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General tensor network theory for frustrated classical spin models in two dimensions
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Frustration is a ubiquitous phenomenon in many-body physics that influences the nature of the system in
a profound way with exotic emergent behavior. Despite its long research history, the analytical or numerical
investigations on frustrated spin models remain a formidable challenge due to their extensive ground-state
degeneracy. In this paper, we propose a unified tensor network theory to numerically solve the frustrated classical
spin models on various two-dimensional (2D) lattice geometry with high efficiency. We show that the appropriate
encoding of emergent degrees of freedom in each local tensor is of crucial importance in the construction of
the infinite tensor network representation of the partition function. The frustrations are thus relieved through
the effective interactions between emergent local degrees of freedom. Then the partition function is written
as a product of a one-dimensional (1D) transfer operator, whose eigenequation can be solved by the standard
algorithm of matrix product states rigorously, and various phase transitions can be accurately determined from
the singularities of the entanglement entropy of the 1D quantum correspondence. We demonstrated the power
of our general theory by numerically solving 2D fully frustrated XY spin models on the kagome, square, and
triangular lattices, giving rise to a variety of thermal phase transitions from infinite-order Brezinskii-Kosterlitz-
Thouless transitions, second-order transitions, to first-order phase transitions. Our approach holds the potential
application to other types of frustrated classical systems like Heisenberg spin antiferromagnets.
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I. INTRODUCTION

Frustrated spin systems have become an extremely ac-
tive field of theoretical and experimental research in the last
decades characterized by complex low-energy physics and
fascinating emergent phenomena [1–3]. A system is regarded
as frustrated when conflicting interaction terms are present,
featured by the inability to minimize total energy by con-
currently reducing the energy of each group of interacting
degrees of freedom. Frustration underlies nontrivial behavior
across physical systems or more general many-body systems,
as the minimization of local conflicts gives rise to new degrees
of freedom [4,5].

Classical frustrated spin systems can be understood as sim-
plified quantum mechanical models, which employ classical
spins to investigate the behavior of strongly correlated mag-
netic systems with competing interactions. The existence of
frustration depends on the lattice geometry and/or the nature
of the interactions [6]. For example, the antiferromagnetic
(AF) Ising model defined by a set of spins of s = ±1 is
frustrated on the triangular and kagome lattices with massive
ground-state degeneracy [7–9]. However, AF Ising models are
not frustrated on the 2D square lattice because the lattice is
bipartite and the energy can be simply minimized by the Néel
configuration of alternating spins. Frustration also depends on
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the dimension of the spin variables. For the frustrated AF XY
spin systems composed of planar vectors �s = (sin θ, cos θ ),
the ground-state configuration is usually highly degenerate
with new symmetries induced from noncollinear patterns. The
new degrees of freedom can give rise to rich and complex
phases at finite temperatures, which have been studied over
the past decades on the square [10–25], the triangular [26–34],
and the kagome lattices [35–41].

The study of frustrated classical spin systems is important
not only for understanding the emergent behavior of phys-
ical systems like spin glasses [42,43] but also for general
optimization problems across multiple disciplines [44]. Con-
siderable efforts have been made in the investigation of the
fundamental properties of frustrated classical spin systems.
Despite decade-long efforts, a generic approach to dealing
with frustrated spin systems with both high accuracy and high
efficiency is still lacking. Well-established methods such as
Monte Carlo simulations, mean-field theories, and renormal-
ization group techniques, have made significant contributions
to the study of the classical frustrated spin models. However,
they have encountered many difficulties such as low efficiency
or limited applications [40,45–47].

Recent progress in the tensor network methods provides
new computational approaches for studying classical lattice
models with strong frustrations [25,41,48–50]. It is found that
the construction of the tensor network of the partition function
is nontrivial for frustrated systems compared to the standard
formulation. For example, the ground-state local rules should
be encoded in the local tensors to satisfy the ground-state
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configurations induced by geometrical frustrations [48]. In the
frustrated Ising models, a linear searching algorithm based
on a Hamiltonian tessellation has been proposed to find the
proper transitional invariant unit [49,50]. In the frustrated XY
models, the idea of splitting of U (1) spins and dual transfor-
mations have been developed to overcome the convergence
issues [25,41]. Although these techniques make a success
in specific models, they seem to be very tricky. Thus, one
wonders whether there exists a general framework to treat
frustrated classical spin models.

Here, we generalize the underlying principles of the ten-
sor network representation to make it applicable to generic
frustrated classical spin systems. When comprising the whole
tensor network of the partition function, the crucial point is
that the emergent degrees of freedom induced by frustrations
should be encoded in the local tensors. In this way, the massive
degeneracy is characterized by emergent dual variables such
as height variables in the AF Ising model on the triangular
lattice [51,52] and chiralities in frustrated XY models [39,41].
The emergent variables capture the freedom of a group of
interacting spins under the constraint of frustrations. In the
sense of coarse graining, the local tensors carry the effec-
tive interactions between emergent local degrees of freedom.
The local tensors usually sit on the dual sites of the original
lattice, which can be constructed from dual transformations.
Indeed, the concept of characterizing interactions as a weight
on a plaquette has a rich history, originating from Wannier’s
seminal work on the dual transformation of a 2D net for
partition functions [7,8], and Baxter [53] and Nishino’s [54]
influential development of transfer matrices that incorporate
interactions around square faces. It is worth noting that the
dual transformations should be imposed on the whole cluster
of a number of spins in correspondence with the emergent dual
variables.

We demonstrate the power of the generalized theory of
tensor network representation by applying it to fully frustrated
XY models on the kagome, triangular, and square lattices.
First of all, we can express the infinite 2D tensor network
as a product of 1D transfer matrix operators, which can be
contracted efficiently by recently developed tensor network al-
gorithms under optimal variational principles [55–57]. Then,
from the singularity of the entanglement entropy of the 1D
quantum transfer operator, various phase transitions can be
determined with great accuracy according to the same cri-
terion [58]. Finally, we find that a broad array of emergent
physics has been treated including various types of phase
transitions from first-order, second-order to the Berezinskii-
Kosterlitz-Thouless (BKT) phase transitions. The complex
phase structures of the frustrated XY systems are revisited
and clarified with the present tensor network solutions. The
present approach holds the potential application to next-
nearest-neighbor frustrated spin systems and other types of
classical spins like Heisenberg antiferromagnet.

The rest of the paper is organized as follows. In Sec. II,
we introduce the theory of tensor network representations for
classical frustrated spin models with two concrete examples.
After constructing the tensor networks of Ising spin antiferro-
magnets on the kagome and triangular lattices, we perform the
numerical calculation of the residual entropy of the frustrated
Ising models, which are comparable to the exact results. In

Sec. III, we apply the unified theory to the fully frustrated XY
spin models on the kagome, square, and triangular lattices,
and present the numerical results for the determination of the
finite-temperature phase diagram of frustrated XY systems,
especially the AF triangular XY model and the modified
square XY model. Finally in Sec. IV, we discuss the future
generalizations of the method and give our conclusions. In the
Appendix, we outline the detailed tensor network methods for
numerical calculations.

II. TENSOR NETWORK REPRESENTATIONS OF 2D
STATISTICAL MODELS

A. Emergent degrees of freedom

Tensor networks have proven to be a very potent tool in
the study of strongly correlated quantum models as well as
classical statistical mechanics. To implement this powerful
method, the first step is to convert the partition function of
a classical lattice model with local interactions into a tensor
network representation.

The standard construction of the tensor network is con-
ducted by putting a matrix on each bond of the original
lattice accounting for the Boltzmann weight of the nearest-
neighboring interactions [59]. For a generic spin model with
nearest-neighbor interactions

H =
∑
〈i, j〉

h(si, s j ), (1)

the partition function can be decomposed into a tensor net-
work as a product of local Boltzmann weights,

Z =
∑
{si}

e−βH ({si}) =
∑
{si}

∏
〈i, j〉

W (si, s j ), (2)

where 〈i, j〉 refers to the nearest neighbors, si are the spin
variables, and the interaction matrices are given by

W (si, s j ) = e−βh(si,s j ), (3)

whose row and column indices are the spin variables shown in
Fig. 1. The δ tensors on the lattice vertexes ensure all indices
of W take the same value at the joint point.

Furthermore, we perform the Schmidt decomposition on
the symmetric matrix W ,

W (si, s j ) = (U
√

S)(
√

SV †) = Va(si, sk )Vb(sk, s j ), (4)

and the partition function can be cast into the uniform tensor
network representation as shown in Fig. 1(b),

Z = tTr
∏

i

Os3,s4
s1,s2

(i) (5)

by grouping all V matrices that connect to the δ tensors

Os3,s4
s1,s2

=
∑

sk

Vb(s1, sk )Vb(s2, sk )Va(sk, s3)Va(sk, s4). (6)

The standard representation has been successfully applied
to many lattice statistical models without frustration [58–61].
However, it cannot be implemented directly in the frustrated
spin models, where the tensor network contraction algorithms
fail to converge. It was found that the proper encoding of the
ground-state local rules in local tensors was crucial for the
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FIG. 1. The standard construction of the tensor network. (a) The
W matrix represents the Boltzmann weight on each link, and the δ

tensor on each site represents the sharing of the same spin between
neighboring W matrices. (b) The tensor network representation of the
partition function composed of uniform local tensors. (c) The local
tensor O is built by the singular value decomposition (SVD) on each
W matrix and the grouping of the V matrices connecting to the δ

tensors.

contraction to converge. To fulfill the physics of the ground-
state manifold, a linear algorithm was proposed to search for
the optimal Hamiltonian tessellation for Ising antiferromag-
nets [49,50]. The key point is that the energy of all local
ground-state configurations should be simultaneously mini-
mized under the splitting of the global Hamiltonian into local
groups of interactions. And the local tensors are constructed
as translational units coinciding with the local clusters of the
tessellation.

In order to extend tensor network approaches to generic
frustrated classical spin models, we should understand the
ground-state local rules from a more fundamental perspective
of emergent degrees of freedom. In frustrated systems, new
degrees of freedom often emerge as a result of the minimiza-
tion of local conflicts. The ground-state of frustrated spin
systems is highly degenerate because a number of spins can
behave as free spins. Such freedom can therefore be repre-

sented by a set of emergent variables describing the effective
interactions induced by frustrations. For some models, the
emergent variables can be derived directly like height vari-
ables in the AF Ising triangular model [51,52] and chiralities
in frustrated XY models [39,41]. For the spin models with
more complicated interactions, the emergent variables may
not be explicitly expressed but they can still be characterized
by local tensors composed of a cluster of local interactions
[49,50]. This idea generalizes tensor network approaches
readily to classical frustrated systems of both discrete and
continuous spins.

Before discussing the tensor network construction of the
frustrated spin model, we give some examples of emergent de-
grees of freedom by revisiting the exactly solvable frustrated
models. One of the simplest frustrated spin models is the AF
Ising model on the kagome lattice

H = J
∑
〈i, j〉

σiσ j, (7)

where J > 0 denotes the AF interactions between nearest-
neighbor spins si = ±1 as displayed in Fig. 2(a).

The kagome AF Ising model is disordered at all tempera-
tures with an extensive ground-state degeneracy characterized
by a finite residual entropy [9]. To minimize the energy of
each triangular plaquette, three spins should obey the ground-
state local rule of “two up one down, one down two up” as
shown in Fig. 2(a).

Besides directly focusing on the local spin configurations,
the physics of the model can be understood from the emergent
degrees of freedom on the triangle centers. A set of charge
variables can be defined at each triangle

Qu =
∑
i∈�

si, Qd = −
∑
i∈∇

si, (8)

where � and ∇ denote the upward and downward triangles.
The Hamiltonian can then be expressed as

H = J

2

∑
p∈�(∇ )

(
Q2

p − 3
)

(9)

in terms of the topological charges Qp.

FIG. 2. Tensor network representation of the AF Ising model on a kagome lattice. (a) One of the ground-state configurations on the kagome
lattice with Q = ±1 charges on each triangle. (b) Putting the W� (W∇ ) tensors on the centers of the upward (downward) triangles to represent
the self-energy of the charge variables, where the δ tensors between the nearest-neighbor triangles can be translated into the connections of
tensor legs directly. (c) The tensor network representation of the partition function composed of uniform local O tensors. (d) The construction
of O tensor by contracting neighboring W� and W∇ tensors.
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FIG. 3. Tensor network representations of the Ising antiferromagnet on a triangular lattice. (a) One of the massive degenerate ground-state
configurations. (b) The W∇ and W� tensors are defined on the center of the triangles. The pink δ tensor represents a six-legged Kronecker
delta tensor, which connects the W∇ and W� tensors surrounding it. [(c)–(d)] The construction of row-to-row transfer matrix by splitting the
six-legged δ tensors vertically and regrouping the index of a pair of neighboring W∇ and W� tensor into an I ′ tensor. [(e)–(f)] The construction
of the local uniform tensor O by splitting I ′ horizontally and grouping with δu and δd tensors. (g) The details of the operations on local tensors
during the construction procedure.

Although there seems to be no explicit interaction be-
tween charges in the Hamiltonian, the variables Qp are not
independent because the shared spin between the neighboring
triangles should be the same. The constraints between neigh-
boring charges can be naturally represented by a link between
local tensors as a Kronecker delta tensor in the language of
tensor networks. In this way, the interactions between Ising
spins are transformed into a charge model including the self-
energy of the charges and the effective interactions between
these charges. The charge variables can take four values Q =
±1,±3 at finite temperatures. In the zero-temperature limit,
the charges of Q = ±3 are energetically suppressed. The “two
up one down, one up two down” rule corresponds to charge
variables Q = ±1 allowed by the ground-state manifold.

The emergent charge variables can also be applied to the
triangular lattice in the same spirit as the case of the kagome
lattice. The triangular AF Ising model in Fig. 3(a) can be
transformed into

H = J

2

∑
〈i, j〉∈p

sis j = J

4

∑
p

(
Q2

p − 3
)
, (10)

where the only difference is that each nearest-neighbor tri-
angles share two same spins. The charge variables help us
to understand why the tiling of p ∈ �(∇ ) is crucial for the
triangular lattices [49]. The reason is that the tessellation of
only one type of triangle fails to characterize the interactions
between the emergent charge variables.

B. General principle for tensor network construction

Now we can build up a general principle for the tensor
network representation of frustrated spin models. The key
point is that the emergent degrees of freedom should be en-
coded in each local tensor in the construction of the infinite
tensor network for the partition function. Since the emergent

degrees of freedom is universal in frustrated systems, the
generic approach can be applied to classical frustrated systems
of both discrete and continuous symmetries. Moreover, the
finite-temperature properties can also be probed when the
interactions among emergent degrees of freedom are faithfully
captured.

In practice, it is not necessary to write down the explicit
model of the interactions between emergent variables. The
effective interactions are implicit in the connections between
local tensors. Each local tensor constituting the Boltzmann
weight should carry the emergent degrees of freedom cor-
responding to a unit cluster of spins. From this perspective,
the breakdown of standard construction in the triangular Ising
model [49] can be understood: the emergent degrees of free-
dom located on the downward triangles are lost in the infinite
tensor network contraction.

We summarize the general procedure to construct the ten-
sor network representation of the frustrated spin models as
follows:

(i) Identify the emergent degree of freedom, usually located
on the dual site, and the corresponding geometry cluster com-
posed of classical spins.

(ii) Reformulate the partition function into the form of

Z =
∑
{s}

∏
c

Wc(c)
∏
〈c,c′〉

Wl (c, c′)δc,c′ (11)

where c enumerates all the clusters, Wc and Wl correspond to
the Boltzmann weight of all the spin configurations {s} within
a cluster and between neighboring clusters, and δ tensors
ensure the shared spins between different clusters be the same.
For continuous spins, the W tensors should be transformed
onto a discrete basis via the Fourier transformation.
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(iii) Split and regroup the W tensors to build regular local
tensors constituting an infinite uniform tensor network repre-
sentation of the partition function.

C. Kagome and triangular AF Ising models as two examples

The general principle can be applied directly to classical
frustrated models with discrete symmetries. The tensor net-
work representation of the kagome AF Ising model (7) can be
built simply based on the emergent charge variables defined in
(8). As displayed in Fig. 2(b), we first split the global Boltz-
mann weight into local Boltzmann weights on each triangle.
Then the partition function of the AF Ising model can be
written as

Z =
∑
{si}

∏
p

Wp(s1, s2, s3), (12)

where the Boltzmann weight on each upward and downward
triangle is expressed by a three-legged W tensor

Wp(s1, s2, s3) = e−βJ (s1s2+s2s3+s3s1 ). (13)

The constraint of sharing the same spin between a pair of
neighboring W tensors is imposed by the Kronecker delta
tensor.

Then the translational invariant local tensor O is achieved
by combining a pair of upward and downward triangles,

Os3,s4
s1,s2

=
∑

s5

W�(s1, s2, s5)W∇ (s5, s3, s4) (14)

as displayed in Fig. 2(d), and the uniform tensor network
representation of the partition function in Fig. 2(c) is given
by

Z = tTr
∏

i

Os3,s4
s1,s2

(i), (15)

where tTr means the tensor contraction over all auxiliary links
and i denotes the sites of the transitional invariant unit.

The above tensor network can be contracted efficiently
using standard algorithms for infinite systems with extremely
high accuracy [55,56,58]. In the zero-temperature limit, the
tensor W can be reduced to the same tensor obtained in the
Ref. [49], yielding a residual entropy of S0 ≈ 0.501833, con-
sistent with the exact result [9].

For the triangular AF Ising model displayed in Fig. 3(a),
the tensor network representation can be constructed in a
similar way. The only difference is that each spin is shared by
six surrounding triangles. As shown in Fig. 3(b), the constraint
between the triangular plaquettes is realized through the six-
legged delta tensors

δs1,s2,s3,s4,s5,s6 =
{

1, s1 = s2 = s3 = s4 = s5 = s6

0, otherwise (16)

and the tensor W is defined in the same way as the kagome
AF Ising model Eq. (13).

To construct a row-to-row transfer matrix, we split the six-
legged delta tensors vertically as two four-legged delta tensors

δs1,s2,s3,s4,s5,s6 =
∑

s7=±1

δu
s1,s2,s3,s7

δd
s7,s4,s5,s6

(17)

FIG. 4. Numerical results of the Ising antiferromagnet on the
triangular lattice; the bond dimension of uniform matrix product state
(MPS) is D = 100. (a) Convergence of the variational uniform MPS
(VUMPS) algorithm at T = 1 and T = 0. |g| is the convergence
measure in the VUMPS algorithm and N is the number of iteration
steps. (b) ln Z0 as a function of temperature. The residual entropy
per site is S0(D = 100) = 0.3230659, which is the same as the exact
result to seven decimal places.

as shown in Fig. 3(c). Then a pair of W� and W∇ are grouped
into a tensor I ′ as shown in Fig. 3(d). The tensor I ′ can be
further split horizontally, as displayed in Fig. 3(e),

I ′ = LR (18)

by a singular-value decomposition (SVD)

I ′ = USV †, (19)

where U and V † are three-legged unitary tensors, S is a semi-
positive diagonal matrix and

L = U
√

S, R =
√

SV †. (20)

Finally, the regular local tensor O is obtained by grouping
δu, δd , and a pair of L and R tensors. The details are depicted in
Fig. 3(g). This gives a uniform tensor-network representation
of the partition function

Z = tTr
∏

i

Os3,s4
s1,s2

(i) (21)

as displayed in Fig. 3(f). Although the local tensor O is
slightly different from the one constructed by the method
of Hamiltonian tessellation [49], the tensor network is well
defined and can be readily generalized to frustrated systems
with continuous symmetries discussed in the following parts.

As shown in Fig. 4(a), standard contraction algorithms
[55,56,62] display a nice convergence at both zero tempera-
ture and finite temperatures. The numerical calculation of the
expectation value of the magnetization

m = 〈si〉 = 1

N

∑
i

si (22)
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is found to be zero under all temperatures, indicating the
absence of the long-range order (LRO). Moreover, the ground-
state residual entropy is calculated as displayed in Fig. 4(b)

S0 = 1

N
ln Z0 ≈ 0.323065, (23)

in good agreement with the exact result [7].

III. TENSOR NETWORK THEORY FOR 2D FULLY
FRUSTRATED XY SPIN MODELS

A. Duality transformation and split of U (1) spins

In this section, we demonstrate the power of the generic
idea of emergent degrees of freedom by the implementations
in the frustrated model with a continuous U (1) symmetry. The
frustrated XY models, to some extent, are “less frustrated”
than the Ising ones. The XY spins have more freedom to
rotate on the plane to minimize local conflict interactions,
but the Ising spins are constrained to only two orientations.
That is why there exists quasi-LRO in the frustrated XY spin
models at low temperatures, while the frustrated Ising models
are usually disordered even at zero temperature. Despite a
long history of investigations [10–41], many properties of the
frustrated XY spin systems are still not well understood.

In both frustrated and nonfrustrated XY models, a widely
accepted and established analytical tool is the 2D Coulomb
gas representation [63–65]. However, the form of Coulomb
gas formulation is obtained through an approximation [63,64]
and it is hard to directly represent the charge variables by
original phase variables [23,66]. Instead, we can compre-
hend the topological charge, located on the dual sites, as a
coarse-grained degree of freedom formed by a cluster of phase
variables located on the original plaquette. This understanding
serves as a fundamental perspective for constructing the tensor
network of the frustrated XY spin models.

Our tensor network approach provides a universal tool to
deal with frustrated systems on various lattice geometries. We
can reformulate the partition function into a general form of
in the same way as the Ising case

Z =
∏

i

∫
dθi

2π

∏
p

Wp({θp}) (24)

where p denotes the plaquette of the lattice and Wp corre-
sponds to the Boltzmann weight of the elementary cluster.
However, different from the Ising case studied in the Ref. [49],
one may encounter two technical issues when constructing
a tensor network based on (24). First, the indices of local
tensors are continuous spin variables, which is hard to treat
in the framework of tensor networks. So the Fourier transfor-
mation is necessary to bring the local tensors onto a discrete
basis. Second, the Kronecker delta functions describing the
constraints of the sharing spins are changed to the Dirac delta
functions. For the Ising spin cases, the shared spins are split
and connected directly by the Kronecker delta functions. Such
a strategy cannot be simply extended for the case of continu-
ous spins because the loops of the Dirac delta functions are not
well defined. This problem can be overcome by introducing an
auxiliary spin connecting to the shared spins between different
clusters.

B. AF XY spin model on a kagome lattice

To describe the Josephson junction array under a uniform
external magnetic field [10,38], the frustrated XY model on a
kagome lattice in Fig. 5(a) is defined by the Hamiltonian

H = −J
∑
〈i, j〉

cos(θi − θ j − Ai j ) (25)

where J > 0 is the coupling strength, i and j are the lattice
sites, and the summation is over all pairs of the nearest neigh-
bors. The frustration in this model is induced by the gauge
field defined on the lattice bond satisfying Ai j = −Aji. The
case of full frustration corresponds to one-half flux quantum
per plaquette,

f = 1

2π

∑
〈i, j〉∈�

Ai j = 1

2
, (26)

where the sum is taken around the perimeter of a triangular
plaquette. We can choose the fixed gauge condition of Ai j =
±π on each bond of the triangular plaquettes, and the model
is transformed into an AF XY model on the kagome lattice

H = J
∑
i, j

cos(θi − θ j ). (27)

The ground state of this model can be obtained by simulta-
neously minimizing the energy on each elementary triangle.
As shown in Fig. 5(a), the phase difference between each
pair of neighboring spins should be ±2π/3, which gives rise
to the emergent degrees of freedom of chiralities τ = ±1,
corresponding to the anticlockwise and clockwise rotation
of the spins around the plaquette. The ground state of the
AF XY model on a kagome lattice has a massive accidental
degeneracy described by the fluctuations of the chiralities.

To capture the emergent degrees of freedom induced by
frustrations in the construction of the tensor network, we
divide the Hamiltonian into local terms on each triangle,

H =
∑

p

Hp, (28)

where Hp includes all the interactions within an elementary
triangle

Hp = J
∑

〈i, j〉∈p

cos(θi − θ j ). (29)

The partition function can now be written as

Z =
∏

i

∫
dθi

2π

∏
p

Wp, (30)

where Wp = e−βHp is a three-legged tensor with continuous
U (1) indices and the constraint of sharing the same spin at the
corners is realized by the Dirac delta function δ(θi − θ ′

i ), as
shown in Fig. 5(b).

To transform the local tensors onto a discrete basis, we em-
ploy the duality transformation to the whole upward triangles

In1,n2,n3 =
3∏

i=1

∫
dθi

2π
W�(θ1, θ2, θ3)Un1 (θ1)Un2 (θ2)Un3 (θ3),
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FIG. 5. Tensor network representation of the fully frustrated XY model on the kagome lattice. (a) One of the ground-state configurations.
The positive and negative signs denote the chiralities on the triangular plaquettes. (b) The tensor network with continuous indices. The
W� and W∇ tensors represent the Boltzmann weight on up- and down-type triangles. The δ matrix represents the Dirac delta function.
(c) The construction of tensor network with discrete indices by making Fourier transformation on each triangle plaquette and integrating
out {θ} variables. (d) The tensor network representations composed of local uniform tensor O, where the O tensor is built by combining two
neighboring I tensors

and the downward triangles

I ′
n1,n2,n3

=
3∏

i=1

∫
dθi

2π
W∇ (θ1, θ2, θ3)U †

n1
(θ1)U †

n2
(θ2)U †

n3
(θ3),

where

Un(θ ) = e−inθ (31)

are the basis of the Fourier transformation. Since Wp is
unchanged under the spin reflection of θ → −θ , we have
In1,n2,n3 = I ′

n1,n2,n3
as displayed in Fig. 5(c). Meanwhile, the

duality transformation on the Dirac delta function gives the
Kronecker delta function∫

dθ

2π
U †

n1
(θ )Un2 (θ ) = δn1,n2 . (32)

Finally, the translation-invariant local tensor O is achieved
by combining a pair of I tensors and we arrive at the the uni-
form tensor network representation of the partition function

Z = tTr
∏

i

Os3,s4
s1,s2

(i) (33)

as shown in Fig. 5(d). In fact, the same tensor network has
been also obtained in a less straightforward way with the
help of the infinite summation, where the interactions between
emergent variables can be seen clearly [41]. A direct com-
parison to the problematic standard construction in Ref. [41]
demonstrates the importance of encoding the emergent degree
of freedom in the local tensors. Besides the proper Hamilto-
nian tessellation, the duality transformation is also necessary
to capture the essential physics of the chiralities.

In the framework of tensor networks, the entanglement
entropy of the fixed-point MPS for the 1D quantum correspon-
dence exhibits singularity at the critical temperatures, offering
a sharp criterion to determine possible phase transitions in the
thermodynamic limit. As shown in Fig. 6, by employing the
tensor network method outlined in the Appendix, the entan-

glement entropy SE develops only one sharp singularity at the
critical temperature Tc � 0.075J , indicating that a single BKT
phase transition takes place at a rather low temperature. The
peak positions are slightly changed with different MPS bond
dimensions ranging from D = 60 to 120. Thus, the transition
temperature is determined by extrapolation with high preci-
sion, which is in good agreement with theoretical predictions
for the unbinding temperature of 1/3 vortex pairs [37,39,41].
The low-temperature phase of the model can be interpreted
as the presence of charge-6e condensation in the absence of
charge-2e superconductivity [41].

C. Fully frustrated XY spin model on a square lattice

The fully frustrated XY (FFXY) spin model on a 2D
square lattice can be defined with gauge fields on the lattice

FIG. 6. The entanglement entropy as a function of temperature
under different MPS bond dimensions for the AF XY spin model on
the kagome lattice.
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FIG. 7. (a) The fully frustrated XY model on a square lattice.
The arrows on the links correspond to the gauge field Ai j with the
value of ± π

4 . The sign of Ai j is denoted by the direction of the
arrow. (b) The ground state of the FFXY model on a square lattice
with a checkerboard pattern of chirality. (c) The ground state of the
modified XY model for μ

J < 1
8 . (d) The ground state of the modified

XY model for μ

J > 1
8 . The 0, ± signs correspond to the topological

charges located on the centers of the plaquettes.

bonds

H = −J
∑
〈i, j〉

cos(θi − θ j − Ai j ), (34)

where the full frustration corresponds to the uniform gauge
field of Ai j = π/4 on each bond of the square plaquettes.
As displayed in Fig. 7(b), the minimum of the Hamiltonian
is obtained when all gauge-invariant phase differences be-
tween the nearest-neighbor spins φi, j = θi − θ j − Ai j equal to
±π/4. The ground state can be characterized by a checker-
board pattern of chiralities τ = ±1 defined by

∑
� φi, j = τπ .

Another degenerate state can be obtained by switching the
positive and negative chiralities. Therefore, in addition to the
U (1) symmetry, the chiralities give rise to an emergent Z2

degeneracy of the ground state of the FFXY model on a square
lattice [25,42,67].

To obtain the tensor network representation of the partition
function, we first divide the global Hamiltonian into a tessella-
tion of local Hamiltonian on each square where the emergent
variables live

H =
∑
�

H�, (35)

and the local cluster of interactions is given by

H� = −J

2

∑
〈i, j〉∈�

cos(θi − θ j − Ai j ). (36)

Then the tensor network can be expressed as a product
of local Boltzmann weights on each plaquette as shown in
Fig. 8(a),

Z =
∏

i

∫
dθi

2π

∏
�

W� (37)

where Wp(θ1, θ2, θ3, θ4) = e−βH� is a four-legged tensor with
a continuous U (1) indices.

Different from the corner-shared case of the kagome lat-
tice, the particular attention should be paid to the split of
the shared spins among four square plaquettes. To avoid the
formation of loops of the Dirac delta functions among four W
tensors

δ(θa − θb)δ(θb − θc)δ(θc − θd )δ(θd − θa)

with θa, θb, θc, and θd representing the four replicas of the
shared spin, we put an auxiliary spin θ ′

i connecting to the
shared spins

δ(θa − θ ′)δ(θb − θ ′)δ(θc − θ ′)δ(θd − θ ′)

in a star shape as shown in Fig. 8(b). Then we transform the
local tensor Wp to the discrete basis

In1,n2,n3,n4 =
4∏

i=1

∫
dθi

2π
W�(θ1, θ2, θ3, θ4)

·Un1 (θ1)Un2 (θ2)Un3 (θ3)Un4 (θ3), (38)

where Un(θ ) are the Fourier basis defined in (31).
As shown in Fig. 8(f), the constraint of the star-shaped

Dirac delta functions (38) can be reduced to a four-legged
Kronecker delta tensor via

δn1+n2+n3+n4,0 =
∫

dθ ′

2π
Un1 (θ ′)Un2 (θ ′)Un3 (θ ′)Un4 (θ ′)

characterizing the conservation law of U (1) charges. As a
result, we get the tensor network representation composed of
local tensors of discrete indices as displayed in Fig. 8(c).

Furthermore, the δ tensors are split vertically as shown in
Fig. 8(d),

δn1+n2+n3+n4,0 =
∑

n5

δu
n1+n2−n5,0δ

d
n3+n4+n5,0 (39)

and the I tensors are decomposed horizontally by SVD

In1,n2,n3,n4 =
∑

n5

Ln1,n2,n5 Rn5,n3,n4 (40)

as displayed in Fig. 8(f). Finally, the regular local tensor O
of Fig. 8(e) in the uniform tensor network is obtained by
grouping the relevant component tensors.

One might rotate the network in Fig. 8(c) by 45 degrees and
group the local tensors in the red dotted line to directly make
up a four-legged translation-invariant local tensor. However,
the standard contraction algorithms fail to converge under
this construction because the linear transfer matrix is non-
Hermitian. Another key insight is that such a construction
does not take into account the checkerboard-like ground-state
configurations, where only two chiralities are included in the
transitional unit.
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FIG. 8. Tensor network representation of the FFXY model on a square lattice. (a) The tensor network with continuous indices, where the
W tensors account for the Boltzmann weight on each square and the pink dot tensor accounts for the integration of the shared θ variables
among four plaquettes. The black dotted line denotes the original square lattice. (b) The auxiliary spin θ ′ connecting the copied spins of
four nearby plaquettes, the δ matrices represent the Dirac delta functions. (c) The tensor network with discrete indices obtained from Fourier
transformations on the W tensors and the integrations on the θ variables. (d) The row-to-row transfer matrix built by splitting the δ tensors
vertically. (e) The uniform tensor network representation composed of local tensor O. (f) The details of the operations on the local tensors in
the construction of the tensor network.

Actually, although the procedure of the construction is
different, the tensor network in Fig. 8 turns out to share the
same transfer matrix as the one obtained in the Ref. [25]. To
prove it, we split the U (1) spins in the vertical direction using
the relation∫

dθi f (θi ) =
∫∫

dθidθ ′
i δ(θi − θ ′

i ) f (θ ′
i ), (41)

where the spin θ ′
i is a copy of spin θi connected by the Dirac

delta function as shown in Fig. 9(a). The delta tensor on a link
can be further decomposed by the Fourier basis

δ(θ − θ ′) = 1

2π

∑
n

U †
n (θ ′)Un(θ ), (42)

as displayed in Fig. 9(b). Now we can define the row to row
transfer matrix as three stripes of U , W , and U † tensors as
shown in Fig. 9(c). It is easy to see that the transfer matrix is
Hermitian just like the one constructed in Ref. [25] since the
W tensors are real and symmetric. Using the Fourier transfor-
mation again, we get the same I and δ tensors in Fig. 9(c) as
those displayed in Fig. 8(d).

Once the proper tensor network representation is obtained,
the numerical calculations can be efficiently performed as
illustrated in the Appendix. As shown in Fig. 10, the entan-
glement entropy SE develops two sharp singularities at two
critical temperatures Tc1 and Tc2, which strongly indicates the
existence of two phase transitions at two different tempera-
tures. As the singularity positions vary with the MPS bond
dimension D, the critical temperatures Tc1 and Tc2 can be
determined precisely by extrapolating the bond dimension D

FIG. 9. (a) Tensor network representation of the partition func-
tion with the split of U (1) phase variables vertically. The δ matrices
represent the Dirac delta functions. (b) The decomposition of the
Dirac delta function into U matrix and U † matrices. (c) The row-
to-row transfer matrix on the continuous basis and the discrete basis,
respectively.
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FIG. 10. The entanglement entropy for the FFXY model on the
square lattice develops two singularities indicating the existence of
two phase transitions with the increasing of MPS bond dimensions.

to infinite. Moreover, we find that the critical temperatures
Tc1 and Tc2 exhibit different scaling behaviors in the linear
extrapolation, implying that the two phase transitions belong
to different kinds of universality classes. The lower transition
temperature Tc1 varies linearly on the inverse square of the
logarithm of the bond dimension, while the higher transition
temperature Tc2 has a linear variance with the inverse bond
dimension, as shown in the inset of Fig. 10. The different
scaling behavior agrees well with the different critical behav-
ior of the BKT and 2D Ising universality classes, respectively.
Such behavior agrees perfectly with our previous study [25]

where the nature of the two different transitions are discussed
extensively.

D. AF XY spin model on a triangular lattice

The frustrated XY spin model on a triangular lattice un-
der a fixed gauge condition of Ai j = π on each triangular
plaquette can be transformed into an AF XY spin model.
As shown in Fig. 11(a), the angle between each pair of the
nearest-neighbor spins should be ±2π/3 to achieve the min-
imum of the ground-state energy. Like the FFXY model on
the square lattice, the elementary triangular plaquettes can
be characterized by alternating chiralities of τ = ±1. The
translation-invariant unit of the spin configuration forms a
3 × 3 cluster larger than the original lattice.

The tensor network can be constructed in the same way as
the FFXY spin model on the square lattice. First, we decom-
pose the Hamiltonian into local terms on each triangle

H =
∑

p

Hp, Hp = J

2

∑
〈i, j〉∈p

cos(θi − θ j ). (43)

The partition function can be expressed as a product of local
Boltzmann weights

Z =
∏

i

∫
dθi

2π

∏
p

Wp, (44)

where Wp = e−βHp defined on the centers of the triangles are
three-legged tensors sharing the same U (1) spin at the joint
corners as shown in Fig. 11(b).

Then the W tensors and the Dirac delta functions are trans-
formed onto a discrete basis by the Fourier transformations,
as displayed in Fig. 11(c). To achieve a translation-invariant
unit, we take a parallelogram cell circled by the red line and

FIG. 11. The tensor network representation of the FFXY model on a triangular lattice. (a) One of the ground-state spin configurations.
The chiralities denoted by plus and minus signs on the centers of the triangular plaquettes form an AF pattern. (b) The tensor network with
continuous indices. (c) The tensor network is transformed onto a discrete basis through the Fourier transformation. A parallelogram unit cell
is circled in the red line. (d) The I tensors is constructed by grouping a pair of I∇ and I� tensors. (e) The vertical split of the δ tensors into δd

and δu and the horizontal split of the I tensors into L and R. (f) The tensor network representation composed of uniform local O tensors. (g)
Details of the transformations of local tensors.
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FIG. 12. For the AF XY model on the triangular lattice, the en-
tanglement entropy as a function of temperature develops two peaks
when the MPS bond dimension D is increased. (Inset) The singularity
temperatures Tc1 and Tc2 of the entanglement entropy fitted for MPS
bond dimensions from D = 80 to 160.

reorganize the local tensors in it. As shown in Fig. 11(g), the
six-legged delta tensor is decomposed into three smaller delta
tensors

δn1+n2+n3+n4+n5+n6,0 =
∑

m1,m2

δn1+n2,m1δm1+n3+m2+n6,0δn4+n5,m2 ,

where the bond dimension of the m-indexed leg is bigger than
the n-indexed leg denoted by a thicker line. At the same time,
a pair of I� and I∇ tensors are grouped together into a four-
legged I tensor

In1,m2,n3,m4 =
∑

n2,n4,n5,n6

δn2+n4,m2 (I�)n1,n2,n5δn5+n6,m4 (I∇ )n3,n4,n6 ,

and the tensor network is transformed to a relatively structured
form in Fig. 11(d). Following the same procedure of a vertical
split of the δ tensors and a horizontal split of the I tensors, we
obtain the uniform tensor network in Fig. 11(f).

Note that the Fourier transformation must be performed on
each triangular plaquette first to ensure the emergence of the
dual variables. Otherwise, if we directly choose a parallelo-
gram including a pair of neighboring triangles and then build
the tensor network based on the local Boltzmann weight of

(θ1, θ2, θ3, θ4) = exp

{
− βJ

2
[cos(θ1 − θ2)

+ cos(θ2 − θ3) + cos(θ3 − θ4)

+ cos(θ4 − θ1) + 2 cos(θ1 − θ3)]

}
,

the infinite contraction of the tensor network will not give
the right results. The reason is that the construction of lo-
cal tensors with a finite bond cut-off can be regarded as a
coarse-grained procedure that should be performed exactly on
the clusters of spin corresponding to the emergent degrees of
freedom.

FIG. 13. (a) The specific heat shows a small bump around Tc1

but a logarithmic divergence at Tc2. (b) The symmetry breaking of
chirality at Tc2. The inset is the fitting of the Ising critical exponent.
(c) The spin-spin correlation function shows a power-law decay be-
low Tc1. (d) The spin-spin correlation function shows an exponential
decay above Tc1.

As shown in Fig. 12, the numerical calculations show that
the entanglement entropy SE also develops two sharp singular-
ities at two critical temperatures Tc1 and Tc2, and the critical
temperatures have the same scaling behavior as the FFXY
model on the square lattice. From the linear extrapolation,
the critical temperatures are estimated to be Tc1 � 0.5060J
and Tc2 � 0.5116J . The critical temperature Tc1 agrees well
with previous Mont Carlo results [68] obtained by BKT fitting
and Tc2 is slightly lower than a recent estimation [68,69] of
Tc2 � 0.512J .

The properties of these two distinct phase transitions can
be further elucidated through the thermodynamic quantities.
The results of the specific heat are presented in Fig. 13(a).
Around the critical temperature Tc1, the specific heat exhibits
a small bump, indicating a higher-order continuous phase
transition. By comparison, the specific heat displays a sharp
divergence at Tc2, implying a second-order phase transition.
For the high-temperature side T > Tc2, the specific heat can
be fitted well by the logarithmic behavior of a second-order
Ising transition. The specific heat between Tc1 and Tc2 does not
fit well with the logarithmic form due to the close proximity
of the two transitions. The breaking of Z2 symmetry at Tc2 can
be demonstrated by the expectation values of the chiralities.
As shown in Fig. 13(b), below the critical temperature Tc2, the
chiral order parameter

m = 1

N

∑
p

(−1)x+yτp (45)

associated with the chiral degrees of freedom establishes a
nonzero value, corresponding to the checkerboard pattern of
chirality on upward and downward triangles. When approach-
ing the critical temperature Tc2 from the low-temperature side,
the order parameter vanishes continuously as m ∼ tβ with
t = 1 − T/Tc2. The critical exponent β � 0.1238 is in good
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agreement with the critical exponent β = 1/8 for the 2D Ising
universality class.

The nature of the phase transition at Tc1 can be revealed
in the change of the behavior of the spin-spin correlation
functions defined as

G(r) = 〈cos(θi − θi+r )〉. (46)

A comparison of correlation functions below and above Tc1

is displayed in Figs. 13(c) and 13(d). Below Tc1, the spin-spin
correlation function exhibits a power-law decay, implying a
close binding between vortices and antivortices. In contrast,
for T > Tc1 the correlation function displays an exponential
decay, indicating the destruction of phase coherence between
vortices due to the unbinding of vortex pairs. Thus, the phase
transition at Tc1 belongs to the universality class of the BKT
transition.

E. Modified XY model on a square lattice

The generic tensor network methods can be employed in
the study of frustrated spin models with more complex inter-
actions. One such model is the modified XY model defined on
a 2D square lattice [70,71]

H = −J
∑
〈i, j〉

cos(θi − θ j ) − μ
∑

p

τ 2
p , (47)

where the first term is the original XY model of ferromagnetic
coupling J > 0, and the second term tunes the vortex fugacity
through the chemical potential μ. The spin current circulating
around each single square plaquette is defined as

τp =
∑

〈i, j〉∈p

sin(θi − θ j ).

It is well known that the original XY spin model can be
mapped into an interacting Coulomb gas with a vortex-core
energy fixed in the low-density limit [63,64]. And the under-
lying physics at large vortex density is of general interest both
theoretically and experimentally. In the area of theoretical
investigations, the possible extension of BKT theory under a
large vortex fugacity was discussed, where non-BKT behavior
and the occurrence of first-order transition were proposed
[65,72–74]. Actually a generalization of 2D XY spin model
with a “crossed-product” operator acting on the plaquettes had
been introduced to adjust the core energy of the vortices [75].
Subsequently, the numerical explorations of a Coulomb gas
model on the square and triangular lattices as well as in the
continuous limit showed a rich phase diagram with critical
behaviors of an ordered-charge lattice [76–78]. Moreover, the
similar physics has been investigated in 3D XY spin models,
where a term acting on the plaquette was introduced to regu-
late the energy of vortex strings [79,80].

The experiments in superconducting thin films revealed
a significant deviation of the vortex-core energy from the
predictions in the original XY model [81]. It was found that
an accurate consideration of the vortex-core energy is of great
importance for the experimental identification of the BKT
transition [82] . Apart from the widely known superfluid phase
and normal phase, the measurement of the third sound mode
in 4He thin films suggested the existence of a new phase [83].
To provide a theoretical explanation for this phenomenon,

researchers have proposed a fascinating concept involving the
formation of a lattice composed of vortices and antivortices,
with a remarkably low vortex core energy [84,85]. The ex-
istence of vortex-antivortex lattice has also been proposed in
other systems such as ultracold atoms [86] and polariton fluids
[87].

To understand the role of the modified interaction term
τp, we can make a simple analysis of the ground state. The
ground-state structure can be determined by the ratio of μ/J
tuning the spin currents in the system, which effectively mod-
ulates the vortex fugacity. As illustrated in Figs. 7(c) and 7(d),
when μ/J < 1/8, the ground state is identical to that at μ = 0,
corresponding to the ground state of the original XY model
where all spins align parallel to each other. As we further
increase the chemical potential to μ/J > 1/8, the ground state
is characterized by maximizing τp on each plaquette, resulting
in a phase difference of φ12 = φ23 = φ34 = φ41 = ±π/2 .
This ground state has the same ground-state degeneracy as the
FFXY spin model on a square lattice. From the perspective of
vorticity, the ground state at μ/J < 1/8 has zero vorticity at
each plaquette termed as the vortex vacuum state, whereas the
ground state at μ/J > 1/8 has a checkerboard pattern of vor-
ticity equal to ±1 called the vortex-antivortex crystal. Hence,
the zero-temperature ground-state structure of the modified
XY spin model is analogous to the 2D dense coulomb gas
on the square lattice [76].

The square term τ 2
p gives rise to multiple types of

interaction including the nearest-neighbor interactions, next-
nearest-neighbor interactions, and four-body interactions.
Although it seems difficult to treat the four-body interactions,
there is still a well-defined vorticity on each plaquette from
the viewpoint of emergent degrees of freedom. Therefore we
can choose each square plaquette as an elementary cluster and
replace the Hp and Wp by

Hp = −J

2

∑
〈i, j〉∈p

cos(θi − θ j ) − μτ 2
p , Wp = e−βHp . (48)

Then the tensor network of the partition function can be
constructed following the procedure outlined in Fig. 8. The
singular behavior of the entanglement entropy corresponding
to the 1D transfer operator offers a sharp criterion to determine
all possible phase transitions in the thermodynamic limit and
the complete phase diagram is thus determined as presented
in Fig. 14.

In the upper plane of the phase diagram, the entanglement
entropy along the chemical potential μ = 0.3J is displayed in
Fig. 15(a). There exist two distinct peaks, corresponding to
the BKT and Ising transition, respectively. These two phase
transitions are extremely close to each other as shown by the
zoomed inset in Fig. 14. Upon further reducing the chemical
potential to μ � 0.20J , two separated peaks merge into a
single peak, as displayed in Fig. 15(b). The merging point
is denoted as the point D in the global phase diagram. The
low-temperature phase with large μ is called the vortex-lattice
phase due to the checkerboard pattern of vortices and an-
tivortices coexisting with the SC order. The chiral LRO is
demonstrated by the finite expectation value of chiralities
(45) as shown in Figs. 16(b) and 17(b). The SC order is
characterized by the quasi-LRO of U (1) spins, where the
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FIG. 14. The global phase diagram of the modified XY spin
model. The BKT transition point A of the original XY spin model
is determined as (0.893,0). The exact solvable point B between the
vortex vacuum phase and vortex lattice phase at zero temperature
is given by (0.0,0.125). As the temperature increases, depending
on the chemical potential, the vortex lattice can melt through three
possible way. Below the point C at (0.64, 0.142), the vortex lattice
experiences a first-order transition into the vortex vacuum phase and
then undergoes a BKT transition into the disordered phase, while
the CD line is the first-order transition. The point D is a tricritical
point determined as μ/J � 0.21. Above this point D, the first-order
transition line is separated into two extremely close transition lines,
belonging to the BKT transition and Ising transition, respectively.
Inset shows the enlarged results around the point D.

spin-spin correlation function (46) displays a power-law de-
cay as displayed in Fig. 16(d). The melting of the vortex
lattice undergoes two steps into the disordered phase with
an intermediate non-SC vortex-lattice phase. In the non-SC
vortex-lattice phase, the chiral LRO survives but the phase
coherence between vortices is destroyed. Such a two-step pro-
cedure has been extensively investigated in the FFXY models
[25,42,67].

Below the point D, the phase boundaries are determined
by a combined analysis of the entanglement entropy and
free energy. We find that the fixed-point equations have two
different solutions across the critical point depending on the
initial states we start from. The proper solution is chosen
with a lower free-energy density. As shown in Fig. 15(c),
along the line T = 0.8J , the entanglement entropy exhibits
a peak at μ � 0.080J corresponding to the BKT transition
and a discontinuous jump at μ � 0.153J associated to a first-
order phase transition. The free-energy density of Fig. 15(e)
displays an inflection point of a first-order transition at μ �
0.153J , demonstrating that the entanglement entropy can
serve as a powerful criterion for the determination of the
first-order phase transition. Besides, we find that the position
of the first-order transition is nearly unchanged with increas-
ing bond dimensions, in good agreement with the behavior
of the entanglement entropy. As the temperature decreases,
the BKT transition line CA and the first-order transition line
CD become closer and finally merge into a single first-order

FIG. 15. (a) The entanglement entropy as a function of temper-
ature along μ = 0.3J . (b) The entanglement entropy as a function
of temperature along μ = 0.20J . (c) The entanglement entropy as a
function of chemical potential along T = 0.8J . (d) The entanglement
entropy as a function of chemical potential along T = 0.64J . (e)
The free-energy density as a function of chemical potential along
T = 0.8J . (f) The free-energy density as a function of chemical
potential along T = 0.64J .

transition line CB at the tricritical point C with T � 0.640J
and μ � 0.142J . As shown in Fig. 15(d), along the line
T = 0.64J , the entanglement entropy shows a discontinuous
jump just above the peak position of μ � 0.142J . The corre-
sponding free-energy density is displayed in Fig. 15(f) with
an evident cusp point.

Across the transition line CD, the vortex lattice melts di-
rectly into the disordered phase via a first-order transition,
where the chiral LRO and spin quasi-LRO break down si-
multaneously. As is shown in Figs. 17(a) and 17(b), both
the thermal entropy density S and the chiral order parameter
m develop a discontinuous jump at the transition point of
μ � 0.18 and T � 1.052. A comparison between the spin-
spin correlation functions across the line CD is displayed in
Figs. 17(c) and 17(d). For a given temperature of T = 1.05J
in the vortex-lattice phase, the correlation function G(r) dis-
plays a power-law behavior. But in the disordered phase with
T = 1.06J , the correlation function behaves in an exponential
way. We should point out that the existence of a novel con-
tinuous transition arising from the merging of BKT and Ising
transitions [88–92] is not found here.

At low temperatures, the phase boundary CB belongs to
a first-order transition between the vortex-lattice phase and
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FIG. 16. (a) The free-energy density as a function of chemical
potential at different temperatures. (Inset) Linear extrapolation of
critical chemical potential as a function of temperature. (b) The
checkerboard-like chirality pattern along T = 0.1J . (c) The spin-spin
correlation function shows an exponential decay at T � 0.1J and
μ � 0.1J in the vortex-vacuum phase. (d) The spin-spin correlation
function shows a power-law decay at T � 0.1J and μ � 0.15J in the
vortex-lattice phase.

the vortex-vacuum phase. As shown in Fig. 16(b), when go-
ing down along T = 0.1J line, the chiral order parameter m
exhibits a discontinuous jump to zero at μ � 0.128J . Since
the vortex fugacity is greatly suppressed by decreasing the
chemical potential μ, the vortex density drops dramatically,
driving the system into the vortex-vacuum phase. Note that the
“vortex vacuum” just means that there is no excitation of free

FIG. 17. (a) The thermal entropy density as a function of tem-
perature along μ = 0.18J . (b) The chirality on 2 × 2 sublattice as a
function of temperature along μ = 0.18J . (c) The spin-spin corre-
lation function at T � 1.05J, and μ � 0.18J in vortex lattice phase
shows a power-law decay. (d) The spin-spin correlation function at
T � 1.06J and μ � 0.18J in disordered phase displays an exponen-
tial decay.

vortices but the charge-neutral vortex-antivortex pairs can still
be excited. The excitation of vortex-antivortex pairs destroys
the LRO of the U (1) spins and gives rise to the well-known
BKT quasi-LRO state. As can be seen in Figs. 16(c) and 16(d),
the spin-spin correlation function displays a power-law decay
in both the vortex-lattice and vortex-vacuum phases. When
the temperature further decreases, the first-order transition
line CB behaves in a linear way. Such a linear behavior is
displayed in Fig. 16(a), where the extrapolation to the zero
temperature gives μ � 0.125J in the inset. The terminal point
B is determined at T = 0 and μ = 0.125J , consistent with our
previous analysis of the ground state.

Finally, the transition line CA separating the vortex-
vacuum and disordered phase is the conventional BKT
transition, driven by the dissociation of vortex-antivortex
pairs. The inverse process, when the system is cooling from
a disordered phase, pairs of vortex and antivortex appear and
further condensed into a square vortex lattice is analogous to
the theoretical proposal in ultracold Fermi gases [86]. The
rich phase diagram of the modified XY model provides im-
portant insights into the formation of the vortex lattice and
the complex melting process. By tuning the vortex chemical
potential, the unconventional phase transitions in SC lattice
are investigated thoroughly in the orientational U (1) phase
variables. A more comprehensive study should take into ac-
count the positional order since the vortex lattice may also
melt via the Kosterlitz-Thouless-Halperin-Nelson-Young pro-
cedure [84–86,93–95].

IV. DISCUSSION AND OUTLOOK

In this paper, we have developed a generic tensor network
approach to study the frustrated classical spin models with
both discrete and continuous degrees of freedom on a wide
range of 2D lattices. The key point for a contractible tensor
network representation of the partition function is that the
emergent degrees of freedom induced by frustrations should
be encoded in the local tensors comprising the infinite net-
work. In this way, the massive degeneracy can be described
by the interactions between emergent dual variables repre-
senting a cluster of interacting spins under the constraint of
frustrations. We showed that a common process can be applied
to the construction of the tensor network based on ideas of
emergent degrees of freedom and duality transformations. We
demonstrated the power of our method by applying it to a large
array of classical frustrated Ising models and fully frustrated
XY spin models on the kagome, triangular, and square lattices
in the whole temperature range. Our tensor network approach
turned out to be a natural generalization of the previous solu-
tions of frustrated spin systems [25,41,49,50] but from a more
fundamental basis. Then the partition function is expressed
in terms of a product of 1D transfer matrix operator, whose
eigenequation was solved by the algorithms based on matrix
product states rigorously. The singularity of the entanglement
entropy for the 1D quantum analog provides a stringent crite-
rion to determine various phase transitions with high accuracy.
Apart from the good agreement with previous findings, our
numerical results offer clarification of the phase structure of
the AF triangular XY model and the modified XY model.
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The generic tensor network approach provides a promising
way to deal with some remaining open questions on frustrated
systems. First, our method should be applicable to frustrated
spin models with longer-range interactions where emergent
degrees of freedom play an important role in characterizing
the collective behavior. In fact, extensions beyond nearest-
neighbor interactions have been successfully applied in the
J1-J2-J3 Ising models with tensor network, offering different
perspectives on the complexity of such systems [49,50,96].
For example, a range of classical spin liquid phase in the
J1-J2-J3 Ising model at the fine-tune point can be understood
by topological charges with the nearest-neighbor interaction
and hence can be solved directly from our tensor network
approach [97–99]. And peculiar partially ordered states have
been proposed in kagome spin ice with further-neighbor inter-
actions [100]. Second, the long-standing problems in uniform
frustrated XY spin models may be solved by our generic
construction. All the frustration ratio f ∈ [0, 1] can be repre-
sented by a suitable gauge field on the lattice bond, which can
be further represented using the standard procedure. Finally,
we should point out that our construction should be extended
to other models in any dimension with emergent degrees of
freedom. For instance, the classical Heisenberg antiferromag-
net [101,102] may be investigated in the future where the
basis for the dual transformation should be spherical harmonic
functions. We believe that further development of the tensor
network approach of our paper should lead to the solution of
a number of problems in frustrated systems that were difficult
to solve previously.
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APPENDIX: TENSOR NETWORK CALCULATIONS OF
THE PHYSICAL QUANTITIES

1. Linear transfer matrix method

Once the proper tensor network representations for the
frustrated models are obtained, the contraction of the infinite
tensor network can be performed efficiently. One of the best
practices to contract a translation-invariant tensor network in
the thermodynamic limit is the algorithm of uniform matrix
product states where the leading eigenvector of the row-to-row
transfer matrix is calculated using a set of optimized eigen-
solvers [55,56,62].

Due to the emergent phenomena in the frustrated systems,
the lattice symmetry is usually spontaneously broken with a
larger translation-invariant unit composed of new degrees of
freedom. The relevant 2D tensor network should consist of a
larger unit cell of multiple tensors that matches the transitional
symmetry. For example, a 2 × 2 plaquette structure of O ten-
sors is necessary to represent the checkerboard ground state of
the FFXY model on square lattices and a 3 × 3 structure for
the triangular AF XY model.

The fixed-point equation for the enlarged transfer operator
can be accurately solved by the multiple lattice-site VUMPS

FIG. 18. The key steps of the multisite VUMPS algorithm.
[(b),(c)] Eigenequations to update the left and right environmental
fixed points of the channel operators. [(e),(f)] Eigenequations to
update the central tensors based on the new environment.

algorithm with only a linear growth in computational cost
[57]. For a transition-invariant cluster consisting of nx × ny

local tensors, the whole transfer matrix is formed by y rows of
linear transfer matrices

T = T (y+ny−1) · · · T (y), (A1)

where each row of the component transfer matrix is defined
by

T (y) = tTr(· · · O(x,y)O(x+1,y) · · · ) (A2)

with x = 0, · · · , nx − 1, and y = 0, · · · , ny − 1. The transfer
operator T can be regarded as the matrix product operator
(MPO) for the 1D quantum spin chain, whose logarithmic
form can be mapped to a 1D quantum system with compli-
cated spin-spin interactions

Ĥ1D = − 1

β
ln T . (A3)

In this way, the correspondence between the finite-
temperature 2D statistical model and the 1D quantum model
at zero temperature is established.

The eigenequation can be expressed as

T |
(A)〉(y) = �max|
(A)〉(y), (A4)

where |
(A)〉(y) is the leading eigenvector represented by
matrix product states (MPS) made up of a nx-site unit cell of
local A tensors with auxiliary bond dimension D

|
(A)〉(y) =
∑

x

Tr(· · · Ai(x,y) Ai(x+1,y) · · · )| · · · i(x,y) · · · 〉 (A5)

satisfying A(x,y) = A(x,y+ny ) = A(x+nx,y) [55]. The big
eigenequation can be further decomposed into a set of
smaller eigenequations displayed in Fig. 18(a) as

T (y)|
(A)〉(y) = �y|
(A)〉(y+1), (A6)
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with a total eigenvalue

�max =
ny−1∏
y=0

�y. (A7)

The key process of the algorithm is summarized in
Figs. 18(b)–18(e), including sequentially solving the left and
right fixed points of the channel operators

T (x,y)
L F (x,y)

L = λ(x,y)F
(x+1,y)

L , (A8)

T (x,y)
R F (x,y)

R = λ(x,y)F
(x−1,y)

R , (A9)

and the updating of the central tensors

H (x,y)
AC

A(x,y)
C = λA(x,y+1)

C , (A10)

H (x,y)
C C(x,y) = C(x,y+1). (A11)

Note that, when solving the fixed point eigenequation (A8)–
(A11), one may not directly use the linear transfer matrix
composed by the uniform local tensor O, but the interior
structure should be explored. This will significantly reduce the
computational complexity.

2. Physical quantities

From the fixed-point MPS for the 1D quantum transfer op-
erator, various physical quantities can be estimated accurately.
The entanglement properties can be detected via the Schmidt
decomposition of |
(A)〉(y), which bipartites the relevant 1D
quantum state of the MPO, and the entanglement entropy can
be determined directly from the singular values sα as

SE = −
D∑

α=1

s2
α ln s2

α, (A12)

in correspondence to the quantum entanglement measure.
Moreover, the expectation value of a local observable can

be evaluated by inserting the corresponding impurity tensor
into the original tensor network for the partition function. The
impurity tensors can be obtained simply by introducing an
unbalanced delta tensor to replace the original delta tensor
characterizing the constraints of sharing spins.

For Ising spins, the expectation value of a local spin at site
j can be expressed as

〈s j〉 = 1

Z

∑
{si=±1}

e−βE ({si})s j (A13)

where E ({si}) is the energy of a state under a given spin
configuration {si}. The s j term just changes the Kronecker
delta tensor from the form of (16) to

δs1,s2,··· ,sn =
{

s1, s1 = s2 = · · · = sn

0, otherwise . (A14)

For XY spins, the expectation value of eiqθ can be cal-
culated by introducing imbalanced currents into the original
delta tensors from the conservation form of (39) to

δq = δn1+n2+n3+n4+q,0 (A15)

as displayed in Fig. 19(a). Accordingly, the vertical splitting
of the delta tensor in (39) should be be modified to

δn1+n2+n3+n4+q,0 =
∑

n5

δu
n1+n2−n5,0δ

d
n1+n2+n5+q,0 (A16)

as shown in Fig. 19(b). Then the impurity tensors can be
constructed in the same way by including the imbalanced
delta tensors as depicted in Fig. 19(c). The tensor network
containing two impurity tensors is displayed in Fig. 19(d) as
an example.

Using the MPS fixed point, the contraction of the tensor
network containing the impurity tensor is reduced to a trace of
an infinite sequence of channel operators, which can be further
squeezed into a contraction of a small network. As shown in
Fig. 19(e), the evaluation of a single variable is expressed as a
contraction of only five tensors. And the expectation value of
the two-point correlation function

G(r) = 〈cos(θi − θi+r )〉 (A17)

can be reduced to a trace of a row of channel operators con-
taining two impurity tensors as shown in Fig. 19(f).

FIG. 19. (a) The imbalanced delta tensors as a result of imbal-
anced currents introduced by the local observables. (b) The vertical
split of the imbalanced delta tensors. (c) The construction of the
impurity tensors from imbalanced delta tensors. (d) Two impurity
tensors are introduced into the original tensor network. (e) Expecta-
tion of a local observable by contracting the leading eigenvectors of
the channel operators. (f) Two-point correlation functions calculated
by contracting a sequence of channel operators.
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