,
we demonstrate how the local and global descriptions relate
to each other. For the purpose of the present work, we write
explicitly how the reference-state-dependent bilinear DMI can
be reexpressed as a combination of multispin interactions,
which in the current case of dimers simplifies to higher-order
interactions of the two spin moments as

Dnoncol = sin θ

N∑
n=0

an cosn θ, (3.4)

DSOC =
N∑

n=0

bn cosn θ, (3.5)

where θ is the angle between the two spin moments of the
sites being considered, and an and bn are parameters that
capture the multispin character of the reference dependence.
The nonrelativistic an parameters arise from the reference de-
pendence of the spin current which in turn originates from the
vector chirality between the two moments, �e1 × �e2 = sin θ �e3,
where the unit vector �e3 is orthogonal to both spin moments,
combined with higher-order factors of �e1 · �e2 = cos θ . For the
relativistic terms, the b0 parameter corresponds to the usual
bilinear case, while those with n > 0 are again higher-order
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(deg) (deg) (deg)

(deg) (deg) (deg)

FIG. 3. DMI calculated when varying the angle θ between the spin moments of the dimer atoms around the dimer bond axis (x direction).
The top panels display the results for Cr dimers on Cu(001), Pt(001), and W(001) from left to right, while the middle panels refer to the
Fe dimers. The bottom panels refer to the Mn dimers on the same substrates. In each panel, the red lines denote the DMI component in the
bonding direction of the atoms, Dx , while the green lines denote the DMI component perpendicular to the bond, Dy. The solid lines stand for
calculations when the spin-orbit coupling is included, whereas the dashed lines denote calculation without SOC. The insets represent a zoom
into the Dy component.

corrections that catch the reference dependence, e.g., a bi-
quadratic term for b1 and so on. These expressions clearly
demonstrate that Dnoncol vanishes if the spin moments are
aligned in a collinear (θ = 0) fashion but can be finite if the
two spin moments are noncollinear. Note that the factors an

and bn are in principle possible to calculate as higher-order
interactions, but already in the dimer case, this is a cumber-
some task, which we leave to future studies.

The authors of Ref. [21] hinted that a higher-order four-
spin isotropic interaction of the form (�ei · �e j )(�ei · �e j ) (adapted
for the dimer case) can take form of a DMI-like interaction,
achiral, due to a manipulation of the unitary vectors via vector
identity operations, which is exactly the case for Eq. (3.4) with
N = 0. However, the microscopic origins of either interaction
were not discussed, which we explicitly demonstrate in this
paper. For instance, the intrinsic spin current driven by the
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(deg) (deg) (deg)

FIG. 4. Fitting the self-consistent calculations (configuration-dependent magnetic interactions) with the multispin representation [Eqs. (3.4)
and (3.5)]. Here, the solid lines are the DFT calculations for the DMI when the spin-orbit coupling is included, while the dashed and dotted
curves represent the fitted results of the DFT calculations for N = 3 and 6, respectively, using Eqs. (3.2) and (3.3). Note that in the presented
examples, the solid line and the dashed line are almost indistinguishable while the dotted lines are slightly off and not a good fit in some cases.

spin-orbit coupling, Dy, leads to a chiral interaction while the
spin current induced by noncollinearity, Dx, leads to an achiral
interaction.

We have used two different cutoffs in the expansions,
N = 3 and N = 6, in Eqs. (3.4) and (3.5) when fitting the
results of our DFT calculations. The results are shown in
Fig. 4. In order to improve readability, we have chosen only
the cases where the differences between the fits for different
N ′s are more significant, which are the cases of Fe on Cu(001),
Pt(001), and W(001). The dotted and dashed curves represent
the fit where optimal values for the parameters are obtained
so that the sum of the squared residuals is minimized, while
the solid lines are our DFT calculations. While results with
N = 6 fit well with all examples considered, the fits with
N = 3 are not fully converged for several cases. It suggests
that the determination of a proper spin Hamiltonian is highly
dependent on the system considered.

IV. CONCLUSION

To summarize, in the present paper we have pre-
sented a detailed analysis of the microscopic origin of
the Dzyaloshinskii-Moriya (DM) and the DM-like exchange
interaction that arises from noncollinear magnetic configura-
tions. We show that while both are influenced by the spin-orbit
coupling (SOC), the former is only finite under the presence
of SOC and the latter is finite even without SOC, but requires
instead noncollinear magnetism. For that reason it has been
named the noncollinear DMI interaction [13,16]. To quan-
tify the analysis presented here, we calculated the electronic
structure of dimers (Cr, Fe, and Mn) on Pt(001), W(001), and
Cu(001) surfaces using the first-principles RS-LMTO-ASA
method. Based on these calculations, we computed the DMI
for various magnetic configurations. First, by employing a
formalism that enables the separation of the DMI contribu-
tions distinguishing spin- and charge-current-induced DMI
terms, we have clarified that the usual spin-orbit-driven DMI
component is induced by the spin current generated by the
spin-orbit coupling, while the noncollinear DM interaction is

induced by the noncollinearity of the spin moments. Given the
absence of chiral behavior of the latter interaction, it is clear
that it gives no contribution to a preferential rotational sense,
unlike the conventional spin-orbit-induced DMI.

We also addressed the interpretation of a spin Hamil-
tonian and the connection between magnetic-configuration-
dependent interactions and a multispin approach, where we
argue that both are complementary. By doing so, we explicitly
show that the dependence of magnetic configuration on these
interactions can be mapped onto multispin parameters that
are independent (or at least less dependent) of the underlying
magnetic configuration. The caveat of using this approach
is that the Hamiltonian needed, and therefore the complete
set of parameters, is not defined a priori. Also, from such
an analysis, it follows that one needs in principle to update
(recalculate) the magnetic parameters at every time step to
be used, e.g., in spin-dynamics simulations, if one uses a
simpler (e.g., bilinear) spin Hamiltonian. In order to avoid
this constant update, one could use a more complex spin
Hamiltonian with all the relevant multispin interactions (bi-
quadratic, etc.) included. Calculating the latter interactions
can be tricky, although bilinear and biquadratic interactions
are dominant in most of the systems reported in the literature.
Most likely, systems that present a complex magnetic texture
as a ground state, such as skyrmions and other noncollinear
antiferromagnet systems (as can be found in Mn3X , X = Sn,
Ge, or Ga, and Mn3Y , Y = Pt, Ir, or Rh) are strong candidates
to have finite and important multispin interactions.

The findings presented here also shed light on the under-
lying mechanisms of the Dzyaloshinskii-Moriya interactions.
By explaining the relation between the geometry of the spin
moment orientation and the emergence of new interactions,
and its microscopic origin, we hope to provide insights into
the design and control of magnetic materials for spintronics
applications. For instance, it might help with new strategies
when using effects that can either generate or inject spin
currents into the system, such as the spin Seebeck effect or
Edelstein effect, that can be used to transfer spin current
through surfaces when tailoring new magnetic materials.
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APPENDIX A: ANALYTICAL DIMER MODEL

The purpose of considering an analytical model is to
demonstrate in a clear way that magnetic impurities in an
otherwise nonmagnetic electronic structure give rise to the
antisymmetric anisotropy, which is the scope of the present
paper. Here, we may controllably change the premises of an
underlying two-dimensional electron gas by tuning the intrin-
sic spin-orbit coupling. In particular, we demonstrate that an
intrinsic spin-orbit coupling is not required for the existence of
an antisymmetric magnetic anisotropy between two magnetic
impurities embedded in the electron gas.

1. Defects on a metallic surface

We assume a simple two-dimensional electron gas with a
Rashba spin-orbit coupling, e.g., surface states on a metallic
surface, in which magnetic defects are embedded. We model
this system by the Hamiltonian

H =
∑

k

�
†
kεk�k +

∫
�†(r)V(r)�(r)dr, (A1)

where the spinor �k = (ck↑ ck↓)t [�†
k = (c†

k↑ c†
k↓)] denotes

the annihilation (creation) operator for electrons with crystal
momentum k and spin σ =↑,↓, defined by the energy spec-

trum captured in the matrix εk = εkσ
0 + α[k × ẑ] · σ at the

momentum k, where α denotes the Rashba spin-orbit coupling
strength. Moreover, �(r) = ∫

�ke−ik·rdk/	 and �†(r) =∫
�

†
keik·rdk/	 are the corresponding coordinate space opera-

tors, where 	 is the integration volume, whereas the scattering
potential V(r) = ∑

m Vmδ(r − rm) defines a collection of de-
fects Vm = Vmσ 0 + mm · σ.

2. Green’s function

In this model, the unperturbed retarded Green’s function
(GF) gk is defined for the first term of Eq. (A1), and is given
in reciprocal and real space by the expressions

gk(z) = (z − εk )σ 0 + α[k × ẑ] · σ

(z − εk )2 − α2k2
, (A2a)

g(r, ω) = −i
N0

4

∑
s=±

κs

κ

(
H (1)

0 (κsr)σ 0

− isH (1)
1 (κsr)[r̂ × ẑ] · σ

)
, (A2b)

respectively. These two representations of g are related via
the Fourier transform gk = ∫

g(r)eik·rdr. Moreover, we have

introduced the notation κ =
√

2N0(ω + εF − α2N0/2), where
εF denotes the Fermi energy, κs = κ + sαN0, and N0 = m/h̄2,
whereas H (1)

m is a Hankel function. Also, k = |k|. In this way
we have defined gk = g0σ

0 + g1 · σ in both coordinate and
reciprocal space.

The dressed GF G is calculated by the inclusion of the
scattering potential V [cf. Eq. (A1)]. The dressed GF can be
formulated in terms of the T -matrix expansion of the impurity
potential, giving in reciprocal space the expression

Gkk′ = δ(k − k′)gk +
∑
mn

gke−ik·rm T(Rmn)eik′ ·rn gk′ , (A3)

where Rmn = rm − rn, whereas the T matrix is given by

T(Rmn) = Vm(t−1)mn, (A4a)

tmn = δmnσ
0 − g(Rmn)Vn. (A4b)

For later purposes, we also define the correction δG(r, r′)
to the Green’s function in coordinate space [via G(r, r′) =∫

Gkk′e−ik·r+ik′ ·r′
dkdk′/	2] as

δG(r, r′) =
∑
mn

g(r − rm)T(Rmn)g(rn − r′). (A5)

Here, since the scattering potential is partitioned into a non-
magnetic and a magnetic component, we can write T(Rmn) =
T0(Rmn)σ 0 + T1(Rmn) · σ. We also remark that the potential
Vm should here be considered as an expectation value, such
that Vm = Vmσ 0 + 〈mm〉 · σ.

Next, we show that the T matrix is not necessarily symmet-
ric under changes of the site order Rmn → Rnm. For the sake
of argument, consider two magnetic impurities on the surface,
giving

t =
(

σ 0 − g0V1 −g(R12)V2

−g(R21)V1 σ 0 − g0V2

)
, (A6)

where each entry is a 2 × 2 matrix. The diagonal com-
ponents only include g0 since g1(Rmm) ≡ 0. Moreover, we
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denote Rmn = |Rmn|, and g0 = g0(Rmm), whereas we set
gmn = g0(Rmn), and gmn = g1(Rmn), for m �= n.

We need the inverse of the matrix t and, for the sake of
notation, set s = t−1. Then, we can write

s1 = [σ 0 − g0V1 − g(R12)V2(σ 0 − g0V1)−1g(R21)V1]−1,

(A7a)

s12 = −s1g(R12)V2(σ0 − g0V2)−1, (A7b)

s21 = −s2g(R21)V1(σ0 − g0V1)−1, (A7c)

s2 = [σ 0 − g0V2 − g(R21)V1(σ 0 − g0V2)−1g(R12)V2]−1.

(A7d)

These expressions can be simplified, without losing any
essential feature pertaining to the symmetries of the T matrix,
by assuming that

‖g(R12)V2(σ 0 − g0V1)−1g(R21)V1‖ � ‖σ 0 − g0V1‖. (A8)

This assumption can be achieved by locating the impurities at
a sufficiently large distance from one another, the so-called
dilute limit. We also assume that the impurities constitute
a purely magnetic scattering potential, hence, Vm = 0. This
simplification may be somewhat unphysical, since any scat-
tering potential would generally comprise the nonmagnetic
component Vm. However, this simplification is introduced in

order to reduce the complexity of the expressions since the
presence of Vm does not alter the target expression for the
antisymmetric anisotropy. Then, s reduces to

s1 = (σ 0 − g0〈m1〉 · σ )−1 = σ 0 + g0〈m1〉 · σ

1 − g2
0|m1|2 ,

(A9a)

s12 = −g(R12)
σ 0 + g0〈m1〉 · σ

1 − g2
0|m1|2 〈m2〉 · σ

σ 0 + g0〈m2〉 · σ

1 − g2
0|m2|2 ,

(A9b)

s21 = −g(R21)
σ 0 + g0〈m2〉 · σ

1 − g2
0|m2|2 〈m1〉 · σ

σ 0 + g0〈m1〉 · σ

1 − g2
0|m1|2 ,

(A9c)

s2 = σ 0 + g0〈m2〉 · σ

1 − g2
0|m2|2 . (A9d)

It is clear that s12 �= s21 and, hence, T(Rmn) �= T(Rnm)
whenever 〈m1〉 · σ �= 〈m2〉 · σ. For a simpler notation, below
we shall write mm instead of 〈mm〉.

The critical components of the off-diagonal T -matrix ele-
ments are the numerators since the denominators are equal in
the two elements. In the given notation, one derives for m �= n,

T(Rmn) ∼ mm · σ(σ 0 + g0mm · σ )g(Rmn)mn · σ(σ 0 + g0mn · σ)

= {
gmn

(
g2

0m2
mm2

n + mm · mn
) + gmn · [

g0
(
mmm2

n + m2
mmn

) − imm × mn
]}

σ 0

+ {
g2

0m2
mm2

ngmn + g0gmn
(
m2

nmm + m2
mmn

) + mm · gmnmn + mmgmn · mn − mm · mngmn

− ig0gmn × (
mmm2

n − m2
mmn

) + igmnmm × mn
} · σ. (A10)

Using these explicit expressions for the T matrix, the charge and spin density components G00 and G10, and the corresponding
current components G01 and G11 can be identified from the charge and spin components G0 and G1, respectively. The two-index
notation refers to the charge and spin densities G00 and G10, and the charge and spin currents G10 and G11.

In doing so, first identify the components in the T matrix, Eq. (A10), that are even and odd under Rmn → Rnm, using the
properties g0(−r) = g0(r) while g1(−r) = −g1(r). Hence, adopting the two-index notation, the four components to the T
matrix are summarized as

T00(Rmn) = gmn
(
g2

0m2
mm2

n + mm · mn
) − igmn · (mm × mn), (A11a)

T01(Rmn) = g0gmn · (
mmm2

n + m2
mmn

)
, (A11b)

T10(Rmn) = g0gmn
(
m2

nmm + m2
mmn

) − ig0gmn × (
mmm2

n − m2
mmn

)
, (A11c)

T11(Rmn) = g2
0m2

mm2
ngmn + igmnmm × mn + mm · gmnmn + mmgmn · mn − mm · mngmn. (A11d)

With reference to these expressions, and using the notation Rm = r − rm and R′
m = r′ − rm, define the formal expressions

δG00(r, r′) =
∑
mn

[T00(Rmn)[g0(Rm)g0(R′
n) − g1(Rm) · g1(R′

n)] − g0(Rm)T11(Rmn) · g1(R′
n) − g1(Rm) · T11(Rmn)g0(R′

n)

− i[g1(Rm) × T11(Rmn)] · g1(R′
n)], (A12a)

δG01(r, r′) =
∑
mn

[T01(Rmn)[g0(Rm)g0(R′
n) − g1(Rm) · g1(R′

n)] − g0(Rm)T10(Rmn) · g1(R′
n) + g1(Rm) · T10(Rmn)g0(R′

n)

− i[g1(Rm) × T10(Rmn)] · g1(R′
n)], (A12b)
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δG10(r, r′) =
∑
mn

[T01(Rmn)[g1(Rm)g0(R′
n) − g0(Rm)g1(R′

n) − ig1(Rm) × g1(R′
n)] + T10[g0(Rm)g0(R′

n) + g1(Rm) · g1(R′
n)]

− g1(Rm)T10(Rmn) · g1(R′
n) − g1(Rm) · T10(Rmn)g1(R′

n) + ig1(Rm) × T10(Rmn)g0(R′
n) − ig0(Rm)T10(Rmn)

× g1(R′
n)], (A12c)

δG11(r, r′) =
∑
mn

[T00(Rmn)[g1(Rm)g0(R′
n) − g0(Rm)g1(R′

n) − ig1(Rm) × g1(R′
n)] + T11(Rmn)(g0(Rm)g0(R′

n)

+ g1(Rm) · g1(R′
n)) − g1(Rm)T11(Rmn) · g1(R′

n) − g1(Rm) · T11(Rmn)g1(R′
n) + ig1(Rm) × T11(Rmn)g0(R′

n)

− ig0(Rm)T11(Rmn) × g1(R′
n)]. (A12d)

3. Antisymmetric anisotropy

In Ref. [27], a general expression for the Dzyaloshinskii-
Moriya-like interaction D(r, r′) between two spins located at
r and r′, respectively, was derived, here repeated for conve-
nience,

D(r, r′) ∼ v2 Re
∫

f (ω){G01(r, r′)G10(r′, r)

+ G00(r, r′)G11(r′, r)}dω. (A13)

In this expression, v denotes the local exchange interaction
between the electron spin and the localized spin moment,
while f (ω) is the Fermi-Dirac distribution function. Then,
using the example discussed here, it is easy to see that this
interaction has a nonvanishing component also in the absence
of g1. Since any kind of spin texture, e.g., spin polarization
or spin-orbit coupling, in the unperturbed electronic structure
is accounted for by g1, this implies that there may arise a
nonvanishing Dzyaloshinskii-Moriya-like contribution to the
spin-spin interactions also for a trivial spin-degenerate elec-
tron gas. Indeed, whenever g1 = 0, the above derivation leads
to that δG01(r, r′) = 0 and

δG11(r, r′) =
∑
mn

g0(r − rm)T1(Rmn)g0(rn − r′)

= i
∑
mn

g0(r − rm)g0(Rmn)g0(rn − r′)
(1 − g2

0|mm|2)(1 − g2
0|mn|2)

mm × mn.

(A14)

Hence, taking G00 ≈ g0, we obtain

D(r, r′) = N3
0

4π
Re

∑
mn

mm × mn

∫
f (ω)H (1)

0 (κ|r − r′|)

× H (1)
0 (κ|r′ − rm|)H (1)

0 (κ|r − rn|)
(1 + N2

0 |mm|2/2)(1 + N2
0 |mn|2/4)

dω, (A15)

showing the existence of a nonvanishing Dzyaloshinskii-
Moriya interaction between spin moments whenever they are
in a noncollinear configuration.

In Ref. [35], chiral molecules were adsorbed onto Cu
and Au surfaces, resulting in strongly modified effective
spin-orbit coupling and ferromagnetism, respectively, in the
two compounds. The magnetic properties associated with
the composite structure of chiral molecules interfaced with
metals were suggested to result from the type of impurity-
induced Dzyaloshinskii-Moriya-like interaction formulated in
Eq. (A15).

APPENDIX B: DECOMPOSITION OF SPIN-CURRENT
GREEN’S FUNCTIONS

As explained in Refs. [2,9,16] there exist sum rules which
the self-consistent Green’s function have to fulfill. Here, we
sketch the most relevant relations arising from such sum rules
for a magnetic dimer on a nonmagnetic substrate, while the
general case with more details will be presented in an up-
coming publication. It is possible to divide the terms into two
cases depending on whether they have a nonrelativistic (n)
or relativistic (r) origin, which is based on whether or not
they are independent of spin-orbit coupling. In addition we
conclude that for the dimer case it is only the first term of
Eq. (2.6) that comes into play, and that in this term it is the
factor �G1 that is most reference dependent.

First, we will make use of a sum rule for this time-reversal
even spin-dependent, or spin-current-related, Green’s function
�G1, for which the most important nonrelativistic and relativis-
tic contributions, respectively, take the form

�G1n
il ≈

∑
jk

i �G0
i j × λ jk �G0

kl , (B1)

�G1r
il ≈ −

∑
jk

{
G00

i j
�ξ jk G00

kl + ( �G0
i j × �ξ jk

) × �G0
kl

}
, (B2)

with

λ jk = 1
2 Trs

(
G0

jk
−1 + �Vjδ jk

)
, (B3)

�ξ jk = 1
2 Trs �σ

(
G0

jk
−1 + �Vjδ jk

)
, (B4)

where the latter is spin dependent due to the fact that it is
directly proportional to the spin-orbit coupling.

Since both these terms include �G0 factors we further ob-
serve that the two most relevant terms in its sum rule are

�G0n
ik ≈ −

∑
j

{
G00

i j
�BjG

00
jk − �G0n

i j
�Bj · �G0n

jk

}
. (B5)

Hitherto, the sum over sites are not confined to two magnetic
sites, so these sum rules are relevant also for other multisite
cases.

Now we will systematically substitute the �G0n factors in
Eqs. (B1) and (B2) by the terms in Eq. (B5).
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In the first iterations this leads for the nonrelativistic case to

�G1n
i j ≈ i

∑
kl

�G0n
ik × λkl �G0n

l j

≈ i
∑
klmn

(
G00

ik
�BkG00

kl − �G0n
ik

�Bk · �G0n
kl

) × λlm
(
G00

mn
�BnG00

n j − �G0n
lm

�Bm · �G0n
m j

)

≈ i
∑
klmn

G00
ik

�BkG00
kl × λlmG00

mn
�BnG00

n j

− i
∑

klmnpq

{
G00

ik
�BkG00

kp

( �BpG00
pq · �BqG00

ql

) × λlmG00
mn

�BnG00
n j + G00

ik
�BkG00

kl × λlmG00
mn

�BnG00
np

( �BpG00
pq · �BqG00

q j

)}

+ i
∑

klmnpqrs

G00
ik

�BkG00
kp

( �BpG00
pq · �BqG00

ql

) × λlmG00
mn

�BnG00
nr

( �BrG00
rs · �BsG

00
s j

) + · · ·

≈ {A0 + A1(m̂1 · m̂2) + A2
(
m̂1 · m̂2)2

}
(m̂1 × m̂2), (B6)

where only in the last step we have restricted to a dimer. In general, the prefactors Ai are linear combinations of multispin
products, whose forms are obtained by iterations that identify the nonvanishing multispin terms with the lowest number of spins,
but here with only two spin moments they correspond to higher-order interactions of these.

For the relativistic term the same approach gives

�G1r
i j ≈ −

∑
kl

G00
ik

�ξklG
00
l j −

∑
klmn

{(
G00

im
�BmG00

mk − �G0n
im

�Bm · �G0n
mk

) × �ξkl
} × (

G00
ln

�BnG00
n j − �G0n

ln
�Bn · �G0n

n j

)

≈ −
∑

kl

G00
ik

�ξklG
00
l j −

∑
klmn

G00
imBmG00

mk
�ξklG

00
ln BnG00

n j

+
∑

klmnpq

{
G00

imBmG00
mp

( �BpG00
pq · �BqG00

qk

)�ξklG
00
ln BnG00

n j + G00
imBmG00

mk
�ξklG

00
ln BnG00

np

( �BpG00
pq · �BqG00

q j

)}

−
∑

klmnpqrs

G00
imBmG00

mp

( �BpG00
pq · �BqG00

qk

)�ξklG
00
ln BnG00

nr

( �BrG00
rs · �BsG

00
s j

) + · · ·

≈ [B0 + B1(m̂1 · m̂2) + B2(m̂1 · m̂2)2]ξ̂ , (B7)

where the prefactors Bi are again sums of multispin products.
The site summations of Eqs. (B6) and (B7) lead uniquely
to the final reference dependence only when there are no
intrasite Green’s functions in the product. Intrasite Green’s
functions instead lead to trivial factors, such as m̂1 · m̂1 = 1.
For instance, the third and fourth terms in Eq. (B7) contribute
to a constant B1 for those terms where p = q, but to B2 when
p �= q.

Lastly, we substitute the �G1 factor in the first term of the
Dzyaloshinskii-Moriya interaction in Eq. (2.6) by the rela-
tions of Eqs. (B6) and (B7), and by integrating and summing
over the two dimer sites for the factors Ai and Bi we obtain the
interactions strength given by ai and bi in Eqs. (3.4) and (3.5).

APPENDIX C: DETAILS OF THE DFT CALCULATIONS

The electronic structure calculations were performed using
the first-principles, self-consistent real-space linear muffin-
tin-orbital atomic-sphere approximation (RS-LMTO-ASA)
method [22,23,28,36–45], which has been generalized to the
treatment of noncollinear magnetism [25,26]. This method
is based on the LMTO-ASA formalism [46], and solves the
eigenvalue problem directly in real space using the Haydock
recursion method [47]. The local spin density approximation

(LSDA) was employed for the exchange-correlation energy
[48]. To terminate the continued fraction that arises in the
recursion method, we used the Beer-Pettifor terminator [49]
after 21 recursion levels. The spin-orbit coupling interaction
was included by adding a term ξL · S to the Kohn-Sham
Hamiltonian, where ξ was calculated self-consistently at each
variational step. When calculations without spin-orbit cou-
pling are mentioned in the text, it means that ξ was set to zero
after the self-consistent calculation.

Here, we have considered dimers of Cr, Fe, and Mn sup-
ported on Cu(001), Pt(001), and W(001) surfaces. The Cu and
Pt substrates were simulated by a cluster containing ∼15 000
atoms located in an fcc lattice with the experimental lattice
parameter of Cu and Pt, respectively. The W surface was
treated analogously using a bcc lattice. In order to provide
a basis for the wave function near the surface and to handle
charge transfers accurately, we included two overlayers of
empty spheres above the surface layer. The calculations of
the dimers were performed by embedding the clusters as a
perturbation on the self-consistently converged surfaces. The
dimer sites and those of the closest shell of Cu, Pt, W, or
empty sphere sites around the defect were recalculated self-
consistently, while the electronic structure for all other sites
remained unchanged at their clean surface values.
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