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Collective dynamics in liquid aluminium oxide: Ab initio analysis of collective eigenmodes
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Collective dynamics in molten alumina is studied by a combination of ab initio molecular dynamics (AIMD)
simulations and theoretical analysis of time correlation functions. Two models of dynamics in molten salts are
used to analyze time correlation functions: a six-variable viscoelastic model and an eight-variable thermovis-
coelastic one. The corresponding sets of dynamic variables are used to construct 6 × 6 and 8 × 8 generalized
hydrodynamic matrices, eigenmodes of which represent (wave number) k-dependent propagating and relaxing
processes. It is shown that the thermoviscoelastic model is able to recover the AIMD-derived partial current-
current time correlation functions, represented via contributions of the eight k-dependent collective eigenmodes.
Dispersion and damping of three branches of propagating eigenmodes are compared to the numerical estimates
from peak positions of corresponding current spectral functions in order to rationalize effects of acoustic,
longitudinal and transverse opticlike excitations in collective dynamics of molten alumina. The role of another
branch of propagating eigenmodes in recovering the frequencies and damping of long-wavelength longitudinal
optic-like modes estimated from AIMD-derived spectral current functions is discussed.
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I. INTRODUCTION

Microscopic structure and dynamics of solid and liquid
oxides, as well as of their nanoparticles, is of great interest
due to numerous applications of the oxides’ nanotechnology
and electrochemistry [1–3]. In particular, alumina, Al2O3,
nanoparticles are one of the most extensively used nanometal-
lic oxides and nanofillers due to their fascinating properties
in everyday applications. Aluminium oxide is an ionic com-
pound and is used in aluminium production, when electrolysis
of the alumina/cryolite solution gives aluminium at the cath-
ode and oxygen at the anode. Moreover, the aluminum oxide
was found in significant amounts in brain specimens of pa-
tients with Alzheimer’s disease [4,5], which has caused a
discussion about the effect of aluminium pots and dishes in
the development of Alzheimer’s disease. From a scientific
point of view, molten oxides such as Al2O3 represent an ad-
ditional challenge for understanding their transport properties
and collective dynamics. As a matter of fact, these oxides are
characterized not only by polarizability effects but also by
partial charges, covalent oxygen bonding, and triply bonded
oxygen, leading to the appearance of AlO5 structural units that
impact the shear viscosity and collective dynamics [6].

Experimental studies of collective dynamics of Al2O3 were
limited mainly to inelastic x-ray scattering (IXS) for liquid
and supercooled states in a range of temperatures from 2300
to 3100 K [7], the melting point being Tm = 2327 K [8].
More recently, the structure factor was measured from x-ray
diffraction experiments [9]. Given the scarcity of the measure-
ments, atomic-scale simulations such as molecular dynamics
provide a powerful and complementary means for a deeper
understanding of the dynamics.

The atomistic structure and dynamics of alumina melts
were studied by computer simulations [9–16] using different
interaction models. Three potential models were derived from
density functional theory (DFT) using the local-density ap-
proximation (LDA), the generalized gradient approximation
(GGA), and the meta-GGA functional within the strongly
constrained and appropriately normed (SCAN) functional
approach [17] respectively. Jahn et al. [12] developed a
fully flexible ionic interaction model for alumina account-
ing for ionic polarizability and shape deformations up to the
quadrupolar level and derived two versions based respectively
on the LDA and the GGA. On this basis, the sound velocity
of about vs = 7350 m/s at T = 2350 K was further reported
[13], and the vibrational density of states and the dispersion
of acoustic modes were studied [14]. The dispersion relations
and line widths were obtained from the maxima of the partial
longitudinal current correlation spectra and from fits of the
total x-ray-weighted dynamic structure factor S(k, ω) with a
Lorentzian model, with k and ω being the wave number and
the frequency, respectively. An estimate for a sound velocity
was made as 6800 m/s at T = 2500 K [14]. The SCAN-
based potential gives also a very good description of the melt
properties such as the local structure and self-diffusion coeffi-
cients [16], but was not exploited for the collective dynamics
for now.

Theoretical models should recover details of collective dy-
namics in molten salts and oxides, especially on nanoscales
with explicit accounting for atomistic structure (nonhydro-
dynamic effects). Simple hydrodynamic models for binary
ionic liquids address only slow processes stemming from
local conservation laws, which are inadequate for typical
temporal and spatial scales of processes measured in IXS

2469-9950/2023/108(22)/224204(11) 224204-1 ©2023 American Physical Society

https://orcid.org/0000-0002-3240-3977
https://orcid.org/0000-0002-4360-0634
https://orcid.org/0000-0002-4031-0965
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.224204&domain=pdf&date_stamp=2023-12-15
https://doi.org/10.1103/PhysRevB.108.224204


KOPCHA, BRYK, WAX, AND JAKSE PHYSICAL REVIEW B 108, 224204 (2023)

experiments or observed in the shape of time correlation
functions from molecular dynamics simulations. One of the
most promising directions in theoretical modeling of collec-
tive dynamics in liquids and ionic melts, in particular, is
based on an extention of the hydrodynamic treatment with
additional balance equations for nonhydrodynamic dynamic
variables. The latter can be performed within a matrix form of
the generalized Langevin equation known as the generalized
collective modes (GCM) framework [18,19]. For ionic melts,
a very specific feature of collective dynamics is in the be-
havior of charge-density time correlations, which are affected
by nonhydrodynamic optic modes, in contrast to the case of
simple liquid mixtures [20]. Early attempts to obtain disper-
sion curves of collective excitations for NaCl and NaI within
the parameter-free GCM approach [21] showed a mismatch
between theory and experimental results [22,23], possibly due
to the neglect of polarization effects. Next ab initio GCM
studies of dynamics in molten salts were performed with the
full accounting for polarization of the electron subsystem,
and based on the viscoelastic dynamic model [24,25]. This
approach improved the dispersion curves; however, it was
unable to recover well the simulation-derived partial density-
density and current-current time correlation functions. New
IXS experiments for NaI [26] and NaCl [27] revived the
interest in the dispersion law of nonhydrodynmic opticlike ex-
citations. Recently, an extended thermoviscoelastic dynamic
model was suggested [28] that showed promising results in
recovering the correct behavior of time correlation functions
in ionic melts.

The aim of this study is to apply the recently suggested
eight-variable GCM methodology to analyze time correlation
functions of nonsimple ionic melt Al2O3 and estimate
the dispersion of acoustic and nonhydrodynamic optic
modes. For this purpose, the time correlation functions were
determined from ab initio molecular dynamics (AIMD)
simulations based on DFT with the SCAN functional to
preserve the best accuracy that would probably be less with
empirical potentials. The main finding of this study lies
in the application of the eight-variable model that allows
one to recover AIMD-derived partial current-current time
correlation functions with good precision. Furthermore,
the eight-variable model is necessary to explain the time
dependence of longitudinal current correlations in this oxide
melt as in molten salts previously studied [28], pointing
towards the generality of this theoretical approach, which can
represent a basis for the understanding of collective dynamics
in liquids with long-range interactions. The remaining part
of the paper is organized as follows. In the Sec. II technical
details of AIMD simulations of liquid Al2O3 are reported and
details of the theoretical analysis framework are developed.
Section III contains the main results on static structure and on
single-particle and collective dynamics and the corresponding
discussion. The last section draws the conclusions.

II. COMPUTATIONAL AND THEORETICAL
BACKGROUND

A. Ab initio molecular dynamics simulations

The ab initio molecular dynamics simulations were per-
formed within the DFT [29,30] using the Vienna ab initio

simulation package [31,32] (VASP) in version 5.4.4. Cubic
simulation supercells were set up with periodic boundary
conditions and a number of N = 300 atoms, out of which
120 were Al atoms and 180 were O atoms. The projector
augmented-wave method with a cutoff energy set to 600 eV
(beyond the recommended value for the potentials) was used
to describe the electron-ion interactions [33,34]. This larger
cutoff guarantees an accurate determination of the pressure.
Exchange-correlation effects were taken into account within
the meta-GGA functional within the strongly constrained and
appropriately normed (SCAN) functional approach [17]. The
latter was proven relevant for several oxides in the crystalline
and molten states including alumina [16,35,36]. As far as
the liquid phase is concerned, and quite a large number of
particles was used in simulations, only the � point was used
in sampling the Brillouin zone. The dynamics were performed
within Newton’s equations of motion, integrated numerically
using the Verlet algorithm in the velocity form with a time
step of 1 fs.

The phase-space trajectory was determined in the canoni-
cal ensemble, namely, constant numbers of atoms N , volume
V , and temperature T (NV T ), by means of a Nosé thermostat
[37,38]. We checked out the temperature fluctuations to make
sure they were practically not affected by introduction of the
thermostat. We have to mention that the thermostat coupled to
the simulated system can bias the dynamics as it was shown
in Ref. [39]. Our simulation was conducted at T = 2400 K,
and the size of the supercell was adjusted to get a pressure
close to zero with a residual value of less than 0.37 GPa,
which is lower than the amplitude of pressure fluctuations dur-
ing the simulation. The resulting equilibrium atomic volume
was found to be 11.60 Å3, close to the experimental value
11.58 Å3 [40]. After pressure adjustment and equilibration,
the duration of the runs was 41 ps in order to produce the
physical properties. It was shown [16] that the AIMD results
are in good agreement with the x-ray diffraction experiments
[9] for the total structure factor and are consistent with the
tracer diffusion measurements [41] for the self-diffusion coef-
ficient of oxygen.

B. Generalized collective modes approach

In order to analyze AIMD-derived time correlation func-
tions, the generalized hydrodynamic approach to collective
dynamics of binary liquids is used. For a description of the
very long-wavelength dynamics in the particular case of oxide
melts, it is enough to start from consideration of hydrody-
namic fluctuations (fluctuations of conserved quantities) of
four dynamic variables:

A(hyd)(k, t ) = {nt (k, t ), nQ(k, t ), JL (k, t ), e(k, t )}, (1)

where nt (k, t ) and nQ(k, t ) are the spatial Fourier compo-
nents of the total number density and the charge density,
respectively; JL(k, t ) is the spatial Fourier component of the
total mass-current density; and e(k, t ) is the spatial Fourier
component of the energy density. However, outside the hydro-
dynamic regime (and the wave numbers in AIMD simulations
as well as in IXS experiments are outside hydrodynamics), the
hydrodynamic description of collective dynamics is not suffi-
cient to explain the dynamic processes and one has to make
use of the extended sets of dynamic variables, which enable
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treatment of nonhydrodynamic processes [42]. In the actual
study a thermoviscoelastic dynamic model of locally coupled
(with the same k) fluctuations is adopted, which forms a set of
Nv = 8 dynamic variables:

A(8)(k, t ) = {
nAl(k, t ), nO(k, t ), JL

Al(k, t ), JL
O(k, t ),

× e(k, t ), J̇L
Al(k, t ), J̇L

O(k, t ), ė(k, t )
}
, (2)

where

nα (k, t ) = 1√
Nα

Nα∑
j=1

e−ikr j,α (t ), α = Al, O, (3)

are the spatial Fourier components of partial particle densities,

JL/T
α (k, t ) = mα√

Nα

Nα∑
j=1

v
L/T
j,α (t )e−ikr j,α (t ), α = Al, O, (4)

are the spatial Fourier-components of partial mass-current
densities; mα and Nα are the mass and number of atoms of
the α species, respectively; k is the wave vector; r j,α (t ) is the
particle position; and v

L/T
j,α (t ) is the longitudinal or transverse

component of the particle velocity, while the summation for
each partial variable is performed over the particles of kind α.
The total mass-current in Eq. (1) is simply

JL/T
tot (k, t ) = √

cAlJ
L/T
Al (k, t ) + √

cOJL/T
O (k, t ), (5)

with regular concentration of species cα , and the overdots in
Eq. (2) mean the first time derivative of the corresponding
variable. A simplified dynamic model, the Nv = 6 variable
viscoelastic (ve) one,

A(ve)(k, t ) = {
nAl(k, t ), nO(k, t ), JL

Al(k, t ), JL
O(k, t ),

× J̇L
Al(k, t ), J̇L

O(k, t )
}
, (6)

does not contain contributions from the energy (heat) density
or the energy (heat)-current density, which makes possible

simple evaluation of all static and dynamic correlation for
GCM analysis directly from AIMD. The chosen set of dy-
namic variables is used to construct a Nv × Nv generalized
hydrodynamic matrix T(k), eigenvalues z j (k) of which corre-
spond to wave-number-dependent collective modes. Note that
for propagating eigenmodes one obtains pairs of complex-
conjugated eigenvalues

z j (k) = σ j (k) ± iω j (k), (7)

with the real part σ j (k) corresponding to the k-dependent
damping, and ω j (k) corresponding to the dispersion of the jth
branch of collective excitations, while purely real eigenvalues
[we mark them as d j (k)],

z j (k) ≡ Re[z j (k)] = d j (k), (8)

correspond to relaxation processes in the melt. For longitudi-
nal dynamics there must exist in the long-wavelength region
at least two relaxation processes: d1(k) ∝ k2, related mainly to
thermal diffusivity, and d2(k), tending in the long-wavelength
limit to a nonzero constant due to the local electroneutrality
condition.

Within the GCM approach the 8 × 8 generalized hydrody-
namic matrix T(k), obtained on the set of dynamic variables
(2), is expressed in the following way [18]:

T(k) = F(k, t = 0)F̃−1(k, z = 0), (9)

via the Nv × Nv matrices of static correlation functions
F(k, t = 0) and of Laplace-transformed time correlation func-
tions in the Markovian approximation F̃(k, z = 0) [18,43].
For the case of the eight-variable set of dynamic variables (2),
one has to calculate for each wave number k the 8 × 8 matrix
of static correlations,

F(k, t = 0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fnAlnAl fnAlnO 0 0 fnAle −i k
mAl

fJAlJAl 0 0

fnAlnO fnOnO 0 0 fnOe 0 −i k
mO

fJOJO 0

0 0 fJAlJAl 0 0 0 0 −i fJ̇Ale

0 0 0 fJOJO 0 0 0 −i fJ̇Oe

fnAle fnOe 0 0 fee −i fJ̇Ale −i fJ̇Oe 0

i k
mAl

fJAlJAl 0 0 0 i fJ̇Ale fJ̇Al J̇Al
fJ̇Al J̇O

0

0 i k
mO

fJOJO 0 0 i fJ̇Oe fJ̇Al J̇O
fJ̇O J̇O

0

0 0 i fJ̇Ale i fJ̇Oe 0 0 0 fėė

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

and a matrix of Laplace-transformed time correlation functions at z = 0,

F̃(k, z = 0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τnAlnAl fnAlnAl τnAlnO fnAlnO
imAl

k fnAlnAl
imO

k fnAlnO τnAle fnAle 0 0 fnAle

τnAlnO fnAlnO τnOnO fnOnO
imAl

k fnAlnO
imO

k fnOnO τnOe fnOe 0 0 fnOe
imAl

k fnAlnAl
imAl

k fnAlnO 0 0 imAl
k fnAle fJAlJAl 0 0

imO
k fnAlnO

imO
k fnOnO 0 0 imO

k fnOe 0 fJOJO 0

τnAle fnAle τnOe fnOe
imAl

k fnAle
imO

k fnOe τee fee 0 0 fee

0 0 − fJAlJAl 0 0 0 0 i fJ̇Ale

0 0 0 − fJOJO 0 0 0 i fJ̇Oe

− fnAle − fnOe 0 0 − fee i fJ̇Ale i fJ̇Oe 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)
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where the indices in matrix elements correspond to dynamic
variables from the set (2). Since among the variables of the
set (2) are first-time derivatives of hydrodynamic ones, one
can make use of the rules of taking time derivatives and
integrals of time correlation functions [44], which allows one
to express the matrix elements of Eqs. (10) and (11) via a
smaller number of static averages. For this purpose we used
the notations fi j , which correspond to the absolute value of
the corresponding static averages, which allowed us to show
explicitly for readers which matrix elements are purely imag-
inary and positive/negative real numbers. The correlation
times in Eq. (11) are defined as

τi j (k) = 1

Fi j (k, t = 0)

∫ ∞

0
Fi j (k, t )dt i, j = nAl, nO, e.

(12)

The eigenvalues of the generalized hydrodynamic matrix T(k)
and the corresponding eigenvectors allow one to calculate
time correlation functions between any two dynamic vari-
ables from the set (2), i, j = A(8)(k, t ), within the proposed
thermoviscoelastic dynamic model and to compare them to
the AIMD-derived time correlation functions. The GCM the-
oretical time correlation functions exactly satisfy a number of
exact sum rules, up to the fourth frequency moments of partial
dynamic structure factors.

While all the matrix elements corresponding to the six-
variable viscoelastic dynamic model can easily be obtained
from classical and ab initio simulations, the sampling of
energy (heat) density fluctuations and corresponding energy
(heat)-current density is extremely sophisticated in AIMD (as
it was discussed in Ref. [28]), which makes analysis within
the eight-variable thermoviscoelastic dynamic model prob-
lematic. Therefore, in Ref. [28] it was suggested to treat the
nine matrix elements involving quantities with energy (heat)
density and energy (heat)-current density as fitting parameters
and estimate these fitting parameters from the best correspon-
dence between AIMD-derived three partial density-density
and three partial current-current time correlation functions
and their GCM theoretical representations. An algorithm of
minimization with Powell’s conjugate direction method [45]
was applied in the fitting scheme. In Ref. [28], using molten
NaCl as a case study, very good agreement was obtained
between the AIMD simulations and the eight-variable GCM
thermoviscoelastic theory. Here, this methodology is applied
to much more sophisticated dynamics of molten Al2O3 and
analysis of time correlations in it. All the static and dynamic
correlation functions, calculated from AIMD simulations, are
estimated in a wide range of wave numbers with the smallest
accessible one being kmin = 0.4146 Å−1 and averaged over all
possible directions of corresponding wave vectors.

III. RESULTS AND DISCUSSION

The static atomic structure of binary liquids is usually
represented by partial pair distribution functions gi j (r) and
partial structure factors Si j (k). In Fig. 1 the partial functions
gi j (r), i, j = Al and O, obtained from AIMD trajectories are
shown. As it is typical with long-range Coulomb interaction
between particles, the effect of screening of the long-range
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FIG. 1. Partial pair distribution functions for liquid Al2O3, ob-
tained from ab initio simulations.

attraction results in the first coordination shell (centered at
∼1.85 Å), which is composed of particles with opposite ef-
fective charge. The second coordination shell is composed
mainly of particles with the same effective charge sign, and as
it follows from Fig. 1, Al and O ions have different effective
sizes. Partial static structure factors for Al2O3, estimated
directly from AIMD as Si j (k) = 〈ni(−k)n j (k)〉 with ni(k, t ),
i = Al, O, being the dynamic variables of partial particle den-
sity from the set (2) and 〈· · · 〉, the ensemble average, are
shown in Fig. 2(a). For comparison, Fig. 2(b) shows the k
dependence of Bhatia-Thornton structure factors, SNN (k) and
SCC (k), which show correlations in total number (N) and
concentration (C) fluctuations in the binary melt [46,47]. Note
that, while the partial structure factors SAlAl(k) and SOO(k)
show qualitatively similar behavior vs k with peak locations
at 2.5 and 2.8 Å−1, respectively, the Bhatia-Thornton struc-
ture factors show well-pronounced chemical ordering [high
first maximum of SCC (k) at ∼2.6 Å−1] and an absence of
a well-pronounced first maximum of SNN (k), which is the
consequence of specific structural features of molten Al2O3

observed in partial pair distribution functions in Fig. 1.
Velocity autocorrelation functions (VACFs) are important

single-particle time correlation functions, which with Fourier
spectra allow estimation of the self-diffusion coefficients,
as well as information about the high-frequency vibrational
density of states. Figure 3 shows VACFs for Al and O and
their Fourier spectra. Since aluminum ions are almost by
70% heavier than the oxygen ones, their VACF do not show
well-defined oscillations, although both VACFs in Fig. 3(a)
show the “cage effect,” a back-scattering on nearest neighbors,
which is evidenced by negative region of the VACFs. The
diffusion coefficients estimated from the Kubo-Green integra-
tion of VACFs are 0.175 ± 0.02 and 0.192 ± 0.02 Å2/ps for
Al and O, respectively. The diffusion of atoms is reflected
in nonzero values of VACF Fourier spectra at ω = 0. The
VACF Fourier spectra usually show peaks at the flat regions in
the dispersion of collective excitations. It is worth noting for
further analysis of dispersion law that the well-pronounced
peaks of VACF Fourier spectra [Fig. 3(b)] are at ∼45 ps−1

for Al and at ∼50 ps−1 for O, while a smeared shoulder is
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FIG. 2. (a) Partial Ashcroft-Langreth structure factors and (b) Bhatia-Thornton structure factors SNN (k) = 〈nt (−k)nt (k)〉 and SCC (k) =
〈nc(−k)nc(k)〉 for liquid Al2O3, obtained from ab initio simulations.

observed in the VACF Fourier spectrum of oxygen in the
region ∼130–160 ps−1. Collective dynamics of binary (and
in general of many-component) liquids contain nonhydrody-
namic excitations caused by mass-concentration fluctuations
and which have an analogy with damped optic phonons in
many-component solids. The theory of longitudinal (L) [48]
and transverse (T) [49] optic modes in binary liquids based on
separate treatment of mass-concentration fluctuations results
in damping of optic modes due to mutual diffusivity of species
and a tendency to demixing. So far, the general theory which
accounts for coupling of optic and acoustic modes in the
longitudinal case or with fluctuations of total mass current
in the transverse case was not derived, because it requires
analytical solution of (at least) six-variable longitudinal and
four-variable transverse eigenvalue problems. For ionic liq-
uids there are specific features in the behavior of optic modes
[20], which come from the local electroneutrality condition
which excludes the demixing because the long-wavelength
charge-charge static structure factor (an analogy of the Bhatia-
Thornton concentration-concentration static structure factor)
asymptotically tends to zero. The existence of opticlike ex-
citations in the studied molten Al2O3 can be seen from the
behavior of autocorrelation functions of mass-concentration
current F L,T

JxJx
(k, t ) shown in Fig. 4 at the smallest wave number

available in actual simulations. The dynamic variable of the
mass-concentration current Jx(k, t ) is orthogonal to the total
mass-current Jt (k, t ) as it was shown in Ref. [49]. One can see
in Fig. 4 that the autocorrelation functions of total F L/T

Jt Jt
(k, t )

and mass-concentration F L/T
JxJx

(k, t ) currents indeed correspond
to collective processes on different timescales, showing essen-
tially different frequencies of damped oscillations in their time
dependence: the long-wavelength functions F L/T

Jt Jt
(k, t ) reflect

propagation of acoustic excitations in L dynamics and shear
waves in T dynamics, while L and T optic modes contribute
to F L/T

JxJx
(k, t ). This property of F L/T

Jt Jt
(k, t ) and F L/T

JxJx
(k, t ) time

correlation functions is used for numerical estimates of the
dispersion of L and T collective excitations via numerical time
Fourier transform.

It is a great challenge for a theory to recover the AIMD-
derived time correlation functions. Moreover, if the theory is
able to represent the time correlation functions via dynamic
eigenmodes of the liquid system, then recovering AIMD-
derived time correlation functions simultaneously results in
dispersion and damping of propagating modes. Two dynamic
models are applied, the viscoelastic one for binary liquids
with the set of six dynamic variables (6) and the thermo-
viscoelastic model of eight dynamic variables (2). In Fig. 5
one can see how the parameter-free viscoelastic six-variable
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FIG. 6. Dispersion of “bare” (nondamped) longitudinal collec-
tive modes (plus symbols) and of propagating eigenmodes obtained
within the six-variable model A(ve) (open boxes).

model is unable to recover correctly the time dependence of
partial current-current time correlation functions, while the
thermoviscoelastic dynamic model with several parameters,
corresponding to coupling with thermal modes, allows one
to recover the AIMD-derived time correlation functions in
a wide range of wave numbers. Note that both theoretical
models, A(ve) and A(8), provide the same precision from the
point of view of accounting for frequency and time mo-
ments. However, the eight-variable model (2) allows two
additional nonhydrodynamic modes. In Fig. 5 each of the
GCM theoretical partial current-current functions (either in
model A(ve) or in model A(8)) satisfies six sum rules: three
for zero-, first-, and second-time derivatives at t = 0 (short-
time behavior) and three for the zero-, first-, and second-time
moments of F L

JiJj
(k, t ). However, two additional nonhydrody-

namic eigenmodes within the thermoviscoelastic model allow
essential improvement in recovering the AIMD-derived par-
tial current-current functions (as shown in Fig. 5). The issue
of unsatisfactory recovering of AIMD-derived current-current
time correlation functions by the six-variable viscoelastic
model (6) in Fig. 5 becomes clear after comparison of the

dispersion of two branches of propagating eigenmodes, ob-
tained within the viscoelastic model (6), with the frequencies
of “bare” (nondamped) collective modes, whose analytical
expressions were reported in Ref. [24] (see Fig. 6). Indeed,
the frequencies of propagating eigenmodes of the viscoelastic
model are just a bit lower than the frequencies of the “bare”
modes, showing that some damping mechanism was not taken
into account within the simple viscoelastic model, because
usually the frequencies of collective modes are renormalized
from their “bare” values as

ω j (k) =
√

ω2
j,bare(k) − σ 2

j (k). (13)

For k < 1 Å−1, one can easily discriminate between the high-
frequency opticlike and low-frequency acoustic branches,
although the frequencies of the acoustic branch in Fig. 6
are higher than the frequencies of the experimental long-
wavelength dispersion of acoustic modes from IXS experi-
ments [7]. It is clear that in the long-wavelength region the
acoustic branch is missing additional damping due to coupling
with thermal fluctuations [the viscoelastic model (6) does
not have thermal processes among the dynamic variables],
which make the leading contribution to the central peak of
dynamic structure factor (and to exponential decay of all
partial density-density time correlation functions) according
to the hydrodynamics of molten salts [44]. Figure 5 shows
evidence that the thermoviscoelastic model, in contrast to
the six-variable model, is able to recover the behavior of
AIMD-derived time correlation functions. The dispersion and
damping of propagating modes obtained within the eight-
variable thermoviscoelastic model A(8) and contributing to the
behavior of partial current-current time correlation functions
are shown in Fig. 7. In almost the whole k-range three pairs
of complex-conjugated eigenvalues z j (k) = σi(k) ± iω j (k),
j = 1 and 3, of dynamic modes were obtained, where ω j (k)
and σ j (k) are dispersion and damping of the jth propagating
mode. In Fig. 7 one can see that for k < 1 Å−1 it is easy to
distinguish three branches of propagating excitations, while
for larger wave numbers the coupling between branches leads
to essential mixing of contributions from different types of
microscopic fluctuations reflected in dynamic variables of the
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FIG. 8. Distribution of the number of oxygen atoms around alu-
minium (triangles) and oxygen (circles) from AIMD simulation at
T = 2400 K. Insets show typical local structural units present with
significant proportions around O atoms (shown in yellow color) such
as bonded oxygen (BO) and triply bonded oxygen (TBO), also called
triclusters, as well as around Al atoms, such as AlO4, AlO5, and
AlO6. Al and O atoms are drawn in magenta and red, respectively.

set A(8) (2) and it is difficult to estimate the unique origin of
each dynamic mode. In the low-k region it is easy to identify
at least two branches of propagating modes. The branch z1(k)
corresponds to acoustic excitations, which propagate with an
apparent speed of sound very close to the linear dispersion law
estimated from IXS experiments [7]. From the propagating
eigenmode at the lowest k value we estimated the speed of
sound in liquid alumina at T = 2400 K to be 7180 m/s,
which agrees with the experimental data [7]: 7350 ± 40 m/s
at 2323 K and considering that with temperature the IXS ex-
periments estimated a drop of the speed of sound to 6530 ± 70
m/s at 3073 K. Another branch z3(k) corresponds to the
longitudinal optic (LO) excitations. Being nonhydrodynamic
excitations (which are not caused by fluctuations of conserved
quantities), the damping of the LO branch z3(k) tends in the
long-wavelength limit to a constant value of ∼20 ps−1, which
makes it evident that the nonhydrodynamic modes do not con-
tribute to the dynamics on macroscopic scales, in comparison
with the hydrodynamic asymptote of damping of acoustic
excitations ∼k2, i.e., extremely long lifetimes of the long-
wavelength acoustic modes. The branch of propagating modes
z2(k) has much stronger damping in the long-wavelength re-
gion, which rapidly decreases with increasing k. The smooth
dependence of the dispersion and damping of the mode z2(k)
for k < 1 Å−1 implies its relation to a well-defined collective
process, although in that frequency range only transverse op-
tic (TO) modes exist. It is very unusual in the dynamics of
binary liquids to observe in longitudinal dynamics a possible
contribution from transverse modes, however, for melts with
long-range Coulomb interaction the coupling between longi-
tudinal and transverse modes can exist, as it was shown for the
case of water [50].

Besides, in the region k > 1 Å−1 it is extremely difficult
to assign the propagating modes to some specific collective
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FIG. 9. Purely relaxing (real) eigenmodes obtained by theoret-
ical GCM analysis of AIMD-derived time correlation functions
within the thermoviscoelastic model A(8).

processes because of the coupling between them and because
of contributions to dynamics of significantly diverse local
short-time living structural units. As a matter of fact, Fig. 8
shows the distribution of the number of oxygen around alu-
minium and oxygen, showing a variety of local structural
units such as AlO3, AlO4, AlO5, and AlO6 as well as oxygen
bonding linking them. In many oxides, the usual networks
forming structure are characterized by bonded oxygens (BO)
linking tetrahedral structural units (MO4, with M being the
metal center), as, for instance, in the prototypical case of SiO2

or GeO2. The structure of Al2O3 is more complex with the
appearance, among others, of fivefold coordinated Al, AlO5,
in significant proportions, and triply bonded oxygen (TBO),
both being known to play a role in the shear viscosity [6] and
hence the collective dynamics.

Along with three branches of propagating solutions
z j (k) = σ j (k) ± iω j (k), the eight-variable thermoviscoelastic
dynamic model results in two purely real eigenmodes dj (k) ≡
Re[z j (k)], where the real eigenmodes are denoted as dj (k)
in order to distinguish them among eight GCM eigenmodes
z j (k) of the thermoviscoelastic model. Figure 9 displays the
k dependence of the two real eigenmodes. In the region k
1.55–1.85 Å−1, two additional purely real eigenmodes emerge
instead of the complex-conjugated pair z1(k); however, their
eigenvalues d3,4(k) 	 d1(k), d2(k); therefore, they are not
shown in Fig. 9. For liquids with long-range Coulomb interac-
tions the very specific behavior of long-wavelength relaxation
processes is the absence of the ∼k2 asymptote for the relax-
ing mode associated with the electric conductivity, while in
simple liquid mixtures the direct analogy for that mode is
the relaxation connected with mutual diffusivity tending in
the long-wavelength limit as Dk2, where D is a combination
of mutual and thermal diffusivities [51]. For molten Al2O3,
the purely relaxing mode d2(k) in Fig. 9 tends to a nonzero
constant value in the long-wavelength limit as it should be
for molten salts, while another purely relaxing mode d1(k)
is connected with thermal diffusivity and should have the
asymptotic behavior DT k2, with DT being the thermal diffu-
sivity (diffusivity of local temperature).

As a next step, the GCM propagating eigenmodes are
compared to the numerical estimates of excitation frequencies
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eigenmodes.

and damping from the current spectral function CL/T
ii (k, ω),

i = t and x, where the indices t and x correspond to the total
mass current and mass-concentration current, respectively. In
Fig. 10 the frequencies and damping of the three branches
of collective eigenmodes are compared with the peak posi-
tion and half-width at half-height (HWHH) of longitudinal
CL

ii (k, ω), i = t and x (open and solid boxes with error bars),
and transverse CT

xx(k, ω) (open circles with error bars). One
has to keep in mind that separate treatment of “t-t” and “x-x”
correlations is absolutely justified in the long-wavelength re-
gion, where the total current spectral functions contain just
a single peak coming from acoustic excitations, while the
mass-current spectral function in the case of molten salts and
oxide melts reflects the mutual dynamics of charge species,
in agreement with the behavior of corresponding time cor-
relation functions shown in Fig. 4. Figure 10 shows that the
peak positions of CL

ii (k, ω), i = t and x, and the corresponding
HWHH are in perfect agreement with the long-wavelength
GCM eigenmodes, longitudinal acoustic branch z1(k), and
longitudinal optic branch z3(k). Concerning another propa-
gating branch of GCM eigenmodes, z2(k), it is seen from
Fig. 10 that, surprisingly, the long-wavelength frequency and
damping of z2(k) tend to the same values as those of the trans-
verse optic branch. Recently, the same agreement between the
TO dispersion and the behavior of z2(k) was observed in the
analysis of GCM eigenmodes in molten NaCl [28]. The issue
of possible contributions from transverse collective modes to
the longitudinal dynamics was discussed after IXS experi-
ments on several liquid metals [52–56], while in computer
simulations an effect of L-T coupling was clearly observed
for water [50] and the possibility of the L-T coupling effect on
simulation-derived current spectral functions was discussed in
Refs. [57–59]. However, practically no reports were published
before on the possible L-T coupling in ionic melts (and molten
salts in particular) and especially on a possible manifestation
of TO modes in longitudinal dynamics.

IV. CONCLUSION

To conclude, ab initio simulations of molten Al2O3 in
combination with the theoretical generalized mode analysis

were performed in order to study collective eigenmodes in the
dynamics of this complex oxide melt. The methodology of ab
initio analysis of collective modes in liquids with long-range
interactions consisted of the estimation of the dynamic eigen-
modes within the eight-variable treatment of the generalized
Langevin equation in matrix 8 × 8 form, which corresponds
to the thermoviscoelastic dynamic model. It was shown that
the application of the eight-variable thermoviscoelastic model
allows one to recover AIMD-derived partial current-current
time correlation functions with good precision. This means
that eight eigenmodes are able to explain the time dependence
of longitudinal partial current correlations. For comparison,
the standard six-variable dynamic model was not able to re-
cover the same partial current-current correlations.

Among eight eigenmodes, for most k points we obtained
three pairs of complex-conjugated eigenvalues and two purely
real ones. We identified the low-frequency branch as the lon-
gitudinal acoustic branch with practically linear dispersion in
the long-wavelength region, the slope of which corresponds
to the sound propagation speed in good agreement with IXS
experiments [7]. The high-frequency branch corresponds to
the longitudinal optic branch with the frequency decreasing
and the damping increasing with k in the long-wavelength
region, respectively. Surprisingly, the nondamped (“bare”)
optic eigenmodes and those obtained within the six-variable
viscoelastic dynamic model tend to a frequency of ωopt (k =
0) ∼ 148 ps−1 (Fig. 6), while the numerical estimates of
the dispersion for the LO branch from peak positions of
CL

xx(k, ω) indicate the value ωopt (k = 0) ∼ 160 ps−1 (Fig. 10);
this implies the absence of additional coupling to propagat-
ing processes in the models with solely two LA and LO
branches. The eight-variable dynamic model allowed us to
obtain another branch of nonhydrodynamic excitations, z2(k),
and essentially improved the recovering of the partial current-
current time correlation functions (and consequently their
spectral functions).

The origin of the additional propagating eigenmode z2(k),
which allows essential correction of the time correlation
functions and of the long-wavelength frequency of LO
modes, remains unclear. Surprisingly, the long-wavelength
limit of the frequency of z2(k) tends to the frequency of
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long-wavelength TO excitations, and so do also their damp-
ings, where both frequencies and damping of TO modes
were estimated from peak positions and HWHH of CT

xx(k, ω).
However, at the moment we cannot suggest a mechanism of
possible LO-TO coupling in molten ionic liquid, while the
direct local coupling (with the same k) is obviously zero for
fluctuating L and T mass-concentration currents. However,
our analysis of dynamic eigenmodes makes it evident that an
additional propagating mode [in our case z2(k)] essentially
improves the recovering of current-current time correlation
functions and of the frequencies of long-wavelength LO
modes.
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