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Micromagnetic simulation of ferromagnetic metamaterials with wire inclusions
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Left-handed (LH) metamaterials are generally structured materials possessing abnormal electromagnetic
properties due to both negative permittivity and permeability. One of these properties is a backward wave
(BW) propagation, in which the phase and group velocities are opposite to each other. Here we investigate the
electrodynamic (dispersion and energy) characteristics of the BW existing in a magnetic LH metamaterial that is
controlled by the external uniform magnetic field. Such a metamaterial is a host made from a μ-negative (ferro-
magnetic) nonconductive medium that contains a two-dimensional periodic structure of thin and isolated wires
placed in the bias field directed either transversely or longitudinally to the electromagnetic wave propagation.
A finite-difference time-domain–Landau-Lifshits-Gilbert (LLG) electromagnetic solver MaxLLG is used for the
BW numerical simulations. This solver is based on the simultaneous usage of the Maxwell and LLG equations.
By operating this software, the authors validate the existence of the BWs in the investigated LH metamaterial
for two bias field orientations for various values of magnetic LH layer thickness and wire conductivity as well
as for two connection types of wires with metallic planes that are placed on both sides of the metamaterial layer.
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I. INTRODUCTION

Metamaterials are artificial structures, composed of peri-
odic subwavelength-scale arrays with T � λ (where T is
an array period and λ is a wavelength). Metamaterials pos-
sess such electromagnetic properties that natural materials do
not have. This electromagnetic behavior results from specific
configurations and generally structured materials, composed
of ordered elements. Apparently, one of the first metamaterial
that was theoretically predicted [1,2] and experimentally stud-
ied [3,4] is a left-handed material (LHM). The first suggested
LHM structure consists of an array of continuous conducting
wires and nonmagnetic split-ring resonators (SRRs) [3]. The
wire array exhibits plasmonic features that can be described
with an effective permittivity εeff, while the SSR array behaves
as an environment having an effective magnetic permeability
μeff. These effective parameters are of resonant nature and
both take negative values in a frequency band defined by
both the element dimensions and lattice spacing. Therefore,
LHMs are often referred to as double-negative metamaterials
(DNMs) supporting backward wave propagation, in which the
phase and group velocities are opposite to each other.

Starting from the 2000s, a number of studies devoted to
magnetotunable LHMs have been presented [5–11]. Most
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were based on the usage of either ferromagnets (FMs) or anti-
ferromagnets (AFMs): natural materials possessing negative
μ (μ-negative materials) either in the microwave (FMs) or
terahertz (AFMs) ranges [12]. The combination of their prop-
erties with the properties of ε-negative materials, which are
periodic arrays of thin wires, made it possible to realize DNMs
without the use of additional subwavelength elements in the
form of SRRs. Besides, the properties of such metamaterials
could also be controlled with an external bias field. For the
microwave range, FMs were used either in the form of films
[6,8] and plates [9] of yttrium iron garnet or in the form of
ferrite rods [10] or films of BaM type ferrites/hexaferrites
[11]. Ferrite films LuBiIG [13] and AFM [14] were used for
the terahertz range.

Dewar developed an analytical electrodynamic model of a
FM LHM composed of long, thin, cladded metal wires within
a nonconductive FM host [7]. In this model, a bias field is
applied parallel to the wires and transversely to TE electro-
magnetic wave (EMW) propagation. He proposed a relation
for the effective permittivity εeff, which includes the effective
permeability μeff of the nonconductive FM host. It was shown
that both effective material parameters of medium could have
simultaneously negative values in a certain frequency range
between two characteristic frequencies. One of them (higher
frequency) was the antiresonance frequency far and the other
(lower frequency) was the plasma frequency fp. In this fre-
quency range, a backward EMW (BEMW) was predicted to

2469-9950/2023/108(22)/224401(10) 224401-1 ©2023 American Physical Society

https://orcid.org/0000-0002-5725-3282
https://orcid.org/0000-0002-3654-3299
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.224401&domain=pdf&date_stamp=2023-12-01
https://doi.org/10.1103/PhysRevB.108.224401


AMEL’CHENKO, GRISHIN, OGRIN, AND NIKITOV PHYSICAL REVIEW B 108, 224401 (2023)

be found. However, no experiments and numerical simulations
that would confirm or deny Dewar’s theory have been carried
out.

Dewar’s model was formulated for the infinite transversely
magnetized FM metamaterial, because only here there is a
single electrical component directed along the wires. It is well
known [12] that for the longitudinal magnetization, when the
bias field and the wave vector are codirected, an infinite FM
supports quasitransverse electromagnetic (TEM) wave prop-
agation. The TEM wave has two electrical components: One
of them is directed along the wires and the other is directed
perpendicularly to the wires. Such electrical field configura-
tion will not support the double-negative properties of the FM
metamaterial. However, if the longitudinally magnetized FM
medium is limited in one direction (it has thickness), then the
backward volume TE waves can exist. Their frequency band
is then found between the ferromagnetic resonance frequency
for longitudinal magnetization f|| and the ferromagnetic reso-
nance frequency for transverse magnetization f⊥. In this band,
the longitudinally magnetized FM layer has the properties
of the μ-negative medium. To study the dispersion charac-
teristics of these waves, the magnetostatic approximation is
usually used. It is valid for thin FM films only [12]. In the
work by Amel’chenko et al. [15], an approximate model of
a longitudinally magnetized film of FM metamaterial with
metal inclusions was presented. This model is based on both
the dispersion equation (DE) for the longitudinally magne-
tized nonconductive FM layer and the relation for the effective
permittivity εeff, describing the plasmonic properties of the
wire array surrounded by an infinite isolation (vacuum) space
by the use of the Drude theory. For such magnetized thin-film
FM metamaterial, the backward volume TE waves exist in all
frequency ranges, where both effective material parameters
of the medium are negative. This band is found between the
frequency f|| and the antiresonance frequency far. However,
the confirmation of the backward volume TE wave existence
in the frequency interval f|| < f < far was confirmed neither
in experimental nor in numerical works.

Here we demonstrate the results of numerical simulation
of the BEMW existing in the FM LHM with wire inclusions.
For the numerical simulation, we use a three-dimensional
(3D) finite-difference time-domain–Landau-Lifshits-Gilbert
(FDTD-LLG) electromagnetic solver, MaxLLG [16]. The
unique nature of this code is in the fact that it uses the
LLG equation, which is solved in parallel with the Maxwell
equations, providing the necessary material relations for per-
meability both statically and dynamically. This is of particular
significance for the problems (such as in the case of this work)
when the solutions are thought for magnetic materials com-
bining metals, or in close proximity to them. Using standard
magnetostatic solvers (OOMMF and MuMax) it is not possi-
ble to obtain the correct solution as those cannot account for
electric fields. Equally, any standard commercial electromag-
netic software (e.g., CST and HFSS), even though it allows
some flexibility on providing the dynamic permeability, can-
not offer an exact solution including demagnetizing effects
associated with the geometry and the intrinsic properties of
the material. Moreover, the LLG formulation in MaxLLG is
solved exactly (without linearization), thus offering the results
even for highly nonlinear applications. Using this software,

FIG. 1. A scheme of the homogeneous nonconductive FM layer
that is metallized on both sides. The FM layer with suturation magne-
tization of M0 = 0.014 T and dielectric constant of ε = 16 is placed
in the uniform external magnetic field with two types of orientation.
Orientation 1 corresponds to the normal type of magnetization and
orientation 2 corresponds to the longitudinal type of magnetization.

here we show that the BEMW can be realized for both types
of bias field orientation for various values of FM LHM layer
thickness and wire conductivity as well.

II. ANALYTICAL MODELS AND CALCULATION RESULTS

A. The slow magnetic waves in a metallized ferromagnetic layer

The model of a homogeneous FM layer is based on a
nonconductive FM layer of thickness d placed along the z axis
between two parallel ideal conductive planes (see Fig. 1). A
uniform external magnetic field H0 is applied parallel to the y
axis and transversely to wave vector k, which is aligned with
the z axis (H0||OY ⊥ k||OZ). By solving Maxwell’s equa-
tions in the approximation of inhomogeneous plane EMWs,
the following DE for normal magnetized FM can be obtained:

−k2
y

[
k2

y + (1 + μ)k2 − 2μk2
0ε

]
= μk4 − (

μ2 + μ − μ2
a

)
k2k2

0ε + (
μ2 − μ2

a

)
k4

0ε
2, (1)

where ky is a quantized wave number in the y-axis direction (a
transversal wave number), which can be expressed as

ky = nπ

d
, (2)

n = ±1, 2, 3 . . . is an index of volume EMW mode; k is a
longitudinal wave number of the EMW propagating in FM
in the z-axis direction; k0 = ω/c is a wave number of EMW
propagating in vacuum; ω = 2π f is a circular frequency; f
is a liner frequency; c is a light velocity in free space; μ =
(ω2

⊥ − ω2)/(ω|| − ω2) and μa = (ωMω)/(ω|| − ω2) are diag-
onal and off-diagonal components of the permeability tensor,
respectively; ω⊥ = √

ω||ωar is a circular frequency of FM
resonance for transverse magnetization; ωar = ω|| + ωM is a
circular frequency of FM antiresonance; ω|| = γ H0 is a circu-
lar frequency of FM resonance for longitudinal magnetization
ωM = 4πγ M0; γ /(2π ) = 2.8 MHz/Oe is a gyromagnetic ra-
tio; and 4πM0 is saturation magnetization.

For an infinite transversely magnetized FM medium (d →
∞ and ky = 0), Eq. (1) can be rewritten as two DEs [12]. One
of them corresponds to the transverse electric (TE) wave

k2 − k2
0μeff⊥1ε = 0, (3)

224401-2



MICROMAGNETIC SIMULATION OF FERROMAGNETIC … PHYSICAL REVIEW B 108, 224401 (2023)

possessing three components of electromagnetic field
ey, hx, hz that are not equal to zero and the other DE corre-
sponds to the transverse magnetic (TM) wave,

k2 − k2
0μeff⊥2ε = 0, (4)

where μeff⊥1 is the effective permeability of medium support-
ing TE wave propagation,

μeff⊥1 = μ2 − μ2
a

μ
, (5)

and μeff⊥2 is the effective permeability of medium supporting
TM wave propagation and is equal to 1.

In the magnetostatic approximation, when k � k0, the DE
(1) is transformed to the DE for slow forward volume magne-
tostatic waves (FVMSWs),

k2
y + μk2 = 0. (6)

The FVMSWs existing in the metallized FM film are the TE
waves possessing three components of the electromagnetic
field:

e0x = k0

k
Asin(kyy),

h0y = Asin(kyy),

h0z = j
k

ky
Acos(kyy), (7)

where A is an arbitrary constant. However, in contrast to the
TE waves existing in the transversely magnetized infinite FM
medium, the FVMSWs do not have the ey component of the
electric field directed along the wires.

For the longitudinally magnetized FM layer (H0||k||OZ),
covered by two ideally conductive planes, the DE has the
following form:

−k2
y

[
μk2

y + (1 + μ)k2 − (
μ2 + μ − μ2

a

)
k2

0ε
]

= k4 − 2μk2k2
0ε + (

μ2 − μ2
a

)
k4

0ε
2, (8)

where ky is obtained as [17]

a1b2sin(α1)cos(α2) − a2b1sin(α2)cos(α1) = 0,

a1b2sin(α2)cos(α1) − a2b1sin(α1)cos(α2) = 0, (9)

where α1 = ky1d/2, α2 = ky2d/2, ky3 = −ky1, ky4 = −ky2,
a1 = b1 = 1, a2 = −ky1(μk2

y1 + k2 − μk2
0ε)/(μakk2

0ε), and
b2 = −ky2(μk2

y2 + k2 − μk2
0ε)/(μakk2

0ε).

Equation (9) can be written as

ky1,2 = ±
(nπ

d

)
+

√
−[

μ
(

nπ
d

)2 + k2 − μk2
0ε

]
3μ

. (10)

If we set ky = 0, then the DE (8) is transformed into two DEs
whose solutions correspond to the quasi-TEM waves possess-
ing four transversal components of the electromagnetic field
ex, ey, hx, hy that are not equal to zero [12]:

k2 − k2
0μeff||1ε = 0, (11a)

k2 − k2
0μeff||2ε = 0, (11b)

where

μeff||1 = μ + μa, (12a)

μeff||2 = μ − μa. (12b)

In the magnetostatic approximation, the DE (8) is transformed
into the DE for slow backward volume magnetostatic waves
(BVMSWs),

μk2
y + k2 = 0. (13)

The BVMSWs like the FVMSWs are also the TE waves
possessing three components of the electromagnetic field in
thin films (ky � k0):

e0x = −kk0

k2
y

Bsin(kyy),

h0y = Bsin(kyy),

h0z = j
k

ky
Bcos(kyy), (14)

where B is an arbitrary constant. The BVMSWs also do not
have the ey component of the electric field directed along
the wires. In the magnetostatic approximation, the Eq. (10)
is transformed into the Eq. (2).

To determine that a MSW is a purely magnetic wave,
its electric and magnetic energies are calculated. The aver-
aged energy W of the electromagnetic field existing in an
anisotropic lossless dispersive medium is calculated as [18]

W = We + Wh, (15)

where the averaged energy of the electric field We is

We = 1

16πV

∫
V

Re
〈
e
{∂ (ωε̄∗)

∂ω
e∗

}〉
dV, (16a)

and the averaged energy of the magnetic field Wh is

Wh = 1

16πV

∫
V

Re
〈
h
{∂ (ωμ̄∗)

∂ω
h∗

}〉
dV, (16b)

V is the volume of the anisotropic dispersive medium, e and
h are the alternating electric and magnetic fields, the sign ∗
denotes the complex conjugate, and ε̄ and μ̄ are the tensors
of the permittivity and permeability. The permittivity of the
homogeneous FM medium is scalar, while the permittivity of
the FM metamaterial is frequency dependent. When H0||OY ,
the permeability tensor has the following form:

μ̄ =
⎛
⎝ μ 0 − jμa

0 1 0
jμa 0 μ

⎞
⎠, (17a)

and if H0||OZ , then its form is

μ̄ =
⎛
⎝ μ jμa 0

− jμa μ 0
0 0 1

⎞
⎠. (17b)

The energy characteristics also include a group velocity Vg

and a velocity of energy flow Vp that are calculated on the
base of following expressions:

Vg = ∂ω/∂k, (18)

Vp = P/W, (19)

where

P = c

8πV

∫
V

Re(e × h∗)dV. (20)
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FIG. 2. The electrodynamic characteristics of slow FVMSW
(a) and BVMSW (b) existing in normally (a) and longitudinally
(b) magnetized FM thin films that are metallized on both sides. In
the upper panels of (a) and (b) there are the dispersion characteristics
of both volume MSWs (red solid lines), in the middle panels of
(a) and (b) there are the ratio of electric and magnetic energies of
these waves (blue solid lines), and in the bottom panels of (a) and
(b) there are their group (green solid lines) and energy flow (yellow
dashed lines) velocities. The calculations were made for H0 = 795.8
A/m, M0 = 0.014 T, d = 10 µm, and n = 1.

Figure 2 demonstrates the electrodynamic (dispersion and
energy) characteristics of the slow FVMSW and BVMSW
calculated on the basis of Eqs. (2), (6), (13)–(20). It can be
seen that the FVMSW existing in a normally magnetized FM
film has normal positive dispersion and the BVMSW existing
in a longitudinally magnetized FM film has abnormal negative
dispersion [see upper fragments in Figs. 2(a) and 2(b)]. Both
types of MSWs are located in the same frequency range,
where μ < 0 and ε > 0. The magnetic energy of both MSW
types significantly prevails over the electric energy throughout
the whole k range [see middle fragments in Figs. 2(a) and
2(b)]; therefore the MSWs are the purely magnetic waves.
Curves of group and energy flow velocities coincide for both
MSW types [see bottom fragments in Figs. 2(a) and 2(b)]. For
the FVMSW, both velocities are positive and they coincide
with the phase velocity direction. For the BVMSW, these
velocities are negative and they are opposite to the phase
velocity direction.

B. The slow electromagnetic waves in a metallized
ferromagnetic metamaterial layer

A model of infinite FM metamaterial was developed by
Dewar for a nonconductive transversely magnetized FM host
containing a square two-dimensional array of thin conductive
round wires cladded with a nonmagnetic dielectric layer [7].
The bias field H0 is applied along the wires. Assuming that
the media has effective properties, the lattice constant T is
supposed to be much smaller than the wavelength of the TE

FIG. 3. The frequency dependencies of the effective permeabil-
ity μeff⊥1 (red solid lines) and the effective permittivity εeff (blue
solid lines) calculated for the transversely magnetized infinite FM
metamaterial. Calculations were made for H0 = 795.8 A/m, M0 =
0.014 T, εr = 16, r1 = 100 µm, r2 = 300 µm, and T = 2 mm.

wave propagating normally to the wires. The TE wave has
one component of the electric field directed along the wires
and ensuring the polarization of charges in this direction.
The isolating layer surrounding the wires is necessary for
protection of their plasmonic features from the ferromagnetic
resonance, as magnetic moments of the host changing their
directions can ruin electron order. The wire radius r1, the outer
radius of the cladding material r2, and the lattice constant T
were chosen such that r2

∼= √
r1T and r1 � r2 � T . Dewar

has derived expressions for the effective dielectric function
εeff and the plasma frequency ωp that include μeff⊥1 of the
host [7]:

εeff = εr

{
1 − ω2

p

ω2 + iα

}
, (21)

ω2
p
∼= 2π

ε f T 2μ0
[

ln r2
r1

+ μeff⊥1
(

ln T
r2

− 3+ln 2−π/2
2

)] , (22)

where α = ε f ωω2
p/σeff , ε f = ε0εr is the absolute permittivity

of the FM, ε0 = 1/(μ0c2) is the vacuum constant, μ0 is the
vacuum permeability, εr is the relative permittivity of the
FM, σeff = πr2

1σ/T 2 is the effective conductivity of the wire
array, and σ is the conductivity of the wires. Hereafter, we
consider a structure that lacks of losses (α = 0). Equation (22)
was obtained by assuming that the current density is uniform
throughout the wire, e.g., the wire radius is much smaller than
the skin depth δ: r1 � δ = √

2/μ0σω.
Figure 3 demonstrates the frequency dependencies of the

effective material parameters of the transversely magnetized
FM metamaterial that are calculated using the Eqs. (5), (21),
and (22). In contrast to the homogeneous FM, the effec-
tive permittivity of the FM metamaterial has negative values
in two frequency ranges. One of them starts from the low
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frequencies and extends to a frequency fε1, at which the
effective permittivity passes through zero. This frequency
is lower than the FM resonance frequency f⊥, so at the
frequencies f < fε1 the effective permeability μeff⊥1 has pos-
itive values and the effective permittivity has negative values
(μeff⊥1 > 0 and εeff < 0). The other frequency range starts
from the plasma frequency fp, at which it passes through a
resonance and extends to a frequency fε2, where it passes
through zero. The plasma frequency fp lies between the FM
resonance f⊥ and the FM antiresonance far frequencies, while
the frequency fε2 is higher than the FM antiresonance fre-
quency far. At the last frequency, the effective permeability
μeff⊥1 passes through zero. Thus, the effective permeability
has positive values and the effective permittivity has negative
values (μeff⊥1 > 0 and εeff < 0) in the frequency interval
far < f < fε2. In the frequency interval fp < f < far, the
effective permittivity and permeability have negative values
simultaneously (μeff⊥1 < 0 and εeff < 0).

Besides, the effective permittivity and permeability μeff⊥1

have positive values simultaneously (μeff⊥1 > 0 and εeff > 0)
in two frequency ranges. One of them is located between the
frequencies fε1 and f⊥. The other starts from the frequency
fε2 and extends to the higher-frequency region. The obtained
results indicates that such metamaterial will support the EMW
propagation only in three frequency intervals: fε1 < f < f⊥,
fε2 < f , and fp < f < far. In the last case, the FM metamate-
rial possesses the properties of DNM supporting the backward
wave propagation.

In the Dewar’s model, a plane EMW has one electric field
component that is directed along the wires. Such situation
is realized only for the transversely magnetized infinite FM
medium. For other cases associated both with a change in
the direction of the bias field and with the usage of boundary
conditions in the form of semi-infinite free space on both sides
of the FM medium, the EMW will have the nonzero transverse
components of the electric field. These electric components
will transversely polarize the charges on the side walls of the
wires and destroy the charge polarization along the wires. As a
result, the double-negative properties of the FM metamaterial
will disappear. To solve this problem, we propose to use the
boundary conditions in the form of ideally conductive metallic
planes connected to the wire array. This form connection
of the metallic planes with the wires will create the closed
electric circuits in that the electric field component directed
along the wires will support the flow of electric current along
the wires. We believe that these boundary conditions, applied
to the magnetized FM metamaterial layer, will return the prop-
erties of a doubly negative medium to the mentioned above
layer.

To construct an approximate model of a normally magne-
tized FM metamaterial layer in contact with metallic planes
on both sides, we will use the DE (1), describing the proper-
ties of a normally magnetized FM layer, and the expressions
obtained for the transverse wave number (2), effective permit-
tivity (21), and permeability (5). Figure 4 represents a scheme
of the investigated structure. The model does not take into
account the polarization of charges across the wires and is
valid for relatively thick FM metamaterial layers in that the
electric field component along the wires is greater than the
electric field components across the wires. This statement

FIG. 4. A scheme of the normally magnetized FM metamaterial
layer that is metallized on both sides. The metamaterial layer consists
of the nonconductive FM host with suturation magnetization of M0 =
0.014 T that contains 2D conductive wire array. The wires of the
array are cladded with nonmagnetic dielectric layer.

will be subsequently confirmed by the results of numerical
simulation.

In Fig. 5, the electrodynamic characteristics of the slow
forward and backward waves existing in the normally
magnetized FM metamaterial layer that is metallized on both
sides are presented. It can be seen that forward wave with
normal positive dispersion and backward wave with abnormal
negative dispersion exist simultaneously in different

FIG. 5. The electrodynamic characteristics of slow FEMW
(a) and BEMW (b) existing in normally magnetized FM metama-
terial layer that is metallized on both sides. In the upper panels of
(a) and (b) there are the dispersion characteristics of both slow waves
(red solid lines), in the middle panels of (a) and (b) there are the
ratio of electric and magnetic energies of these waves (blue solid
lines), and in the bottom panels of (a) and (b) there are their group
(green solid lines) and energy flow (yellow dashed lines) velocities.
The calculations were made for H0 = 795.8 A/m, M0 = 0.014 T,
εr = 16, r1 = 100 µm, r2 = 300 µm, T = 2 mm, d = 1 cm, and
n = 1.

224401-5



AMEL’CHENKO, GRISHIN, OGRIN, AND NIKITOV PHYSICAL REVIEW B 108, 224401 (2023)

frequency ranges [see upper fragments in Figs. 5(a) and
5(b)]. The slow forward wave exists in the frequency interval
fε1 < f < f⊥, where μeff⊥1 > 0 and εeff > 0 (see Fig. 3).
In this frequency range, the volume MSWs exist in the
homogeneous FM film (see Fig. 2). The slow backward
wave exists in higher-frequency interval fp < f < far,
where the effective parameters of the FM metamaterial are
double negative (μeff⊥1 < 0 and εeff < 0; see Fig. 3). In
this frequency range, the volume MSWs do not exist in the
homogeneous FM film. As follows from the results presented
in middle fragments in Figs. 5(a) and 5(b), both types of
slow waves are the EMWs. As for the slow forward EMW
(FEMW), the electric energy prevails over the magnetic
energy, while k has small values, and the magnetic energy
prevails over the electric energy near the FM resonance
frequency f⊥ at the large values of k (k → ∞). For the
BEMW, the situation is the opposite. Here the magnetic
energy prevails over the electric energy, while the k has small
values, and the electric energy prevails over the magnetic
energy near the plasma frequency fp at the large values of
k (k → ∞). Curves of group and energy flow velocities
coincide for both EMWs [see bottom fragments in Figs. 5(a)
and 5(b)]. Both velocities are positive for the slow FEMW
and negative for the slow BEMW.

III. NUMERICAL MODELS AND CALCULATION RESULTS

A. Infinite ferromagnetic and ferromagnetic
metamaterial with metal wire inclusions

The numerical simulation of the wave forms existing in
the homogeneous FM and FM metamaterial with the wire
inclusions (see Fig. 6) was carried out using MaxLLG soft-
ware [16]. This code is based on the FDTD solution where
the LLG equation of magnetization motion is solved in par-
allel with the Maxwell equations. Calculation of LLG uses
a stable iterative algorithm that incorporates anisotropy and
exchanged fields within the FDTD grid [19]. In such a way,
the FDTD-LLG scheme provides simulation of the wide-band
interaction of electromagnetic waves with magnetic struc-
tures. Further details of the simulation process are introduced
in the Supplemental Material [20] (see also Refs. [7,19,21]
therein).

Figures 7(a) and 7(c) demonstrate the results of two-
dimensional Fourier transform of the space-time map obtained
for the infinite FM medium (without the wire inclusions)
that is placed in both transversal [see Fig. 7(a)] and longi-
tudinal [see Fig. 7(c)] bias fields. The presented numerical
results (yellow dots) are compared with the analytical ones
(red lines) obtained using Eqs. (3), (5), (11a), (11b), (12a),
and (12b). As can be seen in Fig. 7(a), the dispersion curves
produced by the analytical model for the transversal bias field
orientation have an excellent agreement with the simulation
results. One of the waves is the fast TE wave that has a
cutoff frequency equal to far, whereas another is the slow
TE wave that has only a limiting frequency equal to f⊥. In
Fig. 7(c), the results for the longitudinal bias field orienta-
tion are presented. Here the analytical dispersion curves of
quasi-TEM waves existing in the longitudinally magnetized
FM are compared with the dispersion curves obtained from
the numerical simulation. It can be seen that three quasi-TEM

FIG. 6. The schematics of the infinite FM medium (a), the infi-
nite FM metamaterial with square wire inclusions (b), and the FM
metamaterial layer with various types of square wire connections
to the metallic planes (c). In (d), the 2D wire array (a top view)
consisting of the square wires with side 2r1 cladded with nonmag-
netic square dielectric layer of side 2r2 is presented. In (a) and (b),
orientation 1 of the bias field corresponds to the transverse type of
magnetization and orientation 2 corresponds to the longitudinal type
of magnetization.

waves with normal dispersion are obtained. Two of them are
the fast waves and one is the slow wave. One of the fast
quasi-TEM waves has the same cutoff frequency far as the fast
TE wave for the transverse bias field orientation does. Another
fast quasi-TEM wave does not have the cutoff frequency. In
contrast to the slow TE wave, the slow quasi-TEM wave has
the lower limiting frequency that is f||. Thus, for the longi-
tudinal bias field orientation, we also have a good agreement
between the results of the analytical theory and the numerical
simulation.

At the next step, we considered the FM metamaterial con-
sisting of the periodic array of metal wires incorporated in the
FM host. The conductivity of the wires was chosen to be ap-
proximately equal to the conductivity of silver. The dispersion
curves of the EMWs obtained using MaxLLG software for
the infinite FM metamaterial placed in the bias field directed
along or perpendicularly to the metal wires are presented in
Fig. 7(b) and Fig. 7(d), respectively. In Fig. 7(b), the nu-
merical results are compared with the analytical calculations
made using Eqs. (3), (5), (21), and (22). When the wire array
is embedded into the transversely magnetized FM host [see
Fig. 7(b)], the frequency band of the slow FEMW is narrowed
due to it has a cutoff frequency that is practically equal to
the frequency fε1 calculated from the analytical theory [see an
insert in Fig. 7(b)]. The cutoff frequency of the fast EMW is
shifted toward higher frequencies and is equal to the frequency
fε2 (see Fig. 3). In addition, the slow BEMW appears in
the frequency range between the plasma frequency fp (the
limiting frequency) and the FM antiresonance frequency far
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FIG. 7. The dispersion curves of TE [(a) and (b)] and quasi-
TEM [(c) and (d)] EMWs existing in transversely [(a) and (b)] and
longitudinally [(c) and (d)] magnetized infinite FM [(a) and (c)]
and FM metamaterial [(b) and (d)]. The dispersion curves were
simulated using the MaxLLG software (yellow lines), obtained on
the base of Eqs. (3) and (11a) (dashed red lines) and calculated
using the Dewar’s analytical theory (solid red lines). In (b), the
insert demonstrates an enlarged fragment of the FEMW dispersion
curve in the range of small values of k. The calculations were
made for H0 = 795.8 A/m, M0 = 0.014 T, εr = 16, r1 = 100 µm,
r2 = 300 µm, T = 2 mm, and σ = 108 S/m.

(the cutoff frequency), where effective material parameters
have negative values simultaneously (see Fig. 3). The discrep-
ancy between the analytical and numerical results does not
exceed 4% at the cutoff frequencies. Besides, the dispersion
characteristic of the backward wave obtained by the use of
numerical simulation contains the recurring regions due to
the wave scattering from the periodic structure. This state-
ment can be confirmed by the calculation of the first Bragg
resonance wave number (kB1 = πm/T , where m = 1) that has
a value kB1/(2π ) = 2.5 cm−1. It is seen that the dispersion
curve of the backward wave obtained from the analytical
theory lacks these resonances due to the effective medium
approximation.

According to the results shown in Fig. 7(d), the back-
ward wave is not observed, when the bias field is codirected
with the wave vector of the quasi-TEM EMW. In this
case, the polarization of charges along the wires is dis-
rupted due to the polarization of charges across the wires,
induced by the transverse component of the electric field.
Moreover, the upper branch of the fast quasi-TEM EMW
is shifted to the lower frequencies and its cutoff frequency
lies just under the frequency of far. Thus, the numer-
ical simulation goes to prove that the backward wave
exists only in the transversely magnetized infinite FM
metamaterial.

FIG. 8. The dispersion curves of EMWs existing in normally
[(a) and (b)] and longitudinally [(c) and (d)] magnetized FM meta-
material layer. The curves were obtained for various values of
thickness d: 1.1 cm [(a) and (c)], 1.5 mm (b), and 5 mm (d). The
EMW dispersion curves were simulated using the MaxLLG soft-
ware (yellow lines) and obtained from the approximate analytical
theory (red lines). The calculations were made for H0 = 795.8 A/m,
M0 = 0.014 T, εr = 16, r1 = 100 µm, r2 = 300 µm, T = 2 mm, and
σ = 108 S/m.

B. A layer of ferromagnetic metamaterial with metal or
semiconductor wire inclusions placed inside a parallel

plate waveguide

Here we demonstrate the results of numerical simulation of
the spectrum of EMWs existing in a FM metamaterial layer
for two bias field orientations. The FM metamaterial layer is
placed between two ideally conductive metallic planes. Such
structure configuration corresponds to a microstrip waveguide
filled with FM metamaterial. From the analytical model sug-
gested for the normally magnetized FM metamaterial layer,
it follows that all three electric components of the electro-
magnetic field are nonzero in thick layers. In contrast to
this, in thin films only one electric component exists and it
is transversely orientated to the wires [see Eq. (7)]. Analog
situation is observed for the longitudinally magnetized FM
metamaterial layer [see Eq. (14)]. Further, we will show that
the contact of conductive wires with metallic planes provides
the presence of the BEMW in both thick and thin normally
magnetized FM metamaterial layers. In longitudinally mag-
netized FM metamaterial layers, the BEMW will be observed
only in relatively thin layers.

The simulated dispersion curves of EMWs existing in the
normally magnetized FM metamaterial layer with various val-
ues of thickness are shown in Figs. 8(a) and 8(b). It can be
seen that the BEMW is observed both in thick [see Fig. 8(a)]
and in relatively thin [see Fig. 8(b)] FM metamaterial layers.
In both cases, the electric field component directed along the
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wires (ey) is large enough to allow current to flow along the
wires.

Comparing the dispersion curves of EMWs existing in the
infinite and limited FM metamaterials, it is clear that the
cutoff frequency of the fast EMW shifts to higher frequencies,
beyond the considered range, and the cutoff frequency of
the slow BEMW shifts to lower frequencies and tends to its
limiting frequency with a decrease of the layer thickness. We
also compared the results of numerical simulations with the
results, obtained within the framework of the approximate
analytical theory, and established the limit of its applicability.
The approximate analytical theory results demonstrate a good
agreement with the numerical simulation ones only for rela-
tively thick normally magnetized FM metamaterial layers of
d > 1 cm [see Fig. 8(a)]. For thinner FM metamaterial layers,
the discrepancy is increased [see Fig. 8(b)], because one of the
electric components (ex) directed transversely to the wires is
increased [see Eq. (7)].

However, the most intriguing results are shown in
Figs. 8(c) and 8(d) for a strip waveguide filled with the lon-
gitudinally magnetized FM metamaterial layer. As analytic
theory suggested, the BEMW does not exist in the longitu-
dinally magnetized infinite FM metamaterial [see Fig. 7(d)].
As shown in Fig. 8(c), the similar situation is observed also
in the relatively thick FM metamaterial layers, when d >

1 cm. In this case, only multimode spectrum of slow vol-
ume EMWs exists in the frequency interval of f|| < f <

f⊥. However, if a layer thickness satisfies approximately the
following conditions: d/2 ∼= T = λB1/2 (where λB1 is a wave-
length corresponding to the first Bragg resonance), then the
BEMW appears in the frequency interval of f⊥ < f < far,
where μeff||1 < 0. The dispersion curve of the BEMW also
contains the recurring regions for the wave numbers satisfying
the Bragg condition [see Fig. 8(d)] and occupies the whole
frequency interval of f⊥ < f < far. It indicates that the εeff

is negative throughout this range in contrast to the normal
magnetization case.

For both values of thickness of the longitudinally magne-
tized FM metamaterial layer, the electric field component ey

directed along the wires is much less than the electric field
component ex directed transversely to the wires. We suggest
that the ey component can create the effective electric current
along the wires only when the electric field lines from the
adjacent wires are closed on each other. Such situation will
be realized when the condition d/2 ∼= T is met. As a result,
the BEMW appears.

In Figs. 9(a) and 9(c), we demonstrate the presence of
the BEMW even in thin FM metamaterial films, when only
one electric field component, perpendicular to the wires, is
predicted by the magnetostatic approximation for two bias
field orientations [see Eqs. (7) and (14)]. It can be seen that
the BEMW exists at both bias filed orientations in the same
frequency range, where both effective material parameters of
the FM metamaterial are negative. The dispersion curves of
this wave are narrower for both magnetization cases com-
pared to the ones existing in thicker FM metamaterial layers
considered previously [see Figs. 8(b) and 8(d)]. However, the
bandwidth of the BEMW is wider for the longitudinal mag-
netization case in comparison with the normal magnetization
case. Besides the BEMW, the BVMSWs are also observed in

FIG. 9. The dispersion curves of EMWs existing in normally
[(a) and (b)] and longitudinally [(c) and (d)] magnetized and met-
allized on both sides thin-film FM metamaterial. The curves were
obtained for two types of wire connections with metallic planes. In
(a) and (c), the wires are in a direct contact with the metallic planes.
In (b) and (d), the wires are separated from the metallic planes by
the gaps of a width l = 100 µm. The EMW dispersion curves were
simulated using the MaxLLG sofware (yellow lines) and obtained in
the magnetostatic approximation (dashed red lines). The calculations
were made for H0 = 795.8 A/m, M0 = 0.014 T, εr = 16, r1 = 100
µm, r2 = 300 µm, T = 2 mm, d = 0.5 mm, and σ = 108 S/m.

the longitudinally magnetized thin-film FM metamaterial but
in the frequency range of f|| < f < f⊥ [see Fig. 9(c)], where
μeff||1 < 0 and εeff > 0. The simulated dispersion curves of
the first three volume modes of the BVMSWs correlate with
the theoretical ones obtained in the magnetostatic approxi-
mation using the DE (8) [see red solid lines in Fig. 9(c)].
Thus, the spectrum of EMWs existing in the longitudinally
magnetized thin-film FM metamaterial contains two types
of the backward waves (BEMW and BVMSWs) located in
different frequency ranges. For the normal bias filed orien-
tation, there is only one type of the backward waves—the
BEMW.

In Figs. 9(b) and 9(d), we also considered the case when
the wires are not connected to metallic planes. Here, as pre-
dicted by the analytical theory, the BEMW does not exist
in the FM metamaterial layers at the any types of bias field
orientation.

As well as the wire connection with metallic plates, the
wire’s conductivity also affects plasmonic features. Here we
consider the wires with two values of the conductivity (ex-
perimentally this can be achieved using the semiconductors).
One of them corresponds to carbon (graphite) [see Figs. 10(a)
and 10(c)], and the other corresponds to germanium [see
Figs. 10(b) and 10(d)]. From the numerical simulation, it
follows that the BEMW exists for both types of bias field
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FIG. 10. The dispersion curves of EMWs calculated for normally
[(a) and (b)] and longitudinally [(c) and (d)] magnetized thin-film
FM metamaterial with semiconductor wire inclusions placed be-
tween two metallic planes. The semiconductor wire inclusions had
two values of conductivity σ : 104 S/m [(a) and (c)] and 102 S/m
[(b) and (d)]. The calculations were made for H0 = 795.8 A/m,
M0 = 0.014 T, εr = 16, r1 = 100 µm, r2 = 300 µm, T = 2 mm,
d = 0.5 mm, and σ = 108 S/m.

orientation, when the wire conductivity corresponds to
graphite. The BEMW is well observed at small wave-number
values and attenuates at large wave numbers. For the germa-
nium wires, the BEMW is not observed at all.

IV. CONCLUSION

By using the approximate analytical electrodynamic model
of the transversally magnetized FM metamaterial layer with
wire inclusions, we demonstrated that all slow (forward and
backward) waves existing in such structure are the elec-
tromagnetic waves. For the slow FEMW, we established
that the electrical energy predominates away from the FM

resonance frequency, and near this frequency the magnetic
energy predominates. For the slow BEMW, the magnetic
energy predominates away from the plasma frequency, and
near this frequency the electrical energy predominates. By
using the MaxLLG software, we showed that the BEMW
can exist in both the infinite FM metamaterial and the FM
metamaterial layer metallized on both sides. The BEMW
control was realized by the change in the external uniform
magnetic field orientation, the FM metamaterial thickness,
the wire connection to the metallic plates, and the wire con-
ductivity. We established that the BEMW disappears in the
infinite FM metamaterial, when the bias field orientation is
changed from transverse to longitudinal. The BEMW appears
again in the magnetized FM metamaterial layer if the metallic
plates are placed on both sides of the FM metamaterial layer
and the wire inclusions are connected to the metallic plates.
For the normal bias field orientation, the BEMW exists both in
thick and in thin FM metamaterial layers. For the longitudinal
bias field orientation, the BEMW is observed only in relatively
thin layers when the thickness d and the period of wire array
T approximately satisfy the following condition: d/2 ∼= T =
λB1/2. Besides, the BEMW is observed even when the mate-
rial of wire inclusions is a semiconductor—graphite.

The obtained results are of fundamental and applied in-
terest related to the creation of controlled 2D magnetic
metamaterials (metasurfaces) with DNM properties not only
in the microwave but also in the terahertz frequency ranges
[14]. The control of the BEMW existing in such metamate-
rials can be achieved not only by a magnetic field but also
by an electric field [22], which changes the conductivity of
semiconductors. It opens up the possibility of creation of
double control (by magnetic and electric fields) functional
devices based on the antiferromagnetic metamaterials with
semiconductor wire inclusions for the terahertz range.
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