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Quantifying operator spreading and chaos in Krylov subspaces with quantum state reconstruction
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We study operator spreading in many-body quantum systems by its potential to generate an informationally
complete measurement record in quantum tomography. We adopt continuous weak measurement tomography

for this purpose. We generate the measurement record as a series of expectation values of an observable evolving
under the desired dynamics, which can show a transition from integrability to complete chaos. We find that
the amount of operator spreading, as quantified by the fidelity in quantum tomography, increases with the
degree of chaos in the system. We also observe a remarkable increase in information gain when the dynamics

transitions from integrable to nonintegrable. We find our approach in quantifying operator spreading is a more
consistent indicator of quantum chaos than Krylov complexity as the latter may correlate/anticorrelate or show
no explicit behavior with the level of chaos in the dynamics. We support our argument through various metrics of
information gain for two models: the Ising spin chain with a tilted magnetic field and the Heisenberg XXZ spin
chain with an integrability-breaking field. Our paper gives an operational interpretation for operator spreading in

quantum chaos.
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I. INTRODUCTION

Operator spreading characterizes a process in which the
Heisenberg evolution of a local operator under the dynam-
ics of a many-body Hamiltonian extends over the entire
system [1]. The operator spreading also serves as a probe
for scrambling of quantum information that is inaccessible
to local measurements. Once the information is scrambled,
the information is now delocalized over the entire operator
space in complex observables. Thus, operator spreading is
also connected to the understanding of the questions of chaos,
nonintegrability, and thermalization in many-body quantum
systems [2—7]. Intense research has been directed towards
the study of operator spreading in various fields such as
black hole physics [8—12], holography [13], integrable sys-
tems [14—16], random unitary circuits [17-20], quantum field
theories [21-24], and chaotic spin-chains [25-28].

Quantum chaos is the study of signatures of classi-
cal chaos in quantum systems whose classical counterpart
is chaotic. For many quantum systems, operator spreading
is a reliable indicator of chaos in the dynamics [29,30].
One can quantify the spreading of the operator through
out-of-time-ordered correlators (OTOCs) [31,31-37], opera-
tor entanglement [38—41], memory matrix formalism [42],
or Krylov complexity [43-54]. OTOCs, which measure the
incompatibility between a stationary operator and another
operator evolving with time in the Heisenberg picture, have
been studied extensively to witness operator growth. How-
ever, measuring OTOC:s in the laboratory is challenging even
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with state-of-the-art experimental techniques, which require
backward evolution in time, that is, the ability to completely
reverse the Hamiltonian [55-67]. Recently, certain protocols
have been discussed where one can avoid the problem of
backward time evolution [68—70]. Furthermore, the Krylov
complexity, another quantifier of operator spreading, is com-
puted when the operator at a given time is expressed in
an orthonormal sequence of operators generated from the
Lanczos algorithm. The Liouvillian superoperator of a time-
independent Hamiltonian is repeatedly applied on the initial
operator to construct the Krylov basis. In the Appendices, we
have detailed the procedure for obtaining Krylov subspace in
the Lanczos algorithm and quantifying Krylov complexity.
Nevertheless, the saturation value of the Krylov complexity
depends on the choice of initial observable. Also, the ini-
tial growth of Krylov complexity has been observed to be
exponential for certain nonchaotic dynamics [47,50]. Thus,
the Krylov complexity does not serve as an unambiguous
indicator of chaos.

In this paper, we take an alternate route and quantify opera-
tor spreading through the performance of a concrete quantum
information processing task quantum tomography. How
does the system dynamics drive operator complexity, which
affects the information gain in quantum tomography? We
answer the above question by quantifying operator spreading
in integrable, nonintegrable, and chaotic many-body systems
via their ability to generate an optimal measurement record
for quantum tomography. Intuitively, an evolution of a fiducial
operator with a single random unitary will lead to maximal
operator spreading over the entire operator space [71,72]. The
Krylov subspace for operators is generated by repeated appli-
cation of a map to an initial operator. Thus, such a random
unitary evolution will also saturate the maximum possible
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FIG. 1. An illustration of operator spreading in the Hilbert space of operators H. The initial operator O evolves under the system
dynamics and generates a set of operators that spans the subspace .A. The dimension of the subspace is more as the dynamics becomes
nonintegrable and finally chaotic. However, fully chaotic dynamics helps to span the largest subspace possible with dim(A) = d*> —d + 1. In
this paper, we quantify the operator spreading through the rate of information gain in quantum tomography with certain information-theoretic
quantifiers like average reconstruction fidelity (F), Shannon entropy S,, Fisher information 7, and rank of covariance matrix R.

dimension of the Krylov subspace. In our paper, the oper-
ators of Krylov subspace obtained from an initial operator
upon time evolution have a simple interpretation. These are
elements in the operator Hilbert space that will be measured
in tomography. How many of these directions and with what
signal-to-noise ratio they are measured as the dynamics be-
comes nonintegrable and increasingly chaotic will give an
operational and physically motivated way to quantify operator
spreading as illustrated in Fig. 1.

The Lyapunov exponents quantify the rapid divergence
rate of neighboring trajectories in a classically chaotic sys-
tem. The quantum counterpart of these diverging trajectories
is the growth of incompatibility of operators as quantified
by the OTOCs, which give the quantum Lyapunov exponents
of the dynamics. Therefore, we unify the connections between
information gain, scrambling, and chaos through an actual
physical process.

A connection between tomography, which is about infor-
mation gain of an unknown state, and chaos, which represents
unpredictability, seem to be at odds with each other. How-
ever, a deeper analysis reveals fundamental connections.
Classically chaotic systems show exponential sensitivity to
perturbations of the initial conditions, as measured by the
Kolmogorov-Sinai (KS) entropy [73] which is equal to the
sum of positive Lyapunov exponents of the system. On the flip
side, KS entropy also measures the rate at which successive
measurements on a classically chaotic system provide infor-
mation about the initial condition. The missing information
in deterministic chaos is the initial condition. A time history
of a trajectory at discrete times is an archive of information
about the initial conditions, given perfect knowledge about
the dynamics. Moreover, if the dynamics is chaotic the rate
at which we learn information increases is given by the KS
entropy. This is precisely analogous to quantum tomography,
where the missing information is the unknown initial state of
the quantum system.

In this paper, we consider the dynamics of the 1D Ising
model with a tilted magnetic field [74-78], and the 1D
anisotropic Heisenberg XXZ model with an integrability-
breaking field [6,79-87] to study the growth of operator

spreading and its connection to chaos in quantum tomography.
They manifest a range of behavior from integrable to fully
chaotic. The Hamiltonian of the Ising model with either a
time-independent tilted field or a time-dependent delta-kicked
tilted field shows integrable to chaos transition, and we ex-
plore both models for our tomography process.

This paper is organized as follows. Section II briefly re-
views the continuous measurement tomography protocol. We
then describe both the models we have considered in this
paper: the Ising model with a tilted magnetic field and the
Heisenberg XXZ model with an integrability-breaking field.
In Sec. III, the heart of the paper, we quantify the operator
spreading using various information-theoretic quantifiers by
connecting it to the rate of information gain in tomography
for both models. We also show that our quantifiers for operator
spreading are independent of the choice of the initial operator
and act as an unambiguous way of measuring chaos, unlike
Krylov complexity. We conclude in Sec. IV with a summary
and some final remarks.

II. BACKGROUND

A. Continuous weak measurement tomography

Quantum state tomography uses the statistics of mea-
surement records on an ensemble of identical systems to
best estimate an unknown quantum state py [88,89]. Strong
projective measurements of an informationally complete set
of observables have traditionally been used to extract in-
formation for state reconstruction. It is a time-consuming
and tedious procedure when applied to systems of large di-
mensions. Also, one needs to reprepare the ensemble and
reconfigure the measurement apparatus after each measure-
ment in certain experimental settings [90]. On the other hand,
weak measurements help in reducing the amount of resources
required for the reconstruction process, as they cause minimal
disturbance to the state. In this paper, we are interested in con-
tinuous weak measurement tomography [71,72,90-97]. Over
a period of time, one can generate an informationally com-
plete set of measurement records by continuously probing an
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ensemble of identically prepared, collectively and coherently
evolved systems.

A time series of operators is generated by evolving a phys-
ical observable under the dynamics of a many-body system in
the Heisenberg picture. We exploit this choice of dynamics for
time evolution and explore operator spreading across the en-
tire system or in the Hilbert space of operators. An ensemble
of Ny identical systems undergo separable time evolution by
a unitary U (), where all the systems of the ensemble evolve
independently under the chosen dynamics. In our paper, we
consider an ensemble of systems consisting of N; number
of identical tilted field Ising spin chains or Heisenberg XXZ
models. The collective observable Y O is a sum of single
system operators, which is being evolved under the collective
dynamics and probed. We use O, a single system operator, for
all our calculations since all the systems evolve independently
under the chosen dynamics. We generate the measurement
record from weak continuous measurement of an observable
O through a probe coupled to the ensemble of identical sys-
tems. For sufficiently weak coupling, the randomness of the
measurement outcomes is dominated by the quantum noise
(shot noise) in the probe rather than the quantum fluctuations
of measurement outcomes intrinsic to the state (known as pro-
jection noise). In such a case, the backaction on the quantum
state is negligible throughout the measurement, and the state
of the ensemble remains approximately separable. We can
write the measurement record as

M(t) = X(t)/N; = Tr[O@)pol + W (1), ey

where W (¢) is a Gaussian white noise with spread o /N;, and
O(t) = UT(t)OU (1) is the time evolved operator in Heisen-
berg picture.

A generalized Bloch vector r describes any arbitrary den-
sity matrix of Hilbert-space dimension dim(?) = d, when
expressed in an orthonormal basis of d> — 1 traceless Hermi-
tian operators {E,} as po = 1/d + 252:’11 roEy. We consider
the measurement record at discrete times as M, = M(t,) =
Tr(O,p0) + W,, which allows one to express the measurement
history as

M=0r+W, 2

where O,, = Tr (O,E,). In the negligible backaction limit,
the probability distribution associated with measurement his-
tory M for a given state vector r is Gaussian with spread o
[90,91],

2
Ny > Y0
p(M]r) o exp 52 : |:Mi— A (’)iaraj|

N2
cc exp { - 2(;2 D o —ru)e Cyf (r — I‘ML)ﬁ},
a.fp
3

where C~! = (OT O) is the inverse of the covariance matrix
and the inverse is Moore-Penrose pseudoinverse [98], in gen-
eral. The peak of the distribution is the maximum likelihood
estimate ryy, of the unknown Bloch vector parameters {r,},

oaagoons

FIG. 2. Many-body system of spins with nearest-neighbor inter-
action. One can drive the system from integrable to fully chaotic
by tailoring the strength of integrability-breaking fields applied at
suitable sites in certain directions.

which is equal to the least-squares fit as given by
v = COTM. 4)

In the presence of measurement noise, or when the mea-
surement record is incomplete, the estimated Bloch vector ryy,
may represent an unphysical density matrix oy with negative
eigenvalues. Therefore, we impose the positivity constraint
on the reconstructed density matrix and obtain the physical
state closest to the maximum likelihood estimate, which is the
most consistent with our measured data. We employ a convex
optimization procedure [99], a semidefinite program to obtain
the final estimate of the Bloch vector ¥ by minimizing the
argument

Irme — B> = (epe — £)7C™Hry — F) ®)

subject to the constraint

1/d + 245 7E, > 0.

The performance of the quantum state tomography protocol is
quantified by the fidelity of the reconstructed state p relative
to the actual state |vy), F = (V¥o|p|¥o) as a function of time.
The reconstruction fidelity F depends on the informational
completeness of the measurement record [71,72,94] and the
choice of observables and quantum states [96], as well as the
presence of noise in the measurement outcomes [97].

B. Models

We consider two different many-body quantum systems as
spin chains as shown in Fig. 2.

1. Ising spin chain with a tilted magnetic field

The Hamiltonian of the tilted field Kicked Ising model
consists of the nearest-neighbor Ising interaction term, and the
system is periodically kicked with a spatially homogenous but
arbitrarily oriented magnetic field [74-76]. The Hamiltonian
for tilted field kicked Ising model for L spins is given by

L
Hrxp = Z {Ja;o;H + (h.0} + ho7) Z 8@t — n)}, (6)

J=1

where o¢ are the Pauli spin matrices with @ = x, y, z. This
Hamiltonian has three parameters: the Ising coupling J, the
transverse magnetic field strength £,, and the longitudinal
magnetic field strength £,. The Floquet map for the tilted field
kicked Ising model for a time period of T = 1 is

Urkr = e VX005 i (hoj+hof) 7
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We consider the free boundary condition for the model.
The model is integrable when either 4, or h, is zero. The
Hamiltonian Hrg; is integrable for h, = 0 because of the
Jordan-Wigner transformation. There is another nontrivial
completely integrable regime found in the tilted field kicked
Ising model when the magnitude of the magnetic field is an
integer multiple of /2, i.e., h=/h+h?=nn/2,neZ
[74]. Nevertheless, the model is nonintegrable in a general
case of a tilted magnetic field when both the components 7,
and h, are non-vanishing, and 24/7 is non-integer. We fix the
Ising coupling strength J = 1, the transverse magnetic field
strength A, = 1.4, and vary the longitudinal magnetic field
strength &, to tune the nonintegrability of the dynamics. As we
increase the value of A, the system becomes nonintegrable.
Thus, for i, = 0.4, the system is weakly nonintegrable and
will become strongly nonintegrable for i, = 1.4, i.e., when
the strengths of longitudinal and transverse fields become
comparable.

Interestingly, time dependence is not necessary for making
the dynamics nonintegrable. The tilted field Ising model is
nonintegrable for nonzero values of 4, even though there are
no delta kicks [78]. Here, the system is strongly nonintegrable
for a small value of h, even when h, and h, are not of
comparable strength [77]. Thus, we choose A, = 0.1 for the
system to be weakly nonintegrable, and for a higher value
of h,, it will obey the random matrix theory predictions. The
Hamiltonian for the tilted field Ising model without delta kicks
can be expressed as

L
Hr; = Z {JO';O';+1 + hzof + hxo;-‘}. ®)
j=1

Hy; is a time-independent Hamiltonian, so the time evolution
unitary operator for this model for time ¢ is given by

Urit) =e " X {J”.§”f+l+hzgf+hv*”}r}_ 9

For our current paper, we explore time-dependent and
time-independent models to relate the information gain in
tomography to the operator spreading and compare them with
random matrix theory.

2. Heisenberg XXZ spin chain with an integrability-breaking field

The 1D anisotropic Heisenberg XXZ spin chain is an inte-
grable model with nearest-neighbor interaction, which can be
proved by Bethe ansatz [100,101]. The Hamiltonian for the
Heisenberg XXZ spin chain is

L

JX' X X 4 ‘I
Hyxz = Tv{ajaj+1 +ojol, )+ fafafﬂ, (10)
=1

where s =1/207. There are various ways in which we
can make the XXZ model nonintegrable. One can in-
troduce a single magnetic impurity at one of the sites
[51,79,81,82,86,87], a global staggered transverse field [85]
or next-to-nearest-neighbor interaction [51,83,84] to make the
dynamics nonintegrable. In this paper, we consider the single
magnetic impurity at one of the sites and explore the operator
spreading with an increase in the integrability-breaking field
strength. The Hamiltonian for this nonintegrable Heisenberg

model is

8
Hyni = Hxxz + EHsiy (1)

where the integrability-breaking field with strength g is H; =
of, for site j =1[. For our analysis, we consider J,, =1,
J.; = 1.1, and vary the strength of the integrability-breaking
field g as the chaoticity parameter. While changing the value
of g from 0 to 1, the fully integrable XXZ model becomes
chaotic, which is clear from the level statistics and other
properties [51,79]. The time evolution unitary for time ¢ for
this nonintegrable time-independent Hamiltonian is

Ugng = e~ it Hxxz+8/2H5i) (12)

The XXZ model with periodic boundary condition re-
spects many symmetries, including translation symmetry in
the space because of conservation of linear momentum [102],
and we can find many degenerate states [79]. Thus, we choose
the free boundary condition for the XXZ model. For a spin
chain with a very large number of spins, the boundary con-
ditions have no effects, but for numerical calculations, we
have to take a finite number of spins. However, even in the
deep quantum regime, we can still witness integrability to
chaos transition. The Hamiltonian has a reflection symmetry
about the center of the chain if a single impurity is placed
at the center of the chain. The Hamiltonian Hyy; commutes
with the total spin along z direction S, = %Z?:I aj? which
makes the system invariant under rotation around the z axis
[102].

III. INFORMATION GAIN AS A PARADIGM: OPERATOR
COMPLEXITY, NONINTEGRABILITY, AND CHAOS

In this section, we come to the central question we ask:
What are the consequences of operator spreading in quantum
information theory? We use continuous weak measurement
tomography as a paradigm to study the operator spreading.
The measurement record is acquired as expectation values
of operators generated by the Heisenberg evolution of a
chosen dynamics. We exploit the freedom of choosing the
dynamics to explore and explain the effect of chaos in the
operator spreading. For our analysis, we consider both time-
dependent delta kicked and time-independent 1D tilted field
Ising model dynamics and the dynamics of 1D anisotropic
Heisenberg XXZ spin chain with an integrability-breaking
field to investigate the operator complexity through various
information-theoretic metrics. We also relate our information-
theoretic way of quantifying operator complexity to the
Krylov complexity.

The Krylov subspace is generated by repeated appli-
cation of a map Mg on an initial operator O as A =
span{0, Mg(O), M2(0), M3(O), ...}. Here we are inter-
ested in studying the Krylov subspace of linear operators for
the Hilbert space H. We have outlined the Lanczos algorithm
for constructing Krylov subspace in Appendix A. The di-
mension of the operator Hilbert space is dim(Hp) = d* — 1.
However, the maximum dimension of Krylov subspace is
d?> —d + 1, which leaves out a subspace of dimension at
least d — 2 from Hp [see Appendix C for proof as given in
Ref. [71], also Refs. [45,49] for an alternate proof]. In this
paper, we use a unitary map for certain dynamical systems to
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generate the Krylov subspace that helps to quantify operator
spreading due to the desired dynamics. We apply a single
parameter unitary map U repeatedly to get the time-evolved
operator after n time steps:

0, =U™ou". (13)
In the superoperator picture, one can write the operator O, as
|0n) = Ug|O), 14

where Uy = UT @ UT. Thus, we get the Krylov subspace,
which is span{|O,)}, and quantify the operator spreading
through various metrics.

We choose L qubit random states with Hilbert space
dimension d =2 for state reconstruction. We evolve an
initial local operator O and get the archive of operators that
help in state reconstruction. In the beginning, the observable
O can be a local observable with access to the spin at site
J; hence, it does not gain any information about other sites.
However, we need an informationally complete set of global
observables to reconstruct any arbitrary random pure states.
We notice that the reconstruction fidelity increases with time,
which implies the growth or spread of the initial local operator
across the spin chain as a complex operator. Thus, the average
reconstruction fidelity serves as a quantifier for the operator
complexity. The average is taken over an ensemble of 80
random pure states sampled from the Haar measure on
SU(d), where the Hilbert space dimension d = 2F.

To further quantify the operator complexity, we study cer-
tain information-theoretic metrics. The covariance matrix of
the joint probability distribution Eq. (3) determines the in-
formation gain in the continuous measurement tomography
protocol. We have the inverse of the covariance matrix as
C~! = O O. Thus, in the superoperator picture, we can write

N
€' =) 10,0, (15)
n=1

where |0,) are produced by repeated application of the Flo-
quet map as given in Eq. (14) or by applying the time
evolution unitary of a time-independent Hamiltonian for time
t = n. Bach eigenvector of C~! represents an orthogonal di-
rection in the operator space we have measured until the final
time + = N. The eigenvalues of C~! give us the signal-to-
noise ratio in that orthogonal direction. Given a finite time,
the operator dynamics needs to be unbiased to get equal infor-
mation in all directions of the operator space, which requires
the eigenvalues of C~! to be equal. Thus, the information gain
in tomography for random states is maximum when all the
eigenvalues are equal in magnitude [94] (refer to Appendix D
for details). One can normalize the eigenvalues to get a prob-
ability distribution from the eigenvalue spectrum. Shannon
entropy quantifies the bias of this distribution as

S, = —inln)\,-, (16)

where {A;} is the normalized eigenvalue spectrum of C~!
[72,94]. The Shannon entropy is maximum when the eigenval-
ues are uniformly distributed. The Shannon entropy increases
with time and saturates at a higher value. The saturation value

of Shannon entropy is higher when the dynamics is fully non-
integrable, and the saturation value increases with an increase
in the degree of chaos. As the dynamics becomes chaotic, the
operators spread uniformly in the operator space because of
the ergodicity. Thus, Shannon entropy S, of the spectrum {A;}
can be used as a quantifier for operator complexity. Krylov
entropy Sk, as quantified in Eq. (A6) (see Appendix A for the
details), measures the complexity of the time-evolved operator
in the Krylov basis generated from the Lanczos algorithm. In
contrast, Shannon entropy S, determines the spreading of the
operators along the orthogonal directions in the operator space
measured till time ¢+ = N. Shannon entropy S, is a very good
quantifier of operator complexity that comes naturally while
doing a quantum information processing task, the quantum
tomography.

During the reconstruction process, the average Hilbert-
Schmidt distance between the true and estimated state in
quantum tomography is equal to the total uncertainty in the
Bloch vector components [103],

Dus = (Tr[(po — £)°1) = Y_((Ara)?), (17)

a

where Ar, =ry —7,. The Cramer-Rao inequlaity,
((Ar)?) > [F~'4a, relates these uncertainties to the the
Fisher information matrix, F, associated with the conditional
probability distribution, Eq. (3), and thus Dyg > Tr[F~'].
Our probability distribution is a multivariate Gaussian
regardless of the state, which helps the bound saturate in
the limit of negligible backaction. In that case, the Fisher
information matrix equals the inverse of the covariance
matrix, F = C™!, in units of N?/o2, where C~! = 07O,
and O,y = Tr[O,E,] [94]. Thus, a metric for the total
information gained in tomography is the inverse of this
uncertainty,

_L
Tr[C]

which measures the total Fisher information. The inverse
covariance matrix is never full rank in this protocol. We reg-
ularize C~! by adding to it a small fraction of the identity
matrix (see, e.g., Ref. [104]). For pure states, the average
Hilbert-Schmidt distance Dys = 1/ = 1 — (Tr p?) — 2(F)
[103]. Fisher information is related to the average reconstruc-
tion fidelity; hence, it can be used as a quantifier for the
efficiency of the tomography protocol.

To further elucidate the operator spreading, we calculate
the rank of the covariance matrix R. The rank of the co-
variance matrix determines the dimension of the operator
space spanned under the evolution of the system dynamics.
Repeated application of a single parameter unitary can gener-
ate K < d*> — d + 1 number of linearly independent operators
[71]. Therefore, the rank of the covariance matrix is R <
d? —d + 1, and the maximum rank of the covariance matrix
increases with an increase in the extent of chaos, and we can
adopt it as a measure of operator spreading. Our quantifiers
work very well for various models irrespective of the choice
of initial observables. Here, we have shown the results for
certain generic observables. However, these results are valid
for other observables as well. In Fig. 8, of Appendix E, we
have illustrated our findings even for a local random initial

J = (18)
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FIG. 3. Quantifying operator spreading through various information-theoretic metrics as a function of time with an increase in the extent
of chaos. The time series of operators are generated by repeated application of the Floquet map of the time-dependent tilted field kicked Ising
model Urk; as shown in Eq. (7) for (al)—(a4). The unitary for time-independent tilted field Ising model Eq. (9) generates the time evolved
operators for (b1)—(b4). All numerical simulations are carried out for the Ising model of L = 5 spins with J = 1, h, = 1.4, and the initial
observable s7. (al), (bl) Average reconstruction fidelity (F) as a function of time. (a2), (b2) The Shannon entropy S, of the normalized
eigenvalues of the inverse of the covariance matrix of the likelihood function. (a3), (b3) The Fisher information J for parameter (Bloch
vector components) estimation. (a4), (b4) Rank R of the covariance matrix. In all cases, the values of the quantifiers are higher for higher

nonintegrability parameter /..

observable. We have examined various local and global ob-
servables; however, they are not presented in this paper.

A. Results for Ising spin chain with a tilted magnetic field

We have considered an ensemble of systems consisting of
N; number of identical tilted field Ising spin chains with L
number of spins. Thus, O acts on the site j of each of the
systems for collective evolution and measurement. We evolve
an initial local operator O = s to generate the measurement
record. In the beginning, the observable O = s{ has access
to the spin at site j = 1; hence, it does not gain any infor-
mation about other sites. We notice that the reconstruction
fidelity increases with time, as is apparent in Fig. 3(al) for the
time-dependent tilted field kicked Ising model and Fig. 3(b1)
for time-independent tilted field Ising model. Thus, the av-
erage reconstruction fidelity serves as a quantifier for the
operator spreading. For the kicked Ising model, we use the
parameters i, = {0.0, 0.4, 1.4}, and for the time-independent
Ising model we consider the parameter set i, = {0.0, 0.1, 1.4}
since the later becomes strongly nonintegrable for a small
value of /i, even when ki, and &, are not of comparable strength
[77]. Tt is evident from Figs. 3(a2) and 3(b2) that the satura-
tion value of Shannon entropy is more when the dynamics is
fully nonintegrable, and the saturation value increases with

an increase in the degree of chaos. Figures 3(a3) and 3(b3)
display the Fisher information for random states as a function
of time with an increase in the level of chaos. We can observe
how the rise in Fisher information is correlated with the chaos
in the dynamics, making it fit as a quantifier for operator
complexity. It is pretty clear from Figs. 3(a4) and 3(b4) that
the rank is more when the dynamics is chaotic as opposed to
when it is integrable. The dimension of the Krylov subspace K
also matches with the maximal R when the dynamics is fully
chaotic (see Fig. 7 of Appendix B, and Fig. 9 of Appendix F
for this). Thus, rank R represents a natural measure for opera-
tor spreading. In Fig. 8 of Appendix E, we show the values
of our information-theoretic quantifiers in the fully chaotic
regime are consistent with random matrix theory.

Operator spreading measured from the saturation value
of Krylov complexity Cx as quantified in Eq. (AS) depends
on the choice of initial observable (see Ref. [105]). Pre-
viously, it was demonstrated that the late-time saturation
value of Krylov complexity correlates with the level of chaos
for some operators like the collective spin operator S, =
% Z?:l of, and anticorrelates with some other operators like
S, = % Z?=1 o; (see Fig. 6 in Appendix A). Also, there are
operators for which the Krylov complexity does not exhibit
any systematic behavior with the level of chaos. Remark-
ably, the information-theoretic measures we use here give us
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FIG. 4. Quantifying operator spreading through various information-theoretic metrics as a function of time with an increase in the strength

of the nonintegrability field. The time series of operators are generated by repeated application of the Floquet map of the time-dependent tilted
field kicked Ising model Urk; as visible in Eq. (7) for all plots. All numerical simulations are carried out for the Ising model of L = 4 spins
withJ = 1, h, = 1.4. (al)—(a4) are for the initial observable S, and (b1)—(b4) are for the initial observable S,. (al), (b1) Average reconstruction
fidelity (F) as a function of time. (a2), (b2) The Shannon entropy S, of the normalized eigenvalues of the inverse of the covariance matrix of
the likelihood function. (a3), (b3) The Fisher information 7 for parameter (Bloch vector components) estimation. (a4), (b4) Rank R of the

covariance matrix. In all cases, the values of the quantifiers are higher for higher nonintegrability parameter /.

unambiguous signatures of chaos, as is evident in Fig. 4. We
have shown the behavior of the information-theoretic quanti-
fiers for the collective spin operators Sy and S,. The rate of
information gain in tomography for random states increases
with an increase in the level of chaos in the dynamics, which is
valid for any initial physical observable. We have not desym-
metrized the Hamiltonian in this paper or considered any
symmetric subspace for our calculations. Here, the collective
spin operators respect the reflection symmetry of the tilted
field Ising model. The set of operators from the time evolution
of S, or S, will not generate the informationally complete set
of operators as the operators will be restricted to respective
symmetric subspaces. Thus, one cannot achieve information-
ally completeness of the measurement record, which leads to a
lower value of reconstruction fidelity, and the saturation value
of R is less than the maximum value. One has to study the
effects of symmetry on the reconstruction closely to have a
better understanding. Nevertheless, the Shannon entropy S,
the Fisher information J, and the rank of the covariance
matrix R serve as natural measures for operator complexity
through a concrete physical task.

B. Results for Heisenberg XXZ spin chain
with an integrability-breaking field

Here, we illustrate the operator spreading for the Heisen-
berg XXZ model for L =35 number of spins with an

integrability-breaking field. The single impurity Hy = s5 is
placed at the center of the spin chain, and the strength of
the field g is varied to drive the dynamics from integrable to
chaotic. We choose the parameter set g = {0.0, 0.16, 0.94},
where the dynamics is fully chaotic and level statistics fol-
low random matrix predictions for g = 0.94 [49]. We have
considered two initial observables O = s} + s, and O = s,,.
The observable O = s) + s, respects the reflection symme-
try about the center of the spin chain, whereas the operator
O =5, does not respect the reflection symmetry. However,
both initial observables do not have support over the full spin
chain. In Fig. 5, we have shown the average reconstruction
fidelity (F), the Shannon entropy S,, the Fisher information
J, and the rank of covariance matrix R for both the initial ob-
servables. We notice that the operator spreading is more when
the dynamics becomes more chaotic irrespective of the choice
of initial observable. We can see the effects of symmetries in
the saturation value of all quantities other than the Fisher in-
formation, which does not saturate. Fisher information, which
is highly sensitive to vanishingly small eigenvalues associated
with the covariance matrix, is not very sensitive to the chaotic-
ity parameter, unlike the Shannon entropy. While we observe
that the Fisher information computed for the fully chaotic and
weakly nonintegrable dynamics can be close to each other,
it certainly does preserve the correlation with the degree of
chaos.
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FIG. 5. Operator spreading through various information-theoretic metrics as a function of time with an increase in the degree of chaos for
Heisenberg XXZ spin chain with an integrability-breaking field H,; = s}. All numerical simulations are carried out for the Hamiltonian Hyn;
of L =5 spins with J,, = 1, J,; = 1.1. (al)—(a4) are for the initial local observable O = s} + s, and (b1)—~(b4) are for the initial observable
O = ). (al), (b1) Average reconstruction fidelity (F) as a function of time. (a2), (b2) The Shannon entropy S, of the normalized eigenvalues
of the inverse of the covariance matrix of the likelihood function. (a3), (b3) The Fisher information 7 for parameter (Bloch vector components)
estimation. (a4), (b4) Rank R of the covariance matrix. In all cases, the values of the quantifiers are higher for higher integrability-breaking

parameter g value.

IV. DISCUSSION

Characterizing chaos in the quantum world and its man-
ifestations in quantum information processing is currently
being vigorously pursued. In this work, we explore quantum
chaos and its connections to operator spreading in many-body
quantum systems. We connect the operator spreading to the
rate of information gain in quantum tomography—a protocol
at the heart of quantum information processing. Our paper
gives an operational interpretation of operator spreading and
relates/contrasts to the Krylov complexity in the study of
quantum chaos.

The operator, which is initially localized, will evolve under
the chaotic dynamics and spread in the operator space as
a more complex operator. Interestingly, various information-
theoretic measures like Shannon entropy, Fisher information,
and rank of the covariance matrix not only quantify the in-
formation gain but also support us in assessing the operator
complexity. We show an unambiguous way of measuring
operator complexity and operator scrambling as the dynam-
ics becomes chaotic for the 1D Ising model with a tilted
magnetic field and the 1D anisotropic Heisenberg XXZ spin
chain with an integrability-breaking field. The rate of operator
scrambling is positively correlated with the rate of information
gain for random states, which increases with an increase in
the level of chaos in the dynamics. Our information-theoretic

quantifiers are suitable for both time-independent as well as
time-dependent Hamiltonians.

The idea of operator spreading in the operator space can
be compared to the exploration of the classical trajectory in
the classical phase space. KS entropy is known to quantify the
rate of exploration in the classical phase space, which is equal
to the sum of positive Lyapunov exponents. Here, we can
easily relate the rate of the operator spreading to the degree
of chaos in the dynamics through our information-theoretic
metrics. Thus, the information gain in quantum tomography
is connected to the operator spreading in the operator space
and the KS entropy.

Simulating quantum chaos on a quantum computer
[106-109] and exploring its information-theoretic signa-
tures like operator scrambling is an exciting avenue being
vigorously pursued. Our paper, connecting continuous mea-
surement tomography and information scrambling, paves the
way to realize and interpret such experiments in the laboratory
[90,110].
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APPENDIX A: KRYLOV SUBSPACE FROM LANCZOS
ALGORITHM AND OPERATOR COMPLEXITY

Generally, the Krylov subspace for operators is generated
by repeated application of a map to an initial operator, and
its span helps to quantify operator spreading due to the dy-
namics. Here, we outline the method to generate the Krylov
basis through the Lanczos algorithm. In the Lanczos scheme,
the generator of the Krylov basis is a Hermitian operator (a
Hamiltonian H) [111]. The time evolution of an operator O is
given by

O(f) — eiHlOefiHl — ei[to’ (Al)

where the Liouvillian operator is defined as £ = [H, .]. In
the superoperator notation, the operator O is written as |O),
which allows us to write the Eq. (A1) as

oo

F\k
0wy =3 T eti0)
k=0 ’

(A2)

Now, one can orthonormalize the operators {EHO)},‘?‘;C us-
ing Gram-Schmidt orthogonalization procedure to get the
Krylov basis A; = {|Qk)}kk:_0], where K is the dimension
of Krylov subspace and K < d* —d +1 [45,49]. This is
an iterative process to get the orthonormal basis known as
Lanczos algorithm for a well-defined Hilbert-Schmidt inner
product (Qx|Q;) = Tr (Q,t Q;) = 8i;. In this process, the first
two basis operators are |Qp) = |0)/(O|0)"/? and |Q;) =
b1_1£|Q0), where by = /|L£|Qo)|?. Following the Lanczos
algorithm, we can get the other basis operators |Qy) in a
recursive method as

|Ok) = b (L] Qk—1) — br—11Qx-2)),

where b, = \/|£|Qk_1) — by_1|Q_»)|? are called the Lanc-
zos coefficients.

The Liouvillian operator is a tridiagonal matrix in the
Krylov basis, as is apparent from Eq. (A3). Thus, we can
express the time-evolved operator in the Krylov basis as

(A3)

K—1

100) =) o)1 Q0), (A4)
k

where ¢ = i %(Q;|O(t)) are the time-dependent real prob-
ability amplitudes that describe the distribution of the
time-evolved operator over the Krylov basis. Recently, spe-
cific features of this probability distribution have been
explored to quantify nonintegrability and chaos in the
dynamics [43,45,46,48,49,51-53,105]. Krylov complexity
is a measure of the average position of the opera-
tor distribution on the ordered Krylov basis, which is

[—0—h. =0 =g—h. =04 —0—h. = 14|
(al) (a2)
150

300

200 100
M\d‘\wé
100 50 ( Y A

0I

Ck

A

0 v
0 500 1000 0 500 1000
Time Time

FIG. 6. Krylov complexity Cx as a function of time for the dy-
namics of 1D Ising model with a tilted magnetic field for an increase
in the field strength h,. We have considered L = 5 spins with J = 1
and h, = 1.4 for the numerical simulations. Two different initial
observables (al) O = S, and (a2) O = S,. For generating this plot,
we have not desymmetrized the Hamiltonian.

defined as
K—1

Ck(t) =) Klgi (DI

k=0

(AS5)

In the thermodynamic limit, the Krylov complexity Cx grows
exponentially with time initially, and the Lanczos coefficients
grow linearly as b; o« k when the dynamics is chaotic [43,48].
For finite-dimensional systems, the long-time saturation value
of the Krylov complexity is higher when the dynamics is
chaotic, which is identified as a signature of chaos [51].
However, these signatures depend highly on the choice of
initial observable [105], as shown in Fig. 6. Another measure
known as Krylov entropy quantifies how evenly the operator
is distributed over the Krylov subspace:

K—1

Sk(t) == g In lge (1)

k=0

(A6)

Lanczos algorithm is suitable for analytical calculations of
the orthogonal operators |Qy) and the Lanczos coefficients
bi. Unfortunately, it is not numerically feasible to generate
the Krylov basis and the coefficients because of the unavoid-
able errors accumulated from floating-point rounding in the
Hilbert-Schmidt inner products. Thus, it is required to use
alternative methods to address this issue. The full orthogo-
nalization method [112] is such a method that performs a
brute-force reorthogonalization of the constructed Krylov el-
ement with respect to the previous ones at every iteration of
the Lanczos algorithm. In this paper, we also present the full
orthogonalization method to compute the Lanczos coefficients
numerically (see Appendix B for the detailed algorithm).

APPENDIX B: FULL ORTHOGONALIZATION
ALGORITHM

The Lanczos algorithm, which makes use of the two pre-
vious operators in the construction of each Krylov element,
encounters numerical instabilities because of the accumula-
tion of errors from the finite precision arithmetic, and the
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FIG. 7. Lanczos coefficients sequence as a function of k. The
Krylov subspace is obtained for initial observable s} using tilted
field Ising model Hamiltonian Eq. (9) with J = 1 and &, = 1.4. We
vary h, as the nonintegrability parameter. The Lanczos sequence is
plotted for different numbers of spins L. K is the dimension of the
Krylov subspace when the dynamics is fully nonintegrable. (al) L =
2,K=13.(a2) L=3,K=57. (a3) L=4, K =241. (a4) L =5,
K =993

orthogonality of the Krylov basis is lost in a few steps.
Residual overlaps between the Krylov elements increase with
the number of iterations k, giving rise to unreliable Lanc-
zos coefficients by. The full orthogonalization method [112]
performs a brute-force reorthogonalization of the constructed
Krylov element with respect to the previous ones at every
iteration of the Lanczos algorithm that ensures the orthonor-
mality of the Krylov basis up to machine precision €. The full
orthogonalization performs Gram-Schmidt orthogonalization
at every iteration in the Lanczos algorithm to ensure orthogo-
nality up to the machine precision €. For optimality, it is better
to adopt Gram-Schmidt twice every time. The algorithm reads
as follows:

(1) 1Qo) = 0)/(010)"/>.

(2) Fork > 1: compute |By) = L|Qk_1).

(3) Reorthogonalize | By) explicitly with respect to all pre-
vious Krylov elements:

k—1

1Be) > 1Bi) = D 1Q)(Qul Bo).

m=0

(4) Repeat step 3.

(5) Set by = /(Bi|By).

(6) If b, = O stop; otherwise set |Qy) = b,:l |By), and go
to step 2.

We can find that the values of Lanczos coefficients by
initially grow as a function of k, then drop slowly and
become zero at k = K, after which the Lanczos algorithm
cannot generate any more orthogonal operators. Figure 7 illus-
trates the Lanczos sequence for initial observable o, different
number of spins of the tilted field Ising model Hamiltonian

Eq. (9).

APPENDIX C: DIMENSION OF KRYLOV SUBSPACE
GENERATED FROM REPEATED APPLICATION
OF A UNITARY

Here we delineate the proof of how the repeated ap-
plication of a single unitary can generate K < d> —d + 1
number of orthogonal operators as demonstrated by Merkel
et al. in Ref. [71]. The Krylov subspace of operators
is obtained as a time series of operators O, = U"OU",
where O is a Hermitian operator and U is a fixed unitary.
We can determine the dimension of the Krylov subspace
of orthogonal operators A4 = span{Q,}. Let us consider
the subspace of operators that are preserved under unitary
conjugation by U, G = {g € su(d)|UgU" = g}. Let us define
C = {g € G|Tr (gO) = 0}. The subspace whose elements are
orthogonal to the elements of the Krylov subspace A, is A,
and operators in this set are not included in the time series of
operators. Thus, it is clear that C € A, since Vg € C:

Tr (0,g) = Tr [U™OU"g] = Tr (Og) = 0. (CI)

Now dim(Ay) + dim(C) < dim[su(d)] = d> — 1 as the two
spaces are orthogonal. Thus, for U having nondegenerate
eigenvalues, G will be isomorphic to the Cartan subalgebra of
su(d), which is the largest commuting subalgebra. However,
if the eigenspectrum of U has degeneracy, G will have some
additional elements. The dimension of Cartan subalgebra is
d — 1 and hence dim(G) > d — 1. By definition, C is obtained
from G by projecting out one direction in operator space and
thus dim(C) = dim(G) — 1 > d — 2. Therefore,

dim(A,) < dim[su(d)] —dim(C) <d* —d +1. (C2)

APPENDIX D: MUTUAL INFORMATION AND SHANNON
ENTROPY OF THE MEASUREMENT RECORD

The information obtained about the Bloch vector r from
the measurement record M is the mutual information [113]
Zlr;M] = S(M) — SM]r), (D1)
where S is the Shannon entropy for the given probability
distribution. The entropy of the measurement record, S(M),
is entirely due to the shot noise of the probe. Thus, it
is a constant irrespective of the state, assuming we have
perfect knowledge of the dynamics. One can neglect irrel-
evant constants to get the mutual information between the
Bloch vector and a given measurement record to be speci-
fied by the entropy of the conditional probability distribution,
Eq. (3):

Ilr;M] = -SM|r) = —% In(det(C)) =1n (é) (D2)

Here, V is the volume of the error ellipsoid whose semimajor
axes are defined by the covariance matrix. The dynamics
that maximizes 1/V = ,/det(C~') also maximizes the in-
formation gain. An important constraint is that after time
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FIG. 8. Quantifying operator spreading through various information-theoretic metrics as a function of time with an increase in the extent
of chaos. The time series of operators are generated by repeated application of the Floquet map of the time-dependent tilted field kicked
Ising model Urk; as shown in Eq. (7) for (al)—(a3). The unitary for time-independent tilted field Ising model Eq. (9) generates the time-
evolved operators for (b1)—(b3). All numerical simulations are carried out for the Ising model of L = 5 spins with J/ = 1, h, = 1.4, and for an
initial random local observable u]s|u,, where u, is a single-qubit Haar random unitary. (al). (b1) The Shannon entropy S, of the normalized
eigenvalues of the inverse of the covariance matrix of the likelihood function. (a2), (b2) The Fisher information 7 for parameter (Bloch
vector components) estimation. (a3), (b3) Rank R of the covariance matrix. In all cases, the values of the quantifiers are higher for higher
nonintegrability parameter 4,. In the fully chaotic regime, i, = 1.4, the results are well predicted by values obtained with a measurement
record generated by a Haar-random matrix picked from an appropriate ensemble and are plotted as the dashed line in all plots.

t =n[9%4],

Tr(C™) =)0} =nlO), (D3)

where [|O]> = 3", Tr (OE,)* is the Euclidean square norm,
with initial observable O. The Eq. (D3) is independent of
the choice of dynamics, and the quantity Tr (C™') increases
linearly with time. The inequality of arithmetic and geometric

means gives us
d*—1
Tr(C™!
T ))

n d*—1
= <d2_1||0||2> :

where the rank of the regularized covariance matrix is d* —
1. The maximum possible value of mutual information is
attained when all eigenvalues are equal, and the above in-
equality is saturated, making the error ellipsoid a hypersphere.
At a given time step, the largest mutual information is
achieved when the dynamics mixes the eigenvalues most

det(C™H < <

(D4)

evenly. We quantify this by Shannon entropy S, of the nor-
malized eigenvalue spectrum of C~! as given in Eq. (16). One
can extract the maximum information about a random state by
measuring all components of the Bloch vector with maximum
precision. Given finite time, we can obtain the best estimate
by dividing equally between operators in all directions of the
operator space.

APPENDIX E: RANDOM MATRIX PREDICTIONS
FOR INFORMATION-THEORETIC QUANTIFIERS

The tilted field Ising model has a discrete symmetry which
makes the spin chain invariant under reflection (also known
as bit reversal) about the center of the spin chain [77]. Thus,
the Floquet map for the kicked Ising model with a tilted
magnetic field and the Hamiltonian for the time-independent
tilted field Ising model are block diagonal in the eigenbasis
of the reflection operator. The model is also invariant under
time-reversal operation [114,115]. We generate some random
matrices from circular orthogonal ensemble (COE) for the
Floquet map and Gaussian orthogonal ensemble (GOE) for
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FIG. 9. Quantifying operator spreading through various information-theoretic metrics as a function of time with an increase in the extent of
chaos [The legends are same for all plots; &, = 0 (diamond), h, = 0.4 (triangle) h, = 1.4 (circle)]. The time series of operators are generated
by repeated application of the Floquet map of the time-dependent tilted field kicked Ising model Urk; as shown in Eq. (7) for all plots. The
numerical simulations are carried out for the Ising model with J = 1, h, = 1.4, and the initial observable s}. The number of spins for (al)—(a4)
L =2, (bl)—(b4) L =3, and (cl)—(c4) L = 4. (al), (bl), (c1) Average reconstruction fidelity (F) as a function of time. (a2), b2), (c2) The
Shannon entropy S, of the normalized eigenvalues of the inverse of the covariance matrix of the likelihood function. (a3), (b3), (c3) The Fisher
information .7 for parameter (Bloch vector components) estimation. (a4), (b4), (c4) Rank R of the covariance matrix. In all cases, the values

of the quantifiers are more for a higher value of parameter 4,.

time-independent Hamiltonian, which are block diagonal in
the basis of the reflection operator.

We consider a random local observable O = us)u,, where
u, is a single-qubit random unitary chosen from Haar measure.
The measurement record is generated by a time-dependent
and time-independent tilted field Ising model to evaluate the
Shannon entropy, Fisher information, and rank of the covari-
ance matrix. Also, we generate the time series of observables
by the random unitary evolution picked from COE and ran-
dom Hamiltonian time evolution picked from GOE having the
block diagonal structure described above. Figure 8 shows the
behavior of the information-theoretic quantifiers for both the
models and the random matrix theory. We see excellent agree-
ment between our predictions from random matrix theory
and the calculation for the evolution by both time-dependent
and time-independent models in the completely chaotic
regime.

APPENDIX F: OPERATOR SPREADING FOR DIFFERENT
NUMBERS OF SPINS IN THE ISING MODEL
WITH A TILTED MAGNETIC FIELD

We find the initial growth and the saturation value of aver-
age fidelity F, Shannon entropy S,, Fisher information .7, and
rank R of the covariance matrix are correlated with the degree
of chaos in the dynamics. Thus, all these information-theoretic
quantifiers are able to quantify operator spreading. The rank
saturates at R = d> — d + 1 for fully chaotic. The rank R for
different numbers of spins is illustrated in Figs. 9(a4) L = 2,
R =13,90b4) L =3, R =57, and 9(c4) L =4, R = 241.
For all these figures, the initial observable is O = sf , which
does not respect the reflection symmetry about the center of
the tilted field Ising spin chain. It is interesting that even
in the deep quantum regime, for L = 2 and L = 3, we can see
the quantum signatures of chaos in the information-theoretic
measures.
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