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We study measurement-induced symmetry-protected topological (SPT) order in a wide class of quantum
random circuit models by combining calculations within the stabilizer formalism with tensor network simu-
lations. We construct a family of quantum random circuits, generating the out-of-equilibrium version of all
generalized cluster models, and derive a set of nonlocal string order parameters to distinguish different SPT
phases. We apply this framework to investigate a random circuit realization of the XZX cluster model, and use
the string order parameter to demonstrate that the phase diagram is stable against extending the class of unitary
gates in the circuit, from Clifford gates to Haar unitaries. We then turn to the XZZX generalized cluster model,
and demonstrate the coexistence of SPT order and spontaneous symmetry breaking, by relying on string order
parameters and a connected correlation function.
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I. INTRODUCTION

Topology in quantum many-body systems has been at the
forefront of condensed matter research in recent years [1].
Topological invariants allow us to classify the ground states
of gapped local Hamiltonians into distinct phases [2–6], char-
acterized by nonlocal order parameters, and displaying exotic
properties, such as anyonic excitations or gapless edge states.
A particularly rich phase diagram arises in the presence of
symmetries, displaying various symmetry-protected topolog-
ical (SPT) phases that cannot be characterized in terms of
the spontaneous breaking of a global symmetry [7,8]. Instead,
they are characterized by entanglement patterns between sub-
systems [2,9], captured by a topological entanglement entropy
[10,11], as well as nonlocal “string order” [12,13].

Recently, the concept of SPT phases has been extended
from equilibrium systems to nonequilibrium scenarios [14] in
the context of measurement-induced entanglement transitions
in quantum random circuits [15–19]. In these quantum cir-
cuits, the time evolution is governed by a competition between
random unitary gates, spreading information and tending to
scramble the system, and repeated local measurements, re-
ducing entanglement. The interplay of these opposing effects
leads to dynamical phase transitions between different sta-
tionary states: a highly entangled thermal state characterized
by a volume law scaling of subsystem entanglement entropy,
and nonthermal area law states [15–44], with different types
of measurements generating novel nonequilibrium phases of
matter [14,45–52]. In particular, in Ref. [14], the authors have
demonstrated that the area law stationary state can also exhibit

*raul.morral@tum.de

SPT order, similarly to the area law entangled ground states of
gapped Hamiltonians.

These recent advances raise exciting questions about the
measurement-induced topological phases in quantum circuits.
The SPT phase found in Ref. [14] emerged in a Clifford
quantum random circuit model in the presence of a protecting
Z2 × Z2 symmetry, and was detected through a topological
entanglement entropy. Generalizing this construction to other
types of topological phases, as well as finding and classify-
ing the topological phases accessible in out-of-equilibrium
systems, can offer new insights into the properties of dy-
namical phase transitions. Another interesting aspect concerns
the order parameter of the phase transition. Clifford random
circuits have a special structure, allowing us to simulate them
efficiently by relying on the stabilizer formalism [53]. In this
setting, the topological entanglement entropy is well suited for
detecting SPT order in the numerical calculations. However,
the topological entanglement entropy is very difficult to access
in experimental realizations. For this reason, it is important
to identify other, more accessible order parameters. Another
open question is the stability of the SPT phase in the wider
class of Haar random circuits.

In this paper, we take the first steps towards answering
these questions. We generalize the construction of Ref. [14]
to generate the whole family of generalized cluster models
[54,55]. This extended set of random circuits hosts different
types of SPT phases, as well as phases with simultaneous SPT
order and spontaneous symmetry breaking (SSB). We also
construct a set of nonlocal string order parameters and demon-
strate that they are capable of distinguishing the different
phases realized by the circuits, thereby providing a convenient
alternative to topological entanglement entropy that is more
accessible both numerically and experimentally [56]. To this
end, we analyze two members of the family of generalized
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cluster models in detail, by combining simulations in the
stabilizer formalism with tensor network methods. First, we
focus on the XZX model already examined in Ref. [14],
and confirm that the string order parameter can be used to
determine the full phase diagram. By relying on tensor net-
work simulations, we also show that the phase diagram is
remarkably stable against extending the class of unitaries from
random Clifford to random Haar, provided that the protecting
Z2 × Z2 symmetry is respected by the gates. Second, we
consider the so-called XZZX cluster model and demonstrate
that it hosts a phase with coexisting SPT order and SSB. We
determine the full phase diagram of this model within the
stabilizer formalism, by evaluating the string order parameters
and a connected correlator capturing SSB.

The paper is organized as follows. We first discuss the
general theoretical framework in Sec. II. Here, we introduce
a set of quantum random circuits, realizing an out-of-
equilibrium version of the whole family of generalized cluster
models. We also construct string order parameters capturing
the SPT order in the area law stationary states of these circuits.
We then turn to the XZX cluster model in Sec. III. First, we
focus on Clifford random circuits in Sec. III A, and we vali-
date the string order parameter proposed before, by using it to
obtain the full phase diagram and comparing it to predictions
relying on entanglement entropies from Ref. [14]. We test
the stability of this phase diagram by extending the class of
random unitary gates from Clifford to Haar random gates in
Sec. III B. We then demonstrate the coexistence of SPT order
with spontaneous symmetry breaking by studying the XZZX
cluster model in Sec. IV. We summarize our main conclusions
in Sec. V.

II. GENERAL FRAMEWORK

In this section, we construct a family of quantum random
circuit models that will be the main focus of this paper. We
first review the equilibrium definition of generalized cluster
models. Then, relying on the insights gained from Ref. [14],
we turn to the nonequilibrium scenario and formulate the
random circuit models that realize their out-of-equilibrium
counterparts. We argue that these models display various dy-
namical phases with SPT order and/or SSB, and we also
construct a set of nonlocal string order parameters and SSB
local order parameters, allowing us to determine the full phase
diagram.

The family of generalized cluster models in a one-
dimensional spin chain [54,55] is generated by Hamiltonians
of the form

Hα = −
∑

n

Xn Zn+1 . . . Zn+α−1︸ ︷︷ ︸
α−1

Xn+α, α � 1, (1)

where Xn, Yn, and Zn denote the Pauli matrices at site n, and
α is a positive integer parametrizing the members of the class.
For a given α, the model is symmetric under a set of α global
symmetries,

G1 =
∏

k

Zαk+1, . . . , Gα =
∏

k

Zαk+α. (2)

Each of the symmetries Gi is a product of Z operators, dis-
tanced by α − 1 sites in the chain.

FIG. 1. A particular realization of the cluster circuit model for
(a) α = 2 and (b) α = 3, showing the first two time steps for system
size N = 6. The boxes labeled as Z , XZX , and XZZX represent
projective measurements, whereas the ones with label U denote
random unitary gates preserving the symmetries (2).

All terms in the Hamiltonian Hα , the so-called cluster
operators gα

n , commute with each other, and thus the ground
states are defined by the condition gα

n |ψα
0 〉 = |ψα

0 〉 for every n.
Such ground states realize different types of phases, with SSB
and/or SPT order [54,55]. For example, α = 1 corresponds
to the Z2 symmetric Ising chain, displaying SSB. The α = 2
case is the so-called cluster model that realizes an SPT phase,
protected by Z2 × Z2 symmetry [57–59]. For α = 3, Eq. (1)
defines the XZZX cluster model with coexisting SSB and SPT
orders [55,59]. In general, every odd α value is characterized
by Z2 symmetry breaking and Z×(α−1)

2 SPT order (except for
α = 1), while even integers yield pure SPT order protected by
a Z×α

2 symmetry.
In Ref. [14], Lavasani et al. showed that the SPT phase of

the XZX cluster model, α = 2, can be realized in a quantum
random circuit by implementing properly designed measure-
ments. Here we generalize this construction to induce by
measurements the SPT phases that are realized by the gen-
eralized cluster models (1). To this end, we construct a set
of random circuit models in the following way. We consider
a chain of N qubits subject to open boundary conditions,
with an initial state that can be an arbitrary eigenstate of the
symmetry operators G1, . . . , Gα , e.g., the trivial product state
|Z = 1〉⊗N . At each step, we update the state by applying a
sequence of three different operations:

(1) With probability pt , we measure a cluster oper-
ator XiZi+1 . . . Zi+α−1Xi+α , with i ∈ {1, . . . , N − α} chosen
randomly.

(2) With probability ps, we measure a single-qubit opera-
tor Zi on a random site i of the chain.

(3) With probability pu = 1 − ps − pt , a random unitary
preserving the protecting symmetries (2) and acting on α + 1
neighboring qubits is sampled and applied at a random po-
sition. The length of these unitaries, α + 1, was chosen as
the shortest range such that the gates can create entanglement
while preserving the symmetries of the model.

The collection of N such operations forms a single time
step in the time evolution of the system. Figure 1 illustrates
this construction by showing the first two time steps in a
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particular realization of the circuit for α = 2 (left) and α = 3
(right). We denote the circuit average of a quantity A, mea-
sured in the steady state of the circuit, by A. We note that in
this setting, time average is equivalent to ensemble average;
therefore, we can choose to perform the averaging over time
steps and/or over circuit realizations.

This family of circuit models realizes three different phases
for each α, depending on the dominant operation. For large
enough probability pu, the unitary evolution dominates, re-
sulting in a volume law phase with the entanglement entropy
of subsystems scaling with their volume. In contrast, if mea-
surements are applied at a sufficiently high rate, the stationary
state is characterized by area law entanglement scaling. In
particular, for large enough ps, the Z measurements tend to
collapse the state to a trivial area law phase, whereas the
measurements of cluster operators XiZi+1 . . . Zi+α−1Xi+α may
induce area law phases with symmetry-protected topological
phases, and/or ordered phases with a local order parameter.
For example, the case α = 1 has been studied in Ref. [45]
and was found to realize the out-of-equilibrium counterpart
of the SSB order in the ground state of the Ising Hamil-
tonian for large enough pt , dubbed a spin glass phase. For
α = 2, Lavasani et al. demonstrated the emergence of an
SPT phase [14].

Before investigating the phase diagram of the first few
members of this family of random circuit models in detail, we
comment on the order parameters that can distinguish differ-
ent phases. One indicator that has been successfully applied in
previous works is a topological entanglement entropy, readily
accessible in numerical simulations for Clifford circuits, re-
lying on the stabilizer formalism. However, in simulations of
more general random circuits, for instance, in the presence of
general Haar unitary gates U , as well as in possible exper-
imental realizations, topological entanglement entropies are
challenging to access. Therefore, we propose another way to
distinguish the different phases by extending the concept of
string order parameters, designed to detect equilibrium SPT
phases [12,13], to this out-of-equilibrium scenario. In general,
for a state that is invariant under a protecting symmetry G
that can be expressed as the product of local unitary operators
�i, G = ∏

i �i, a string order parameter corresponding to
boundary operators OL/R can be defined as follows [12,13]:

SOL,OR

� = lim
| j−k|→∞

〈
ψ0

∣∣∣∣∣∣OL( j)

⎛
⎝ k−1∏

i= j+1

�i

⎞
⎠OR(k)

∣∣∣∣∣∣ψ0

〉
. (3)

These string order parameters allow us to differentiate topo-
logically distinct states, by choosing the operators OL/R

appropriately. Importantly, the bulk part of the string operator
is constructed from the symmetry operators �i. Therefore, for
a symmetric state and for generic operators OL/R, the string
order parameter takes a nonzero value and varies smoothly
as a function of the parameters of the Hamiltonian. In or-
der to distinguish topologically distinct phases, the boundary
operators OL/R have to be chosen carefully, such that the
emerging SPT order gives rise to selection rules that ensure
the vanishing of a string order in a certain phase [13]. This
method thus allows to detect topological phases through the

exact relation SOL,OR

� ≡ 0. Choosing various pairs OL/R, such

that the resulting string orders SOL,OR

� vanish in different
phases, grants access to the full phase diagram. Convenient
string order parameters for the generalized cluster models are
given by

S1,1
Z (α) = lim

| j−k|→∞

〈
k∏

i= j+1

Zαi

〉
, (4)

vanishing in the ground state of the cluster Hamiltonian, as
well as

SX,X
Z (α) = lim

| j−k|→∞

〈
Xα j

⎛
⎝ k∏

i= j+1

Zαi−α+1 . . . Zαi−1

⎞
⎠Xαk

〉
,

(5)
yielding zero for a trivial Z product state.

Besides the SPT order, for odd α values, the ground state
of Hamiltonian (1) displays SSB. This type of order can be
detected through the connected correlators of a symmetry-
breaking local order parameter, defined as

M(α) = Xi (Yi+1Xi+2) . . . (Yi+α−2Xi+α−1)︸ ︷︷ ︸
(α+1)/2

. (6)

We note that for α = 1, M(α) reduces to the Ising order
parameter Xi.

While the various order parameters defined in Eqs. (4)–(6)
are well suited for determining the phase diagram of the gen-
eralized cluster models in equilibrium, they are not directly
applicable for the random circuit scenario. The reason for
this is that for different realizations of the disordered circuit,
the sign of string order parameters and correlation functions
fluctuates randomly, yielding a vanishing circuit average in all
nontrivial regions of the parameter space. Similarly, the time
average of all of these quantities vanishes for any fixed circuit
realizations. This property can be understood by noting that
all the measured operators have eigenvalues ±1, resulting in
a randomly changing sign during the time evolution because
of the probabilistic measurement outcomes and the repeatedly
applied random unitary gates.

The vanishing of these circuit averages is also inti-
mately related to the nature of the measurement-induced
entanglement transition. This dynamical phase transition is
unconventional in the sense that it relies on the properties
of individual quantum trajectories instead of the disorder-
averaged quantum state, and it can only be detected through
quantities that are nonlinear in the density operator of the sys-
tem, e.g., through entanglement entropies [15,17]. In contrast,
the circuit average of the density matrix is a trivial infinite-
temperature density matrix. Therefore, the rich entanglement
structure of individual quantum trajectories remains hidden at
the level of the average density matrix and, consequently, at
the level of disorder-averaged operator averages, such as the
string order parameters or connected correlators considered
above.

This difficulty can be overcome by modifying the proposed
order parameters in such a way that they become nonlin-
ear in the density matrix of the system. This can be easily
achieved by considering the time and/or circuit average of
the absolute value of the string order parameters, |S|, with
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a similar idea applied to the correlator of the local order
parameters M(α). We test these proposed order parameters
below by benchmarking them against the behavior of the
topological entanglement entropy for various circuit models
and demonstrate that they capture the full phase diagram
correctly. Nevertheless, while these string order parameters
are readily accessible in tensor network simulations, it is
important to remark that they are still subject to the so-called
postselection problem; i.e., determining them experimentally
requires preparing many copies of the steady state for each
set of measurement outcomes. Due to the probabilistic nature
of measurements, it is exponentially unlikely to find the same
measurement outcomes in two realizations of the same cir-
cuit, hindering the observation of measurement-induced phase
transitions, despite a number of possible solutions proposed
theoretically in recent years [60–62].

Before turning to the numerical simulations, we briefly
comment on the special case of pu = 0, resulting in models
without unitary evolution. We find that these circuits, consist-
ing only of projective measurements, share certain universal
properties for any value of α. In particular, they all display a
phase transition between the trivial and the SPT and/or SSB
area law phase for ps = 1/2, i.e., where the rates of both types
of measurements are equal. A proof of this statement, relying
on a duality argument, is presented in Appendix A.

III. SPT PHASE IN THE XZX CLUSTER CIRCUIT MODEL

In this section, we revisit the SPT phase of the XZX cluster
circuit model, by applying the framework presented in Sec. II.
We first focus on Clifford circuits in Sec. III A, already studied
in Ref. [14]. In this special set of circuits, both topologi-
cal entanglement entropies and string order parameters are
readily accessible by relying on the stabilizer formalism. We
benchmark the string order parameters (4) and (5) by using
them to detect the phase transitions and comparing the phase
diagram to the one obtained from entanglement entropies. We
then turn to more general Haar random circuits in Sec. III B,
extending the class of random circuits compared to Ref. [14],
and testing the stability of the phase diagram against allowing
a wider set of unitary gates during the time evolution. Here the
stabilizer formalism is no longer applicable. Instead, we rely
on efficient tensor network methods to simulate the dynamics
and extract the string order parameters (4) and (5) in order to
determine the full phase diagram. In accordance with general
expectations, we find that the area law phases shrink slightly
upon extending the class of unitary gates; nevertheless, the
phase diagram remains qualitatively very similar to the one
obtained for Clifford circuits. These results provide evidence
for the robustness of area law phases in different random
circuit models.

A. Time evolution with Clifford unitary gates

In this section, we reproduce the phase diagram of
Ref. [14], by relying on the string order parameters instead
of a topological entanglement entropy. The special structure
of Clifford unitary gates allows us to efficiently simulate
large system sizes, up to N = 1024 qubits, by applying
the stabilizer formalism. This method relies on representing

the wave function of the system for a given circuit realization
as the eigenstate of N linearly independent (under multi-
plication) commuting Pauli strings, the so-called stabilizers.
Both Clifford unitaries and projective measurements preserve
this structure by mapping the stabilizers to another set of N
independent commuting Pauli strings, allowing to simulate
the time evolution efficiently [53]. The circuit averages are
then obtained by performing the averaging over the station-
ary states of 103 random circuits. For each of these circuits,
the qubits are initialized in the state |Z = −1〉⊗N , and let to
evolve for 2N time steps (corresponding to 2N2 operations) to
reach the steady state. Then, an additional time averaging is
performed by evolving the system for another 103 time steps,
calculating the desired string expectation values after each of
them, and taking the average of the obtained values.

For the finite systems considered here, we choose string
operators of length N/2 − 1, located in the middle of the
chain, as depicted in Fig. 2(a). We also make use of sublat-
tice symmetry in the following way. The string illustrated in
Fig. 2(a), displaced by one site to the right, will lead to the
same circuit average. Therefore, we can improve the conver-
gence of disorder averaging by averaging our results for the
original and shifted strings, for both string order parameters
(4) and (5).

Before turning to the time evolution in the presence
of unitary gates, we first comment on the special case of
measurement-only dynamics, pu = 0, a line in parameter
space that is the same for Clifford and Haar random circuits.
As shown in Fig. 2(b), the string order parameters allow to
distinguish the two different area law phases in the model.

The SPT phase (purple) is characterized by |SX,X
Z | > 0 and

|S1,1
Z | = 0, while the trivial phase is signaled by |SX,X

Z | = 0

and |S1,1
Z | > 0. Based on duality arguments, this transition

happens exactly at ps = 1/2, in good agreement with our
numerical results. We note that at the critical point ps = 1/2,
both string order parameters should vanish in the thermody-
namic limit. Due to finite-size effects, we find a small finite
value instead for the fixed system size N = 1024 shown in
Fig. 2(b).

Next, we turn to the case involving random Clifford uni-
tary gates, preserving the Z2 × Z2 symmetry (2). Figure 2(c)
shows the behavior of the string order parameters as a function
of the single-qubit measurement probability ps for a fixed rate
of unitary evolution, pu = 0.3. We find that the string opera-
tors are still well suited for reconstructing the phase diagram.
Besides the area law SPT (purple) and trivial (orange) phases
already seen for measurement-only dynamics, the volume law
phase (green) is clearly distinguished by the vanishing of both
string order parameters.

Our results demonstrate that string order parameters pro-
vide an accessible alternative way to determine the phase
boundaries. To account for finite-size effects, we calculate
the string order parameters |S|(N ) for various system sizes
N . At the critical point, this quantity is expected to decay
towards zero as a power law in N , allowing us to implement
an extrapolation to the thermodynamic limit, as discussed in
Appendix C. The phase diagram determined with this method
is shown in Fig. 4(a), and is in perfect agreement with the
results of Ref. [14].
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FIG. 2. String order parameters in a Clifford circuit for α = 2.
(a) String operators (5) and (4) in a finite lattice, characterized by
the same bulk operator (light shading), and distinguished by the
different boundary operators (dark shading). (b) String order param-
eters for measurement-only dynamics pu = 0, shown as a function
of the probability of single-qubit measurement ps in the vicinity
of the self-dual point ps = 0.5. String order parameters distinguish
two area law phases, one with SPT order (purple) and a trivial one
(orange). The vertical line indicates the exact critical point of the
phase transition, ps = 0.5. (c) String order parameters in the presence
of a finite rate of unitary gates, pu = 0.3, shown as a function of
ps across the phase boundaries. Unitary gates are Clifford unitaries
respecting the protecting Z2 × Z2 symmetry. String order parameters
distinguish an SPT (purple) and a trivial (orange) area law phase,
separated by a volume law region (green). Numerically determined
phase boundaries are indicated by vertical dashed lines. In (b) and
(c) we used system size N = 1024.

B. Phase diagram for Haar random unitary gates

In this section, we check the stability of the phase dia-
gram of the circuit model with respect to a broader class of
unitary gates. To this end, we consider the time evolution
in the presence of generic random Haar unitaries, with the
only restriction that the gates still preserve the protecting
symmetries (2). Thereby, we considerably extend the set of

FIG. 3. String order parameters in the α = 2 cluster circuit
model with Haar random unitary gates, plotted as a function of
single spin measurement probability ps across the phase bound-
aries, for fixed pu = 0.3. These order parameters distinguish an SPT
(purple) and a trivial (orange) area law phase, separated by a volume
law phase (green). The vertical dashed lines show the numerically
determined phase boundaries, with the grey shadow indicating the
uncertainty. We used system size N = 128 and an adaptive bond
dimension to ensure convergence for all data points, with a maximal
value χmax = 512 used in the points close to the phase transition.
Data are not shown for the volume law phase (green), where MPS
simulations are not efficient and did not converge for available bond
dimensions.

allowed gates in the circuit compared to the special Clifford
gates considered earlier. In principle, relaxing this constraint
on the structure of gates could lead to a more efficient en-
tanglement generation during the time evolution, and might
lead to a much broader region of volume law phase in pa-
rameter space. Therefore, we examine the sensitivity of phase
boundaries towards such an extension of allowed quantum
circuits. As we will demonstrate below, we can still identify
two distinct area law entangled phases, displaying SPT and
trivial order, respectively, in analogy with the Clifford case.

FIG. 4. Phase diagram determined from string order parameters,
(a) with random Clifford unitary gates and (b) with random Haar
unitaries, preserving the Z2 × Z2 symmetry. Numerical uncertainty
is indicated by grey shades. Both phase diagrams display an SPT and
a trivial area law phase, separated by a volume law region. Clifford
results are consistent with the phase diagram obtained in Ref. [14],
relying on entanglement entropies.
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For general Haar random gates, an efficient simulation of
the circuit relying on the stabilizer formalism is no longer
possible. Instead, we represent the wave function using matrix
product states (MPSs) [63,64], and implement the time-
evolving block decimation (TEBD) algorithm to calculate
the dynamics [65]. This method is well suited for study-
ing the SPT and trivial area law phases [66]; however, the
MPS representation with finite bond dimension breaks down
in the volume law phase. Nevertheless, we can still find
indications of the volume law phase through the logarithmi-
cally increasing half-chain entanglement entropy as a function
of the maximal allowed bond dimension, as discussed in
Appendix B. We also note that measuring the topological
entanglement entropy is much more demanding both in our
MPS simulations and in an experimental setup. Therefore,
here we solely rely on more accessible string order parameters
to determine the phase diagram.

In our MPS simulations, we consider spin chains with
up to N = 128 qubits. To ensure the validity of the results,
we examine the convergence of the entanglement entropy
with increasing bond dimension, and we keep track of the
symmetries (2) during the time evolution, to ensure that they
are not broken due to the truncation in the TEBD algorithm.
The required bond dimension is found to increase as the
critical lines are approached, and we run simulations with
up to χmax = 512. We discuss the convergence with bond
dimension in detail in Appendix B. We note that in the SPT
phase it is important to choose a bond dimension χmax that
is a power of 2, to minimize the probability of breaking the
symmetries by truncating degenerate Schmidt values, leading
to changes of steady-state properties (see Appendix D). We
obtain the circuit averages by generating 102 random circuits,
with the qubits initialized in the state |Z = −1〉⊗N . We also
perform an additional time averaging over 2 × 102 time steps
after the system has reached the steady state.

The string order parameters are shown as a function of ps

in Fig. 3, for a fixed probability of unitary gates pu = 0.3
and system size N = 128. All data points shown here are
converged with respect to bond dimension. For a low enough
rate of Z measurements ps, our simulation yields string order

parameters |SX,X
Z | > 0 and |S1,1

Z | = 0, consistent with the
presence of an SPT phase also for random Haar unitary gates

(purple region). Similarly, |SX,X
Z | = 0 and |S1,1

Z | > 0 indicate
a trivial area law phase (orange) for large enough ps. We con-
firm these predictions by carefully examining the finite-size
scaling of the string order parameters and extrapolating them
to the thermodynamic limit (see Appendix C). This procedure
leads to the phase boundaries shown by vertical dashed lines,
with the two area law regions separated by a volume law phase
(green), characterized by the vanishing of both string order
parameters. While the MPS representation with finite bond
dimension breaks down in this region, for the available system
sizes and bond dimensions we observed that the scaling of the
half-chain entanglement entropy is consistent with a volume
law behavior, providing additional support for the conclusions
drawn from the string order parameters. We note that the
area law regions in the Haar case shrink slightly compared
to the Clifford circuit [cf. Fig. 2(c)], in accordance with the
expectation that extending the set of allowed unitary gates
drives the system to a more entangled state.

We numerically estimate the full phase diagram for the
Haar random circuit by performing a similar extrapolation to
the thermodynamic limit, varying the probabilities ps and pu

(see Appendix C). To this end, we extracted the value of the
string order parameters for various system sizes at each point
in parameter space, and we carefully verified the convergence
with bond dimension for all system sizes used in this extrap-
olation procedure. We considered the area law phase up to
the vicinity of criticality, where the required bond dimension
is expected to scale as ξmax ∝ N . The results are shown in
Fig. 4(b), compared to the phase diagram of the Clifford
circuit, Fig. 4(a). The estimated numerical uncertainty of the
phase boundaries is indicated by grey shading, with the Haar
circuit results subject to a larger error due to the system size
limitations of the MPS simulations.

As a final remark, we note that MPS simulations grant
us access to the scaling exponents of the phase transitions,
and allow to address the question of whether the Haar and
Clifford circuits belong to the same universality class. For
completeness, we perform a finite-size scaling collapse for the
string order parameters, yielding two critical exponents νs and
η, defined by the scaling ansatz

SOL,OR

� (p, N ) = N−ηF
(
(p − pc)N1/νs

)
.

Here pc denotes the critical point, and F is the scaling func-
tion. Our best numerical estimates are consistent with the
same correlation length exponent νs for Clifford and Haar
circuits, while the exponent η is model dependent. We can also
determine a critical correlation length exponent ν from the
scaling of the entanglement entropy for the phase transition
between the trivial and volume law phase. Our numerical
findings show that both νs and ν are consistent with the perco-
lation value νperc = 4/3 up to numerical precision. We note,
however, that these results are subject to considerable numer-
ical uncertainty, warranting further large-scale simulations,
that we leave for future work. For a more detailed discussion
of our results on finite-size scaling and critical exponents,
please visit Appendix E.

IV. COEXISTENCE OF SPT AND SSB

Having validated our approach in the previous section, we
now turn to other members of the family of generalized cluster
models. In this section, we demonstrate that a coexisting SPT
order and SSB can be realized in the area law phase of the
circuit models for odd α values. To this end, here we focus
on the case with α = 3, realizing the XZZX circuit model
shown in Fig. 1(b). The ground state of the corresponding gen-
eralized cluster model Hamiltonian (1) shows both SPT and
SSB orders. As we demonstrate below, the out-of-equilibrium
version displays two area law phases: one characterized by co-
existing SPT and SSB orders and a trivial phase, separated by
a volume law entangled phase. In this section we restrict our
attention to Clifford circuits, with the unitary gates preserving
the symmetries (2), allowing us to reach large system sizes
by applying the stabilizer formalism. The measurement-only
limit of this model has been recently studied in Ref. [46].

To differentiate the phases realized by this model, we use
both the string order parameters of Eqs. (4) and (5), and the
local order parameter of Eq. (6), yielding Mi = XiYi+1Xi+2
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in this case. The SSB ordering can be detected through the
correlators of this local order parameter,

CM = lim
| j−k|→∞

〈MjMk〉. (7)

The finite-size versions of the string order parameters, as well
as the correlation function of Eq. (7) used for this model, are
illustrated in Fig. 5(a). The initial state of the qubits, as well
as the procedure for obtaining the circuit averages of various
quantities, is the same as the one applied for the XZX model.

We show the behavior of the circuit-averaged string order
parameters and the correlator of the local order parameter
in Fig. 5(b), for a fixed rate of unitaries pu = 0.1, using
system size N = 768. For a small rate of Z measurements
ps, the string order parameter S1,1

Z vanishes, while the other
string operator SX,X

Z and the correlator CXY X both take finite
values. This indicates an area law phase characterized by the
coexistence of SPT and SSB orders (magenta). We note that
up to numerical precision, the SPT order and SSB vanish at
the same critical point; thus we do not find an area law phase
displaying solely SPT or SSB order in this model. As shown
in Ref. [46] in the limit of measurement-only dynamics, an
SPT phase without SSB order can be generated by adding
symmetry-breaking operations, such as Y measurements, to
the circuit. For large single-qubit measurement probability ps,
we find a trivial area law phase (orange) with vanishing string
order parameter SX,X

Z and correlator CXY X , but a finite value
for S1,1

Z . As before, the two area law regions are separated
by a volume law phase (green), where all order parameters
become zero.

The full phase diagram of this model, extracted from the
extrapolation to the thermodynamic limit of the three types
of order parameters (as detailed in Appendix C), is shown in
Fig. 5(c). By comparing it to the phase diagram of the XZX
model, Fig. 4, we observe that the volume law phase becomes
more extended in the XZZX model, and the region with SPT
and SSB orders decreases in size with respect to the SPT phase
of the XZX circuit. This effect stems from the longer range
of the random unitary gates in the XZZX circuits, leading
to more efficient entanglement generation. Similarly to the
XZX model, the numerical results, as well as the analytical
arguments presented in Appendix A, suggest that the point
ps = pc = 1/2 and pu = 0 is a tricritical point.

V. CONCLUSION

We have studied the interplay of symmetry-protected
topological phases and measurement-induced entanglement
transition by introducing a class of quantum random circuit
models, consisting of projective measurements and random
unitary gates respecting a set of global symmetries. We
showed that the circuits in this family display measurement-
induced phase transitions between a thermal volume law
phase and different nonthermal area law stationary states,
and realize the out-of-equilibrium version of all general-
ized cluster states in their area law phase. Motivated by the
string operators used to detect SPT order in equilibrium set-
tings, we have constructed a set of nonequilibrium string
order parameters, well suited for revealing SPT order in this
class of circuit models, and readily accessible to numerical

FIG. 5. Phases realized by the XZZX (α = 3) circuit model.
(a) String operators and connected correlator of the local order pa-
rameter in a finite lattice. The two string operators (top and middle)
are characterized by a nontrivial bulk operator (light shading), and
boundary operators (dark shading), whereas the local order param-
eter (bottom) is measured at two distant positions (dark shading) to
capture SSB. (b) Order parameters across the two phase transitions
versus the probability of single-qubit measurement, ps, at fixed rate
of unitary gates, pu = 0.1, for system size N = 768. The two string
operators and the correlator (multiplied by 50 for better visibility) re-
veal an area law phase with coexisting SPT and SSB order (magenta),
as well as a trivial area law phase (orange), separated by a volume
law phase (green). Vertical lines indicate the numerically determined
phase boundaries. (c) Full phase diagram of the XZZX circuit model
obtained via string order parameters.

simulations. We benchmarked our framework by studying the
string order in the XZX circuit model and comparing it to
the behavior of the topological entanglement entropy in the
special case of Clifford unitary gates. We then tested the
stability of the phase diagram by relaxing the strong constraint
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on the structure of unitary gates and allowing for a wider
set of symmetry-preserving Haar random unitaries. Relying
on MPS simulations, we studied the finite-size scaling of the
string order parameters, allowing us to distinguish two area
law phases and a volume law phase and to determine the
phase boundaries. Our results confirm the presence of SPT
order in an extended region in parameter space and provide
additional evidence that the rich structure observed in Clifford
circuits also appears in more generic quantum circuit models.
Finally, we demonstrated in the example of the XZZX circuit
model that the out-of-equilibrium generalized cluster states
can host simultaneous SPT order and SSB, similarly to their
equilibrium Hamiltonian counterparts.

Our results pave the way to study topological phases in a
wider range of quantum circuit models. In particular, as we
demonstrated in this work, the out-of-equilibrium string order
parameters are accessible in MPS simulations, allowing us to
study the phase diagram of generic Haar random circuits. One
of the interesting open questions in this direction concerns
the universality class of various entanglement transitions. We
demonstrated that the MPS framework developed in this paper
opens a way to study the universal behavior of measurement-
induced phase transitions by examining the scaling of various
order parameters and entanglement entropies from the area
law side of the transition. We leave a more detailed analysis
of these scaling properties for future work. Furthermore, it
would be interesting to address how much information can be
obtained about the volume law phase by studying the scaling
of order parameters with bond dimension. Another interesting
direction is characterizing all the possible ordered phases that
can arise in the area law stationary states of random circuit
models. The family of random circuits considered in this
paper provides one example of a class of ordered phases;
however, the construction could be extended to give a recipe
for realizing other types of phases, such as true topological
order in higher-dimensional circuits.

Data analysis and simulation codes are available on Zen-
odo upon reasonable request [67].
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APPENDIX A: PHASE TRANSITION IN
MEASUREMENT-ONLY RANDOM CIRCUITS

In this Appendix we focus on random circuits in the
measurement-only regime, pu = 0, displaying a single phase

FIG. 6. Duality map between circuit realizations for (a) α = 2
and (b) α = 1. For α even the mapping connects circuits defined
on the same lattice, whereas for α odd we introduce a dual space.
In both cases, the initial state of the original circuit is given by the
stabilizers {Z1, Z2, . . . , ZN−α, G1, . . . , Gα}, and the initial state of the
dual circuit is given by stabilizers {g1, . . . , gN−α, G1, . . . , Gα}.

transition between two topologically distinct area law phases.
Here we prove via a duality argument that the critical point
is located at ps = 1/2 for any value of α. This critical point
is characterized by a logarithmic scaling of the entanglement
entropy as argued in Ref. [68]. We note that our reasoning
generalizes the proof from Ref. [14], finding the critical point
of the measurement-only XZX circuit cluster model, α = 2,
by extending it to all values of α.

Consider the circuit model for α > 0 and periodic
boundary conditions, with initial state |ψ0〉 = |0, . . . , 0〉,
described by the generating set of stabilizers {Z1, Z2, . . . ,

ZN−α, G1, . . . , Gα}. Here we make the symmetries of the
model explicit, as stabilizers that remain unaltered throughout
the evolution of the circuit. We denote the cluster operators by
gi = Xi−α/2Zi−α/2+1 . . . Zi+α/2−1Xi+α/2, with i ∈ {1, . . . , N}
for α even and i ∈ {1/2, 3/2, . . . , N − 1/2} for α odd (note
that all sums in indices are understood to be modulo N). At
each step of the circuit we measure Zi with probability ps

and gi with probability 1 − ps. From the Gottesman-Knill
theorem [53,69], a stabilizer at any time step of the evolution
can be written as a product of Z and g operators.

For each realization of the circuit model with probabil-
ity ps of Z measurement, we construct a dual version with
probability 1 − ps in the following way. For α even, the dual
circuit will be defined on the same lattice as the original one,
whereas for α odd we introduce a dual lattice, with lattice
sites indexed by half integers i ∈ {1/2, 3/2, . . . , N − 1/2},
and perform a mapping to this dual space. First, we set the
initial state of the dual circuit to be the one fixed by the
stabilizers {g1, . . . , gN−α, G1, . . . , Gα}. Then, we substitute
every Zi measurement by a gi measurement, and vice versa.
Figure 6 shows the duality transformation for a realization of
the circuit at α = 2 and α = 1. The evolved state of the dual
circuit is closely related to the state of the original circuit, as
the following lemma shows.

Lemma. Let

s =
(∏

i∈I

Zi

)( ∏
j∈J

g j

)
(A1)
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be a stabilizer of the state of the original circuit at the updating
step M, where I ⊂ {1, . . . , N} and J ⊂ {1, . . . , N} for α even
and J ⊂ {1/2, . . . , N/2 − 1} for α odd. Then, the state of the
dual circuit at updating step M is stabilized by the operator

s̃ =
(∏

i∈I

gi

)( ∏
j∈J

Z j

)
. (A2)

Proof. We prove the lemma by induction. By construction,
it is true for the initial state. Suppose it is true at updating
step M, and now let us apply a new measurement. If the new
measurement commutes with all stabilizers, then the state is
unchanged, so the claim is true. Let us consider the case where
the measured operator does not commute with all the stabiliz-
ers. For concreteness, suppose that we measure the operator
Zi in the original circuit (and thus gi in the dual one). The
measurement anticommutes with all the stabilizers that, when
expressed as a product of g and Z operators, contain either
gi+α/2 or gi−α/2 (but not both). We denote this set of stabilizers
by {s1, . . . , sn}. When Zi is measured, this set is updated to
{Zi, s1s2, . . . , s1sn}, by virtue of the Gottesman-Knill theorem.
In the dual circuit, gi anticommutes with Zi+α/2 and Zi−α/2, so
all the stabilizers commuting with these are {s̃1, . . . , s̃n} due to
the induction hypothesis. The updated state is stabilized by the
operators {gi, s̃1s̃2, . . . , s̃1s̃n}, so for the modified stabilizers
the claim is still true (s1s j → s̃1s̃ j). The same argument holds
for the case where the measured stabilizer is gi. �

To prove that the phase transition is located at ps = 1/2,
we apply a duality argument. Below we show that if the state
of one of the circuits has area law entanglement at some time
step, then so does its dual counterpart. Therefore, the critical
point with logarithmic entanglement scaling must coincide
with the self-dual point ps = 1/2. Within the stabilizer for-
malism [53], the entanglement entropy of a stabilizer state |ψ〉
for a region A of the chain is given by [70]

SA(|ψ〉) = nA − log2 |GA|. (A3)

Here nA is the number of qubits in A and |GA| is the total
number of stabilizers with support within A, i.e., of sta-
bilizers that act trivially on qubits outside of A. Let S =
{s1, . . . , sn} denote a generating set of the subgroup GA, with
n = log2 |GA|. Without loss of generality, we can assume that
for every site i ∈ A, there are at most two stabilizers in the
generating set that start or end at i (i.e., for which the first or
last nontrivial Pauli operator is at i). Each of the generators si

can be written as a product of g and Z operators contained in
A (for a contiguous region A).

We now consider the set of operators S̃ = {s̃1, . . . , s̃n},
where Z operators are replaced by g and vice versa. By the
previous lemma, these operators are stabilizers of the state of
the dual circuit, and one can easily check that they are lin-
early independent with respect to the product of Pauli strings
(since the original set is linearly independent). We define the
region Ã = A in the α-even case and Ã = {i + 1/2|i ∈ A} in
the α-odd case. In order to obtain an upper bound for the
entanglement entropy of Ã, we find a lower bound for the
number of stabilizers s̃i fully contained inside Ã. We observe
that the transformation Zi → gi moves the first and last non-
trivial operators by α/2 positions to the left and to the right,
respectively. Therefore, s̃i is still fully contained inside Ã if

FIG. 7. Convergence of TEBD results in the trivial area law
phase of XZX Haar random circuit. (a) Half-chain entanglement

entropy and (b) string order parameter |S1,1
Z | as a function of the

maximum bond dimension χmax for different system sizes N at pu =
0.3 and ps = 0.43, in the trivial phase. Points obtained by averaging
over 103 trajectories.

si does not have any nontrivial operator closer than α/2 to
one of the edges of A. Since there are at most two operators
with initial or final nontrivial operator at each site inside A,
at least n − 2α of the string operators in S̃ will be contained
in Ã. Therefore, log2 |GÃ| � log2 |GA| − 2α. Comparing to
Eq. (A3) gives

SÃ

(|ψ̃〉) � SA(|ψ〉) + 2α, (A4)

proving that the state of the dual circuit |ψ̃〉 indeed obeys
area law entanglement scaling for any area law entangled state
|ψ〉 of the original circuit. This completes our proof that the
critical point must be self-dual, pcrit

s = 1/2.

APPENDIX B: CONVERGENCE OF MPS SIMULATIONS
WITH BOND DIMENSION

For circuits with Haar random unitary gates, we rely on the
TEBD algorithm to study the time evolution. In this method,
the state of the system is represented as an MPS with maximal
bond dimension χmax. Such an MPS captures the exact state
in area law phases for large enough χmax, while volume law
phases require a bond dimension that diverges with increas-
ing system size in the thermodynamic limit [63,64]. In this
Appendix, we examine the convergence of our numerical re-
sults with χmax for the XZX Haar random circuit model in the
different regions of the phase space.

We first look at the behavior in the trivial area law phase.
In Figs. 7(a) and 7(b) we show the convergence of the entan-
glement entropy and the string order parameter as a function
of maximum bond dimension for the parameters pu = 0.3
and ps = 0.43. We observe that the entanglement entropy
converges to a finite value as the system size is increased, con-
firming that the stationary state shows area law entanglement.
Therefore, only a finite bond dimension is required to properly
represent the state of the system at any time step.

Ensuring convergence with bond dimension is trickier in
the SPT phase, since truncating the MPS to bond dimen-
sion to χmax can slightly break the Z2 × Z2 symmetry of
the model. This may happen when the Schmidt decompo-
sition of the state has degenerate singular values, an effect
already well known from the MPS representation of SPT
phases in equilibrium [2]. In particular, since the sym-
metry implies a fourfold-degenerate entanglement spectrum
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FIG. 8. Convergence of TEBD results in the SPT phase of XZX
Haar random circuit. Top: (a) Half-chain entanglement entropy and

(b) string order parameter |SX,X
Z | as a function of the maximum

bond dimension χmax for different system sizes N at pu = 0.2 and
ps = 0.14 in the SPT phase. Bottom: Time evolution of the (c) sym-
metry operator G1 and (d) half-chain entanglement entropy SN/2, for
different bond dimensions and fixed system size N = 128 in the SPT
phase. The evolution is time-averaged over 103 realizations of the
circuit. Truncation performed in the TEBD algorithm can break the
symmetry at low bond dimensions, leading to a reduced SN/2.

(see Appendix D), truncating the MPS to a sufficiently small
odd χmax and thereby breaking this degeneracy always breaks
the Z2 × Z2 symmetry. Such a truncation error affects the
averaged long-time values of certain quantities. More gen-
erally, in the circuit model, the entanglement spectrum can
show even higher degeneracies at certain time steps, always
in powers of 2. For this reason, it is convenient to always
choose χmax as a power of 2, leading to better conservation
of the symmetry during the truncation step in the TEBD evo-
lution, even for relatively small bond dimensions. We show
the convergence of SN/2 and the string order parameter with

χmax for various system sizes N in Figs. 8(a) and 8(b) [71], at
the point with pu = 0.3 and ps = 0.14, belonging to the SPT
phase. We obtain results similar to those of the trivial phase,
where entanglement entropy and string order converge to a
finite value for a fixed finite bond dimension, regardless of
the system size. Figures 8(c) and 8(d) show the time evolution
of the circuit-averaged half-chain entanglement entropy SN/2

and of the absolute value of the symmetry operator G1, re-
spectively, for various maximal bond dimensions with a fixed
number of qubits, N = 128. The smallest bond dimension,
χmax = 16, is not enough to preserve the symmetry during the
time evolution, and we observe that the entanglement entropy
is reduced upon breaking the symmetry.

Finally, we discuss the convergence at points close to crit-
icality and in the volume law phase. Figures 9(a) and 9(b)
show the convergence of the averaged steady-state half-chain
entanglement entropy SN/2 and the string order parameter

|S1,1
Z | close to the phase transition between trivial area law

and volume law phase (pu = 0.6, ps = 0.35). In Fig. 9(a) we
observe a constant increase of the entanglement entropy as
the system size is doubled, indicating a logarithmic scaling of
entanglement entropy. This implies that the bond dimension
required for convergence scales as χmax ∝ N . For sufficiently
small system sizes N � 128, we are able to get converged
results for the TEBD algorithm by taking a large enough bond
dimension, up to χmax = 512. This behavior is quite different
from that obtained in the volume law phase, where bond di-
mension scales exponentially with system size. Therefore, no
convergence is observed for the reachable bond dimensions,
even for considerably smaller system sizes [see Fig. 9(c)].

We note that in contrast to Clifford random circuits, in the
presence of Haar random unitary gates the position of the
phase boundary between area law and volume law entangle-
ment scaling can vary with the index of the Rényi entropy.
In particular, it has been shown [28] that in a certain class
of random quantum circuits, the measurement-induced phase
transition between area law and volume law entanglement is
located at different critical probabilities for Rényi entropies
n = 0 and n � 1, with pn=0

c � pn�1
c . In this case, for mea-

surement probabilities pn�1
c � p � pn=0

c , one needs a bond
dimension extensive in system size to exactly describe the

FIG. 9. Dependence of the TEBD results on bond dimension χmax close to the critical point and in the volume law phase of the XZX Haar

random circuit. (a) Half-chain entanglement entropy and (b) string order parameter |S1,1
Z | as a function of the maximum bond dimension χmax

for different system sizes N at pu = 0.6 and ps = 0.35, in the vicinity of the numerically extracted critical point between the trivial phase and
the volume law phase. Results consistent with a logarithmic scaling, SN/2 ∼ log N . (c) Half-chain entanglement entropy as a function of bond
dimension for a point inside the volume law phase (pu = 0.5 and ps = 0.3), where the required bond dimension increases exponentially with
system size. Points obtained by averaging over 102 trajectories.
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state with an MPS, even though the von Neumann entangle-
ment entropy follows an area law scaling. For such states,
it cannot be determined whether the MPS representation is
able to efficiently approximate the exact state of the system,
based on the entanglement scaling alone [72]. For the family
of circuit models studied here, we only relied on the von
Neumann entropy and string order parameters to detect the
phases, and we have checked the convergence of both these
quantities with bond dimension within the area law phases.
Both methods indicated the same critical lines. Further study
would be required to check the faithfulness of the MPS repre-
sentation.

APPENDIX C: FINITE-SIZE CORRECTIONS TO STRING
ORDER PARAMETERS

To determine the critical lines using string order parame-
ters, we examine their finite-size behavior for various system
sizes, comparing it to a power law decay expected to hold
at the critical point. This procedure allows us to extrapolate
our results to the thermodynamic limit, and to determine the
phase boundaries with higher numerical precision. In the ther-
modynamic limit, the area law phases are distinguished by
the vanishing of exactly one of the string order parameters,
while both of them become zero in the volume law phase. In
more detail, we use the following numerical procedure. For
a fixed pu, we calculate the relevant string order parameter
for different measurement rates ps close to the transition, for
several system sizes N . Then, for each ps, we fit the results
with a power law function f (N ) = cN−η + b. We expect that
at the critical point the string order parameter approaches zero
as N−η; thus the finite-size results can be well fitted with
η > 0 and b = 0. We note that away from the critical point,
this fitting of finite-size results breaks down.

We illustrate this procedure for the XZX circuit model in
Fig. 10, where we show the finite-size corrections to string
order parameters at different single-qubit measurement rates
ps, for Clifford (left) and Haar (right) unitary gate rate pu =
0.2. We show the behavior of the string order parameter

|SX,X
Z | for the transition between the SPT area law phase and

the volume law phase (top), and the scaling of |S1,1
Z | while

crossing the boundary from the volume law to the trivial area

law case (bottom). In the Clifford case, for |SX,X
Z |, the best

fit of the form N−η is obtained for ps = 0.27, with η = 1.24
[see Fig. 10(a)]. This result is consistent with the critical
ps obtained based on entanglement entropies, separating the
SPT area law and the volume law phases (see Ref. [14]).
For slightly higher values of ps, the string order parameter
converges to zero even more rapidly, while for ps below the
critical value, it remains finite in the thermodynamic limit.

Similarly, Fig. 10(c) shows the Clifford results for |S1,1
Z |,

predicting a transition at ps = 0.38 between the volume law
and trivial area law phases, again consistent with the critical
value found in Ref. [14]. Figures 10(b) and 10(d) show a
similar extrapolation for Haar unitaries. In this case, the ex-
trapolation has a larger error, due to the more limited system
sizes accessible in MPS simulations. We observe a similar
finite-size behavior for the XZZX Clifford model.

FIG. 10. Finite-size corrections to string order parameters for the

XZX circuit model at pu = 0.2. [(a), (b)] |SX,X
Z | for various measure-

ment rates ps across the SPT to volume law transition for Clifford and
Haar random unitary evolution, respectively, as a function of N−η.

[(c), (d)] |S1,1
Z | across the volume law to trivial area law transition.

The exponent η is obtained by linear regression at the ps value that
gives the best fit of the form N−η. The dashed red lines indicate the
linear regression extrapolated to N → ∞.

We note that in the area law phases the string order pa-
rameters converge nonmonotonously to a nonzero value for
certain parameter sets; see, for example, the line for ps = 0.23
in Fig. 10(a). This behavior is caused by the interplay of
two different convergence rates of the string order parameter.
Increasing the string length and the distance from the bound-
aries of the chain results in a convergence towards the order
parameter value in the thermodynamic limit from up and from
below, respectively, with the two processes characterized by
different convergence rates. Monotonous convergence can be
restored by fixing either of these length scales, but we found
that a more involved numerical procedure accounting for
this effect yields the same phase boundary within numerical
precision.

APPENDIX D: ENTANGLEMENT SPECTRUM OF XZX
HAAR RANDOM CIRCUIT

The MPS representation of a state gives direct access to
the Schmidt coefficients λα for any partition of the qubit chain
into subsystems A and B. These Schmidt values λα are defined
through

|ψ〉AB =
∑

α

λα |ψα〉A ⊗ |ψα〉B , (D1)

where {|ψα〉A} and {|ψα〉B} are orthonormal bases for subsys-
tems A and B, respectively. Therefore, we have access to the
entanglement spectrum of the system, defined as − ln λα , at
different points of phase space. In this section, we focus on the

224304-11



MORRAL-YEPES, POLLMANN, AND LOVAS PHYSICAL REVIEW B 108, 224304 (2023)

FIG. 11. Entanglement spectrum of the XZX Haar random cir-
cuit model. The instantaneous entanglement spectrum is plotted for
selected time steps in the steady state within the (a) SPT phase
(ps = 0.1, pu = 0.1), (b) trivial phase (ps = 0.45, pu = 0.1), and
(c) volume law phase (ps = 0.6, pu = 0.25). The entanglement
spectrum shows a fourfold degeneracy in the SPT area law phase.
The Schmidt values at the bottom, yielding the dominant contribution
to the entanglement entropy, remain well separated in both area law
phases, while forming a dense cluster in the volume law phase. We
used N = 256 and χmax = 128.

entanglement spectrum of the half chain. We find equivalent
results for any other nontrivial partition of the system.

In a nonequilibrium system, the entanglement spectrum
changes with time. Therefore, we illustrate its structure in
the steady state by showing the instantaneous entanglement
spectrum at a few selected time steps. The results for the
different phases of the model are displayed in Fig. 11.

In the SPT area law phase, displayed in Fig. 11(a), we
find that each Schmidt coefficient is fourfold degenerate. A
similar fourfold degeneracy of the entanglement spectrum in
the SPT phase with Z2 × Z2 symmetry has been observed in
equilibrium quantum matter [2], a property that translates to
this nonequilibrium setting. In the trivial area law phase, the
fourfold degeneracy is lifted, but the Schmidt values at the
bottom, most relevant for the entanglement entropy, remain
well separated from the rest [see Fig. 11(b)]. Finally, in the
volume law phase of Fig. 11(c), we find a large number of
Schmidt values at the bottom of the spectrum, a sign of a
highly entangled state. In this case, choosing a larger χmax

would add relevant Schmidt values, significantly changing
the value of the entanglement entropy, as was discussed in
Appendix B.

APPENDIX E: FINITE-SIZE SCALING WITH STRING
ORDER PARAMETERS

In Appendix C we have shown that string order parameters
decay as a power law at the critical point with a critical
exponent η. To further characterize the phase transitions and
string order parameters discussed in this work, we examine a

FIG. 12. Finite-size scaling of the string order parameters in
the XZX circuit cluster model. [(a), (b)] The collapse in the
measurement-only limit in the vicinity of the critical point between
the SPT and trivial area law phases, pc = 0.5. The critical exponents
are η ≈ 0.6 and νs = 4/3. [(c)–(f)] The rate of unitaries is set to
pu = 0.2, and we display the collapse for the transition from SPT
area law to volume law (left), and from volume law to trivial area law
(right) phase. Panels (c) and (d) show the collapse for the evolution
with Clifford unitaries, while (e) and (f) display it for the circuit
with random Haar evolution, obtained with MPS simulations. In the
latter case, data for the string order are only available in the area law
phase, where our simulations have converged with the available bond
dimensions.

finite-size scaling ansatz for the string order parameters, and
extract the critical exponent associated with the diverging cor-
relation length ν. In the measurement-only regime (pu = 0)
of the XZX model, ν = 4/3 has been established through
a mapping to a percolation model [14]. For a nonzero rate
of unitary evolution, the numerical results of Ref. [14] are
consistent with ν = 4/3 for both phase boundaries, up to
numerical precision. Here the exponent ν is obtained from a
finite-size scaling ansatz for entanglement entropies.

We find that our numerical results are consistent with the
following finite-size scaling ansatz for the string order param-
eters near the critical point [73],

SOL,OR

� (p, N ) = N−ηF ((p − pc)N1/νs ), (E1)

with critical exponents νs and η. Note that, in principle, the
exponent νs could differ from the exponent ν obtained through
entanglement entropies (see, for example, the different critical
exponents for the entanglement entropy and the spin glass
order parameter in Ref. [45]).
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FIG. 13. Finite-size scaling collapse of the disorder-averaged
half-chain entanglement entropy, subtracting the value at the critical
point. The exponent ν ≈ 1.3 gives the best possible collapse for the
available data.

We first analyze the scaling collapse of our data for the
measurement-only evolution, pu = 0, where both the exact
position of the critical point and the critical exponent ν = 4/3
are known from a mapping to percolation. The scaling ansatz
(E1) yields an excellent collapse with νs = 4/3 and η ≈ 0.6
for both string order parameters, as shown in Figs. 12(a) and
12(b).

When we turn the unitary evolution on, obtaining the pa-
rameters for the scaling collapse becomes more challenging.
Here we need to find the best fit for three unknown param-
eters: the critical probability pc

s and the critical exponents
η and νs. To perform the fitting, we set pc

s and η to the values
obtained in Appendix C, so that we only need to fit νs to get

the best collapse. In Figs. 12(c) and 12(d) we show the scaling
collapse for the two transitions in the line pu = 0.2 for the
evolution with Clifford unitaries. In Figs. 12(e) and 12(f) we
show it for random Haar unitaries, but limited to values in the
area law phase, where our MPS simulations have converged
with respect to bond dimension.

We note that, due the large number of fitting parameters,
the obtained exponents suffer from considerable numerical
uncertainty. Nevertheless, we can extract several conclusions
from the scaling collapses. In both the Clifford and Haar
cases, the values of νs that provide the best fitting are always
in the interval [1.1, 1.5], which could be consistent with the
percolation value 4/3 within numerical errors. We would need
further large-scale simulations and a more precise analysis
of data to determine pc

s and η with higher precision, and to
carefully check the consistency with the percolation value. We
leave this challenging task for future work. The good collapse
that we obtain for the Haar random case is a clear indication
of criticality, which reinforces our estimation of the phase
transition points and the existence of a phase transition.

In the transition between trivial area law and volume law
entanglement, one can perform a similar finite-size scaling
analysis for the half-chain entanglement entropy as discussed
in Refs. [17,19]. This scaling collapse relies only on the values
of pc

s and ν, allowing to perform the fitting with slightly
less numerical uncertainty. The half-chain entanglement en-
tropy is a quantity that can be obtained straightforwardly
from MPS simulations. Results are shown in Fig. 13, where
we find a scaling exponent consistent with the percola-
tion value ν = 4/3. Such a result extends to the rest of
the trivial-volume law critical line. With these results, we
show the suitability of MPS simulations to determine criti-
cal exponents in the context of measurement-induced phase
transitions.
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