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First-principles study of large gyrotropy in MnBi for infrared thermal photonics
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Nonreciprocal gyrotropic materials have attracted significant interest recently in material physics, nanophoton-
ics, and topological physics. Most of the well-known nonreciprocal materials, however, only show nonreciprocity
under a strong external magnetic field and within a small segment of the electromagnetic spectrum. Here,
through first-principles density-functional theory calculations, we show that due to strong spin-orbit coupling
manganese-bismuth (MnBi) exhibits nonreciprocity without any external magnetic field and a large gyrotropy in
a broadband long-wavelength infrared regime. Further, we design a multilayer structure based on MnBi to obtain
a maximum degree of spin-polarized thermal emission at 7 µm. The connection established here between large
gyrotropy and the spin-polarized thermal emission points to the potential use of MnBi to develop spin-controlled
thermal photonics platforms.
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I. INTRODUCTION

Thermal emission is a ubiquitous physical phenomenon,
since any material heated to a nonzero temperature emits ther-
mal photons. Fundamentally, thermal emission arises from the
fluctuating dipole moments inside the material [1,2]. Applica-
tions of near- and far-field thermal radiation include radiative
cooling [3,4], thermal imaging [5,6], and energy harvesting
[4,7]. In this regard, the search for infrared thermal photonic
materials has gained significant interest. Magneto-optic mate-
rials [8,9], Weyl semimetals [10], topological insulators [11],
and nanophotonic structures [7,12–14] have all been investi-
gated recently to achieve control over the spectrum and the
spin polarization of thermal radiation.

The discovery of materials with strong nonreciprocity at
infrared wavelengths will be useful in building polarized in-
frared light sources for thermal imaging [15], night vision
[16], and infrared chiral spectroscopy [17]. Nonreciprocal
materials provide a pathway to achieve spin-polarized radi-
ation sources [18]. Indium antimonide (InSb) subjected to
an applied magnetic field is one of the most popular non-
reciprocal media [19]. However, for practical applications,
it is important to identify materials that exhibit nonre-
ciprocity without any applied magnetic fields, especially in
the long-wavelength infrared (LWIR) regime. In this pa-
per, we propose manganese-bismuth (MnBi) as a material
platform for spin-polarized thermal photonics, eliminating
the requirement of an external magnetic field to achieve
nonreciprocity.

Manganese-bismuth has attracted significant attention due
to its unique magneto-optic properties [20,21] and large
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magnetocrystalline anisotropy [22]. Most noticeable prop-
erties of MnBi include strong spin-orbit interaction [23],
exceptionally large Kerr rotation [24], high coercivity which
increases with temperature [25], and large uniaxial magnetic
anisotropy [26]. Because of these extraordinary properties,
MnBi has been used to fabricate magneto-optical memory
devices and permanent magnets [26]. Furthermore, a re-
cent study reveals a high anomalous Nernst effect in MnBi
which leads to a high thermopower and high thermoelec-
tric conductivity [27]. Hence, MnBi is a promising platform
for energy harvesting and cooling devices. The Curie tem-
perature of MnBi is Tc = 470 K, significantly higher than
room temperature [28]. Therefore, the material is a room-
temperature permanent magnet [23]. Previous works have
reported the electronic [20,23,29–43] as well as the optical
and magneto-optic properties [20,31,33,35,43]. However, the
nonreciprocity in MnBi for thermal photonics has not yet been
investigated.

In this paper, we show that a strong spin-orbit coupling
(SOC) in MnBi results in a large gyrotropy over a wide range
of the LWIR regime. We perform first-principles density-
functional theory (DFT) calculations to obtain the electronic
and optical properties of MnBi at the zero magnetic field for
its two possible low-temperature phases: the hexagonal phase
and the zinc-blende phase. We attribute the large nonreciproc-
ity of MnBi to the strong SOC originating from the half-filled
3d orbital of the Mn atoms. We employ the nonreciprocal gy-
rotropy of MnBi to design a nanoscale spin-polarized thermal
radiation source based on a multilayer structure. The large
gyrotropy in this material translates into a high degree of
spin polarization of the emitted thermal radiation. Further, our
results suggest that the hexagonal phase of MnBi displays a
higher spin-polarized emissivity at IR wavelengths compared
to its zinc-blende phase.
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II. COMPUTATIONAL DETAILS

A. Methods

The first-principles density-functional theory [44,45] cal-
culations were performed within a projector augmented-wave
[46,47] framework by using the Vienna Ab initio Simulation
Package (VASP) [48]. The generalized gradient approximation
of the Perdew-Burke-Ernzerhof (PBE) [49] functional was
used to evaluate exchange-correlation energy. The conjugate-
gradient algorithm [50] was used for the optimization of the
crystal geometry by calculating forces and stress tensors, and
by considering degrees of freedom in position, cell shape, and
cell volume. Cutoff energy was taken to be at 350 eV for the
expansion of the plane-wave basis for both the hexagonal and
zinc-blende phases. Monkhorst-Pack [51] k-point meshes of
13 × 13 × 8 and 8 × 8 × 8 were used for the sampling of the
Brillouin zone for the hexagonal and zinc-blende phases, re-
spectively. The total energy convergence threshold of 10−6 eV
and Gaussian smearing of 0.05 were used in all the calcula-
tions presented here.

At LWIR, a small variation in photon energy (or frequency)
corresponds to a substantial change in photon wavelength.
Therefore, extremely high grid points are required to explore
the infrared region extensively, which is computationally
expensive. We used a total grid point of 100 000 for the cal-
culation of the dielectric function, which corresponds to 190
data points per 1-eV interval. Additionally, SOC needs to be
included in the calculations, which is responsible for the large
gyrotropy in MnBi in the absence of an applied magnetic field.
This significantly increases the computational cost.

B. Crystal structure

MnBi is known to exhibit two distinct phases: the ferro-
magnetic low-temperature phase (LTP) and the paramagnetic
high-temperature phase (HTP) [23]. Most of the manganese
alloys are antiferromagnetic because of the half-filled 3d
orbitals of Mn; however, in contrast, MnBi is an excep-
tional ferromagnetic material [23]. The transition temperature
from ferro- to paramagnetic, and from para- to ferromagnetic
phases of MnBi were reported to be 628 and 613 K, respec-
tively [52]. The LTP of MnBi is found to crystallize in a
hexagonal structure with the space-group symmetry p63̄/mmc
(No. 194) [23]. The unit cell of hexagonal LTP MnBi con-
tains 2 Mn atoms and 2 Bi atoms as shown in Fig. 1(b).
In the unit cell, the Mn atoms occupy 2a Wyckoff positions
with fractional coordinates (0, 0, 0) and (0, 0, 1

2 ), and the
Bi atoms occupy 2c Wyckoff positions with fractional co-
ordinates ( 1

3 , 2
3 , 1

4 ) and ( 2
3 , 2

3 , 3
4 ). In addition to the stable

low-temperature hexagonal phase, a metastable zinc-blende
phase was also predicted to exist at low temperatures [53].
This zinc-blende phase was predicted to crystallize in a cubic
structure with the space group F 4̄3m (No. 216), and its crystal
structure is the same as the sp-valent octet semiconductors
such as GaAs, InAs, GaSb, InSb, and CdTe [53]. The unit cell
of zinc-blende MnBi contains 4 Mn atoms and 4 Bi atoms
as shown in Fig. 1(c). In the unit cell, the Mn atoms occupy
4a Wyckoff positions with fractional coordinates (0, 0, 0),
(0, 1

2 , 1
2 ), ( 1

2 , 0, 1
2 ), and ( 1

2 , 1
2 , 0), and the Bi atoms occupy

4c Wyckoff positions with fractional coordinates ( 1
4 , 1

4 , 1
4 ),

FIG. 1. (a) The schematic depicts the emission of spin-polarized
thermal radiation originating from the intrinsic fluctuating dipole
moments in a MnBi layer. Spin polarization of the thermal radiation
can be quantified by the nonvanishing Stokes parameter S3. Crystal
structures of the conventional unit cell of the low-temperature phases
of MnBi: (b) Stable hexagonal phase and (c) Metastable cubic zinc-
blende phase.

( 1
4 , 3

4 , 3
4 ), ( 3

4 , 1
4 , 3

4 ), and ( 3
4 , 3

4 , 1
4 ). We calculate the en-

thalpy of formation for both the considered structures. The
calculated formation enthalpies of hexagonal and zinc-blende
phases are −4.3 and −3.7 KJ/mole, respectively. The more
negative value of the formation enthalpy of hexagonal MnBi
suggests that the formation of the hexagonal phase is more
favorable than that of the zinc-blende phase during crystal-
lization process.

C. Calculations of LWIR optical constants

The optical constants of a material can be derived from
its real and imaginary parts of the dielectric function. The
frequency-dependent complex dielectric function of crys-
talline solids is given by

ε(ω) = ε1(ω) + iε2(ω), (1)

where ε1(ω) and ε2(ω) are the real and imaginary parts of
the dielectric function, respectively. In Cartesian coordinates,
Eq. (1) can be expressed as

ε(ω) =
⎛
⎝εxx(ω) εxy(ω) εxz(ω)

εyx(ω) εyy(ω) εyz(ω)
εzx(ω) εzy(ω) εzz(ω)

⎞
⎠. (2)

At LWIR wavelengths, there is a significant contribution
from intraband transitions in addition to interband transi-
tions. Therefore, the dielectric function is a sum of inter- and
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intraband contributions, εinter (ω) and εintra (ω), respectively, given by

ε(ω) = εinter (ω) + εintra (ω). (3)

The interband contribution to the dielectric function can be derived from the first-order time-dependent perturbation theory
[54], and the corresponding expression is given by

εinter
αβ (ω) = 1 − 8πe2

�
lim
q→0
α→0

1

q2

∑
k,v,c

〈
ψc

k+qeα

∣∣eiq·r∣∣ψv
k

〉〈
ψv

k

∣∣e−iq·r∣∣ψc
k+qeβ

〉
(
Ec

k+q − E v
k − h̄ω − ih̄α

) + c.c., (4)

where ω is the phonon frequency, e is the charge of an elec-
tron, � is the volume of a unit cell, q is the photon momentum,
r is the radius vector, and ψc

k+q and ψv
k are the wave func-

tions for conduction- and valence-band electrons, respectively
at a given electron wave vector k. In practice, we evaluate
the imaginary part of the dielectric function numerically and
calculate the real part by using the Kramers-Kronig relation,
given by

εinter
1 (ω) = 1 + 2

π
P

∫ ∞

0

ω′εinter
2 (ω′)dω′

(ω′2 − ω2)
. (5)

Further, a free-electron plasma model is used to calculate
the intraband contributions to the dielectric function, given by

εintra (ω) = 1 − ω2
p

ω(ω + iγ )
, (6)

where the plasma frequency ωp can be obtained from first-
principles calculations. The inverse lifetime γ can have a
value between 0 and 1 eV [55]. The complex optical conduc-
tivity σ (ω) is determined through the relation

σ (ω) = −i
ω

4π
[ε(ω) − 1]. (7)

The hexagonal MnBi crystal has a tetragonal symmetry
with the polar Kerr magnetization geometry. Therefore, both
the fourfold axes and the magnetization are perpendicular to
the surface of the sample, and the z axis is chosen to be parallel
to these. In this case, the dielectric tensor has only three inde-
pendent components (diagonal εxx and εzz, and off-diagonal
εxy) and can be represented as

ε(ω) =
⎛
⎝ εxx εxy 0

−εxy εxx 0
0 0 εzz

⎞
⎠. (8)

Similarly, the conductivity tensor for hexagonal MnBi has
the form [20]

σ (ω) =
⎛
⎝ σxx σxy 0

−σxy σxx 0
0 0 σzz

⎞
⎠. (9)

On the other hand, the zinc-blende MnBi has a cubic crys-
tallographic structure, and its dielectric tensor has only two
independent components (diagonal εxx and off-diagonal εxy)
and can be represented as

ε(ω) =
⎛
⎝ εxx εxy εxy

−εxy εxx εxy

−εxy −εxy εxx

⎞
⎠. (10)

Similarly, the conductivity tensor of zinc-blende MnBi has
two independent components: σxx and σxy.

III. RESULTS AND DISCUSSION

A. Electronic properties

Herein, we present the electronic band structure obtained
using the PBE method including spin polarization and spin-
orbit coupling. We further investigate the total and projected
densities of states (PDOS) to understand the individual atomic
orbital contributions to the total density of states (DOS). In
this work, the Fermi level is always considered at 0 eV. In
Figs. 2(a) and 2(b) we have plotted the spin-polarized elec-
tronic band structure for hexagonal and zinc-blende MnBi,
respectively. It is evident from Fig. 2(a) that the bands for both
up-spin and down-spin electrons cross the Fermi level, signi-
fying that the hexagonal MnBi is metallic for both up- and
down-spin electrons. On the other hand, the spin-polarized
band structure of zinc-blende MnBi [Fig. 2(b)] reveals that
there is a band gap for down-spin electrons, but no band gap
for the up-spin electrons. Therefore, the zinc-blende MnBi is
a half metal [53].

We also investigate the effect of SOC on the band struc-
tures of hexagonal and zinc-blende MnBi shown in Figs. 2(c)
and 2(d), respectively. The inclusion of the SOC signifi-
cantly affects the band structures for both the hexagonal and
zinc-blende phases as a notable deviation is observed in the
evolution of bands when compared to the calculations per-
formed without including SOC. Also, the effect of SOC is
greater for hexagonal MnBi while compared to zinc-blende
MnBi as the band deviation near the Fermi level is more
prominent for the hexagonal phase with the inclusion of SOC.

In Fig. 3, we investigate the total density of states (TDOS)
for both the hexagonal and zinc-blende MnBi. We further
resolve TDOS into PDOS to understand the individual con-
tribution from each specific orbital. Results suggest that the
6p orbital of bismuth has a partial contribution to the valence
band at lower energies (−2 to −1 eV). However, the contri-
bution near the Fermi level is mainly due to the 3d orbital
of the Mn atom. The rest of the orbitals of Mn and Bi have
negligible contributions to the TDOS. The 3d orbital of Mn
has 5 electrons, i.e., the orbital is half filled. Interestingly, the
half- (or, partially) filled d- and f orbital is a major factor for
the observed magnetic properties of a material. Therefore, the
strong SOC in MnBi is due to the half-filled 3d orbital of Mn
as evident from the TDOS at the Fermi level. This strong SOC
coupling in MnBi induces a large off-diagonal component of
the dielectric tensor as shown in the next section.

224307-3



Md ROKNUZZAMAN et al. PHYSICAL REVIEW B 108, 224307 (2023)

FIG. 2. Electronic band structures of hexagonal and zinc-blende phases of MnBi. Spin-polarized band structure for (a) hexagonal and (b)
zinc-blende MnBi. Effect of SOC on the band structure for (c) hexagonal and (d) zinc-blende MnBi. We observe that the inclusion of spin-orbit
coupling leads to significant changes in the band structures for both the hexagonal and zinc-blende phases. The horizontal dashed lines here
represent the band structure obtained with the inclusion of SOC.

B. LWIR nonreciprocal optical properties

In this section, we study the frequency-dependent dielec-
tric function and conductivity characteristics. For a metallic
system like MnBi, the intraband component has a consider-
able contribution to the total dielectric function. Therefore,
we consider both the interband and intraband components to
compute the total dielectric function. Also, Eq. (6) signifies
that the value of inverse lifetime γ is crucial for the calcula-
tion of intraband dielectric function in the low-energy regime,
especially at IR wavelengths. Herein, we treat MnBi as an or-
dinary metallic system and consider the typical experimental

value of γ for metal as 0.1 eV [55], whereas good conductors
like silver and gold have γ of 0.02 and 0.07 eV, respectively
[56,57]. Furthermore, we calculate the full plasma frequency
(ωp) tensor and use this to estimate the intraband contribu-
tions to the dielectric function. The calculated values of ωp

for hexagonal MnBi are 1.66, 3.79, and 4.42 eV for tensor
elements xy, xx, and zz, respectively. On the other hand, the
calculated values of ωp for zinc-blende MnBi are found to be
1.65 and 3.98 eV for xy and xx, respectively.

The calculated imaginary and real parts of the dielectric
function are plotted in Fig. 4 for infrared and visible regions

FIG. 3. The calculated total and projected density of states for (a) hexagonal and (b) zinc-blende MnBi. It is found from the projected
density of states that the 3d orbital of Mn is the major contributor to the total DOS at the Fermi level. Also, the projected densities of states for
Mn 4s, Bi 6s, and Bi 6p at around the Fermi level are nearly zero. Hence, the strong SOC found in MnBi is due to half-filled 3d orbital of the
Mn atom.
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FIG. 4. LWIR dielectric function for hexagonal and zinc-blende phases of MnBi. (a) Independent components of the imaginary part of
the dielectric tensor due to off-diagonal and diagonal elements. (b) Independent components of the real part of the dielectric tensor due to
off-diagonal and diagonal elements.

(inset) of the electromagnetic spectra. We consider a wide
spectrum of wavelengths varying from 5 to 20 µm to cap-
ture the optical properties in the technologically important
LWIR regime. The off-diagonal and the diagonal components
of the imaginary part of the dielectric function for both the
hexagonal and zinc-blende MnBi are presented in Fig. 4(a).
At 5 µm, Im(εxy) has a value of ∼ 40 for both structures,
and the value is seen to increase gradually with increasing
wavelength. The value of Im(εxy) at 20 µm is as high as ∼ 400
for the hexagonal phase. On the other hand, at 20 µm, Im(εxx )
for hexagonal and zinc-blende phases are ∼ 2000 and ∼ 2400,
respectively, and Im(εzz ) for the hexagonal phase is ∼ 2400.
Therefore, for the imaginary part of the dielectric function, the
off-diagonal component is 5 to 6 times smaller than the di-
agonal components at higher wavelengths. Moreover, Im(εxy)
is higher for the hexagonal phase than the zinc-blende phase
for the entire range of considered IR wavelengths. However,
Im(εxy) for zinc-blende MnBi is found to be higher than that
of the hexagonal phase for visible wavelengths.

The off-diagonal and the diagonal components of the real
part of the dielectric function are investigated and plotted in
Fig. 4(b). At low energy, both the off-diagonal and diagonal
components of the real dielectric function have negative val-
ues, signifying the considerable contributions from intraband
transitions at LWIR. The Re(εxy) is more negative for the
hexagonal phase while compared to that of the zinc-blende
phase in the IR regime. However, Re(εxx ) is less negative
in the hexagonal phase. Overall, our calculations reveal that
the imaginary off-diagonal dielectric function of MnBi has
a significant value compared to its real part, especially at
IR wavelengths. This leads to a large gyrotropy without any
applied magnetic field, which is extremely useful for thermal
spin photonics. We note that the origin of the large off-
diagonal components of the dielectric function of MnBi in the
LWIR regime is due to SOC induced by the 3d orbital of the
Mn atom.

We further calculate the full optical conductivity tensor
for both the hexagonal and zinc-blende phases of MnBi. The

calculated independent components of the real and imaginary
parts of the conductivity tensors for the incident IR and visible
region are presented in Fig. 5. Like the imaginary dielectric
function, the off-diagonal real part of the conductivity has sig-
nificant values at IR wavelengths. Also, the off-diagonal real
part of the conductivity of the hexagonal phase is higher than
that of the zinc-blende phase. Overall, both the off-diagonal
and diagonal components of the real part of the conductivity
increase with increasing wavelength. On the other hand, the
imaginary part of the conductivity is observed to have a small
variation over the considered IR range.

C. Gyrotropy and infrared thermal photonics

The gyrotropy of a material is defined as the ratio of
|Im(εxy)| and |Re(εxx )|, given by

g = |Im(εxy)|
|Re(εxx )| . (11)

In Figs. 6(a) and 6(b), we plot the gyrotropy for the
hexagonal and zinc-blende phases of MnBi as a function of
wavelength in the LWIR regime. We observe that the hexag-
onal phase of MnBi displays higher gyrotropy compared to
that of the zinc-blende phase. In the next section, we employ
the gyrotropy of MnBi in the IR region and show its potential
application in realizing a nanoscale spin-polarized radiation
source.

We consider a semi-infinite half space of multilayer design
of MnBi at temperature T = 300 K emitting thermal radiation
into the vacuum half space (environment) at T0 = 0 K. We
evaluate the thermal emission in spherical coordinates (θ, φ).
The thermal radiation power emitted per unit wavelength dλ

per unit solid angle d� per unit surface area dA for a given
polarization state ê is given by

Prad(θ, φ, λ, ê)

= η(θ, φ, λ, ê)
Ibb(λ, T )

2
cos(θ )dλd�dA, (12)
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FIG. 5. LWIR optical conductivity of hexagonal and zinc-blende phases of MnBi. (a) Independent components of the real part of the
conductivity tensor due to off-diagonal and diagonal parts. (b) Independent components of the imaginary part of the dielectric tensor due to
off-diagonal and diagonal parts.

where η is the dimensionless emissivity � [0, 1], Ibb(λ, T ) =
2hc2

λ5
1

ehc/(λkBT )−1 is the Planck distribution function for a black-
body at temperature T , h is the Planck constant, and kB

is the Boltzmann constant. A factor of 2 in the denomina-
tor of Eq. (12) accounts for the two orthogonal polarization
states.

Equation (12) for Prad(θ, φ, λ, ê) has been derived within
the radiometry framework using a detailed balance of en-
ergy and momenta or within the scattering formulation of
fluctuational electrodynamics [2]. Since we are interested in
the spin polarization of light, we calculate the polarization-
dependent emissivity in the eigenbasis of right circularly
polarized (RCP) and left circularly polarized (LCP) states. We
can define the degree of circular polarization, i.e., the third
Stokes parameters, for the thermal emission as

S3(θ, φ, λ) = η(+) − η(−)

η(+) + η(−)
, (13)

where η(±) denotes the emissivity of RCP and LCP, re-
spectively. For a planar geometry, the emission direction for
thermal radiation is given by the angles θ and φ for the
propagation wave vector k̂. Eigenvectors of the associated
transverse electric (s), and transverse magnetic (p) polariza-
tion for the plane of incidence spanned by k̂ and ẑ (normal to
the slab surface) are given by

k̂ =

⎡
⎢⎣

sin θ cos φ

sin θ sin φ

cos θ

⎤
⎥⎦, ês =

⎡
⎢⎣

+ sin φ

− cos φ

0

⎤
⎥⎦,

êp = ês × k̂ =

⎡
⎢⎣

− cos θ cos φ

− cos θ sin φ

sin θ

⎤
⎥⎦. (14)

The RCP and LCP eigenvector corresponds to ês ± iêp,
respectively. Hence, the spin angular momentum for a photon

along the propagation direction is ±h̄ for RCP and LCP,
respectively. The emissivity of RCP and LCP photons in terms
of reflectance is given by

η(+)(ω, θ, φ) = 1 − R(++)(ω, θ, φ + π )

− R(+−)(ω, θ, φ + π ),

η(−)(ω, θ, φ) = 1 − R(−−)(ω, θ, φ + π )

− R(−+)(ω, θ, φ + π ), (15)

where R(i j)(ω, θ, φ) for i, j ∈ {+, −} denotes the polar-
ization interconversion reflectance for the light of angular
frequency ω incident in the direction characterized by the
angles (θ, φ). These reflectance coefficients depend on the
associated Fresnel reflection coefficients in ês, êp basis and
given by

R(++/−−) = |(rss + rpp) ± i(rsp − rps)|2/4,

R(−+/+−) = |(rss − rpp) ± i(rsp + rps)|2/4, (16)

where r jk (ω, θ, φ) denotes the amplitude of j-polarized re-
flected light due to incident k-polarized light of unit amplitude
with frequency ω, and for brevity we have omitted (ω, θ, φ)
dependence on either side of the expression. These reflec-
tion coefficients can be evaluated by solving the boundary
conditions. Numerical codes to obtain these coefficients for
a general bianisotropic media are made available on GitHub
[58].

In Fig. 6, we plot the emissivity of RCP and LCP, and the
Stokes parameter S3 as a function of LWIR wavelength in two
designs of stratified materials. Both designs utilize a thin layer
of MnBi to generate circularly polarized thermal emission.
We optimize the design to ensure the emissivity and S3 has a
center around λ = 7 µm. LWIR optical properties in MnBi are
dominated by intraband contributions. The Ge layer between
reflective metallic MnBi and Ag on its two sides acts as a
Fabry-Perot cavity, which resonantly enhances the strength
of nonreciprocity. Hence, we design a sandwiched structure
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FIG. 6. The gyrotropy ratio calculated from the DFT calculations, and the simulated circularly polarized (CP) thermal emission for
hexagonal and zinc-blende MnBi in the LWIR regime. Gyrotropy of (a) hexagonal and (b) zinc-blende MnBi. Emissivity for right circularly
polarized (RCP) denoted as η(+) and left circularly polarized (LCP) denoted as η(−) as well as Stokes parameter (S3) for (c), (e) hexagonal and
(d), (f) zinc-blende MnBi for two different device geometries. Observed asymmetry in η(+) and η(−) translates into a spin-polarized thermal
emission in MnBi with maximum spin polarization at 7 µm.

of thin-layer MnBi with Ag to enhance S3. For both hexag-
onal MnBi and zinc-blende MnBi, our calculations provide
the connection between strong gyrotropy and large degree of
circularly polarized (CP) thermal radiation. For MnBi thin
film on top of a Ge sandwich layer, grown on a Ag substrate,
we observe that S3 can be tuned to reach 0.2 at 7 µm. Hence,
the large gyrotropy of MnBi can be employed to design a
nanoscale spin radiation source for LWIR applications.

IV. CONCLUSIONS

In summary, a first-principles DFT study has been per-
formed to investigate the electronic and LWIR optical
properties of MnBi at zero magnetic field. Strong spin-orbit
coupling in MnBi induces a large gyrotropy even in the ab-
sence of an external magnetic field. We observed that the SOC
in MnBi is due to the half-filled 3d orbital of Mn atoms.
Furthermore, the thermal emission in MnBi for a multilayer
design has been studied for right circularly polarized and left

circularly polarized photon emission. A significant degree of
spin polarization of the emissivity is observed due to the large
gyrotropy of MnBi. The given result suggests that hexagonal
MnBi has a better performance for spin-polarized emissivity
at LWIR compared to zinc-blende MnBi. Hence, hexagonal
MnBi is potentially a technologically important candidate to
form a spin-polarized radiation source for several infrared
thermal photonics applications.
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