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Reducing defect production in random transverse-field Ising chains by inhomogeneous driving fields
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In transverse-field Ising models, disorder in the couplings gives rise to a drastic reduction of the critical
energy gap and, accordingly, to an unfavorable, slower-than-algebraic scaling of the density of defects produced
when the system is driven through its quantum critical point. By applying Kibble-Zurek theory and numerical
calculations, we demonstrate in the one-dimensional model that the scaling of defect density with annealing
time can be made algebraic by balancing the coupling disorder with suitably chosen inhomogeneous driving
fields. Depending on the tail of the coupling distribution at zero, balancing can be either perfect, leading to the
well-known inverse-square law of the homogeneous system, or partial, still resulting in an algebraic decrease
but with a smaller, nonuniversal exponent. We also study defect production during an environment-temperature
quench of the open variant of the model in which the system is slowly cooled down to its quantum critical point.
According to our scaling and numerical results, uncorrelated disorder induces a logarithmic temporal decrease
of the defect density, while balanced disorder leads again to an algebraic decay.
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I. INTRODUCTION

The nonequilibrium dynamics of quantum many-body sys-
tems under the slow change of some external parameter is a
challenging and much studied problem. One of the motiva-
tions for studying the characteristics of slowly driven systems
comes from adiabatic quantum computing [1,2], a method for
solving discrete optimization problems of quadratic, uncon-
strained, binary type [3]. Here, the system is driven from an
initial Hamiltonian having an easily preparable, trivial ground
state to a final classical Hamiltonian, typically an Ising model,
the ground state of which encodes the solution of the opti-
mization problem [4–9]. In the aspect of quantum annealing,
it is thus desirable to keep the system in its instantaneous
ground state, i.e., to drive the system adiabatically so as the
final state is the correct ground state giving the solution of
the optimization task. Otherwise, as it occurs inevitably for
finite annealing rates, the final state will be slightly different
from the ground state, i.e., it contains some amount of error
[10–14]. According to the adiabatic theorem [1,15], errors
form most easily in the presence of low-energy excitations.
Therefore, as it is the case for the paradigmatic Ising model
driven by a transverse field, the breaking of adiabaticity occurs
essentially when passing through a quantum critical point
(QCP) hallmarked by a vanishing energy gap and manifest-
ing in finite systems as an avoided level crossing. For slow
changes driven through or to a QCP, there is a universal,
heuristic scaling theory by Kibble and Zurek which provides
scaling relations for the characteristics of the nonadiabaticity
of the process such as the error density n in terms of the
annealing rate 1/τ [10–12]. In general, these are power-law
relations, like n ∼ τ− ν

1+νz , where the exponents are expressed
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with the critical exponents of the QCP: the dynamical expo-
nent z, describing the vanishing of the energy gap with the
system size, ε ∼ L−z and the correlation-length exponent ν,
characterizing the divergence of the correlation length ξ with
the reduced control parameter as ξ ∼ |�|−ν . This picture is
darkened by the circumstance that real optimization problems
can usually be represented by Ising models with inhomoge-
neous couplings. For the transverse-field Ising model with
random couplings (or fields), the energy gap at the QCP is
known by the strong-disorder renormalization group (SDRG)
approach [16–18] to close more rapidly than a power law,
as ε ∼ e−const×Lψ

, with ψ = 1/2 in one dimension, mean-
ing that the dynamical exponent is formally infinite [16,19].
This leads to an unfavorable, slower-than-algebraic decrease
of the error density with the annealing time: n ∼ (ln τ )−2

[6,7]. Thus disorder leads to an extra deterioration of the
accuracy compared to that of the clean system. One can
then ask the question whether the disorder present in the
system through the inhomogeneous couplings given by the
optimization problem could be compensated or at least less-
ened by appropriately chosen inhomogeneous driving fields,
so that the closing of the gap could be mitigated. For the
one-dimensional transverse-field Ising model, the answer is
positive. Here, using local fields combined from neighboring
couplings, it is possible to make the disorder fluctuations inde-
pendent from the size and to put the scaling of the critical gap
back into the realm of power laws [20–25]. In this case, we
speak of balanced disorder. We mention that, as it was done in
Ref. [26], balancing of coupling disorder can also be achieved
by using homogeneous fields but embedding the original
chain into a longer chain in which the original spins (logical
qubits) are represented by a set of strongly coupled ancillary
spins with suitably chosen internal couplings. Nevertheless,
by applying the SDRG method to merge ancillary spins, one
ends up with an effective model with inhomogeneous fields
also in this case. After a series of numerical and analytical
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work on the random transverse-field Ising chain (RTFIC) with
balanced disorder [20–24], the dynamical exponent has been
recently fixed by using exact lower and upper bounds on the
gap [25]. According to this, the dynamical exponent does not
differ from that of the clean system (z = 1) for sufficiently
regular distributions of the couplings, but for distributions
having a heavy tail at zero coupling, an anomalous behavior
may emerge with z > 1. Moreover, at the border of normal
and anomalous regime, a logarithmic correction also appears.
For a further possibility of reducing the error of the final
state by driving a transverse-field with a spatial ramp profile
along the chain with a constant velocity, we refer the reader to
Ref. [27].

In this paper, we aim at studying the scaling of de-
fect production in two kinds of annealing procedures of the
transverse-field Ising chain by Kibble-Zurek theory and nu-
merical calculations. We will demonstrate in both cases that
the temporal scaling of defect density can be made alge-
braic by balancing the coupling disorder with inhomogeneous
fields. One of these processes is a quantum annealing of the
closed RTFIC with unitary time evolution, in which the sys-
tem is driven through its quantum critical point by varying
the relative strength of fields and couplings. Note that, in
Ref. [26], a related study, in which balancing was realized
by embedding, the coupling distributions were bounded away
from zero, so that the QCP always remained in the universality
class of the clean system (z = 1). In this paper, we will also
explore the anomalous regime (z > 1), as well as the border-
line case by using distributions with a power-law tail at zero
coupling. In the second part of this work, we will consider an
open variant of the RTFIC. Here, the dynamics is governed
by a Lindblad equation which describes a direct coupling of
the normal modes of the system to a thermal bath. Recently,
an environment-temperature quench was studied in the clean
variant of this model and a generalization of Kibble-Zurek
theory was formulated in Refs. [28,29]. We will consider a
temperature quench in this model with balanced and also
unbalanced disorder, when the system is driven to the QCP
by slowly ramping down the temperature to zero, and study
the temporal scaling of defect density.

The paper is organized as follows. In Sec. II, the model
is introduced and its critical properties with balanced disor-
der are discussed. In Sec. III, technical details of dynamical
calculations are presented and the quantities of interest are
defined. This is then followed by the formulation of Kibble-
Zurek scaling theory and by the presentation of numerical
results. Scaling and numerical results for the environment-
temperature quench are presented in Sec. IV. Finally, the
results are discussed in Sec. V.

II. RTFIC WITH BALANCED DISORDER

We consider the time-dependent transverse-field Ising
chain with open boundary conditions, defined by the Hamil-
tonian:

H(t ) = − t

τ

L−1∑
n=1

Jn

2
σ x

n σ x
n+1 −

(
1 − t

τ

) L∑
n=1

hn

2
σ z

n , (1)

where σ x,z
n are Pauli operators at site n. In the annealing

procedure, the time t is varied from zero to τ called as the
annealing time. First, we review the static (time-independent)
properties of the model, and regard t/τ as a control parameter
of the QCP. The solution of the eigenproblem of the Hamil-
tonian with general couplings Jn and transverse fields hn is
well-known [30,31]. First, a Jordan-Wigner transformation

c†
n + cn =

(∏
m<n

−σ z
m

)
σ x

n ,

c†
n − cn = i

(∏
m<n

−σ z
m

)
σ y

n , n = 1, 2, . . . , L

is performed to bring the Hamiltonian in Eq. (1) to a quadratic
form in fermionic creation and annihilation operators, c†

n and
cn, respectively:

H = −
L−1∑
n=1

Jn(t )

2
(c†

n − cn)(c†
n+1 + cn+1)

−
L∑

n=1

hn(t )

(
c†

ncn − 1

2

)
, (2)

where the notations

Jn(t ) ≡ t

τ
Jn, hn(t ) ≡

(
1 − t

τ

)
hn

are used. Then, this Hamiltonian can be diagonalized by a
subsequent Bogoliubov-Valatin transformation, i.e., by intro-
ducing new fermionic operators

ηk =
L∑

n=1

[
φnk + ψnk

2
cn + φnk − ψnk

2
c†

n

]
, k = 1, . . . , L

(3)
resulting in

H =
L∑

k=1

εk

(
η

†
kηk − 1

2

)
. (4)

The (real) coefficients φ and ψ of the transformation, as well
as the excitation energies εk can be found by performing a
singular-value decomposition

M = φDψT (5)

of the bidiagonal matrix

M = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h1(t )
J1(t ) h2(t )

J2(t ) . . .
. . .

JL−2(t ) hL−1(t )
JL−1(t ) hL(t )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(6)
where D = diag{ε1, ε2, . . . , εL}.

To apply Kibble-Zurek scaling theory (see later), it is nec-
essary to know the finite-size scaling of the energy gap at the
critical point. As the dynamics preserves the fermion number
parity (which is the eigenvalue of the parity operator

∏
n σ z

n ),
the energy gap accessible by the dynamics is ε1 + ε2. This,
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nevertheless, follows in general the same finite-size scaling at
the critical point as ε1.

In the case when both Jn and hn are independent random
variables, and the criticality condition ln J (t ) = ln h(t ) is ful-
filled, where the overbar denotes an average over disorder, the
lowest excitation energy scales with the system size as

ε1 ∼ e−C
√

L, (7)

where C is an O(1) (sample-dependent) random variable,
as found by the SDRG method [16] and confirmed
numerically [32].

In the present work, we will focus on balanced disorder
which means that the couplings are independent, identically
distributed (i.i.d.) random variables, whereas the transverse
fields are correlated with neighboring couplings, most gen-
erally in the form

hn = Js
n−1J1−s

n (8)

for bulk sites, where s is a free parameter in the range 0 �
s � 1 [24]. With this choice, the critical point of the model
is at t/τ = 1/2, and the fluctuations of the sample-dependent
control parameter �L = ∑L−1

n=1 ln(Jn/hn) are independent of
L, as opposed to �L ∼ √

L valid for uncorrelated disorder by
central limit theorem.

In what follows, we fix the distribution of couplings to a
power-law form in the range (0,1) as

f (J ) = 1

D
J−1+ 1

D , (9)

where 0 < D < ∞ is a strength of disorder. The free parame-
ter s is fixed to s = 0, so that hn = Jn for 1 � n < L, while hL

was drawn from the same distribution as the couplings.
In Ref. [25], exact lower and upper bounds on the lowest

excitation energy have been established in terms of sums of
independent random variables related to the couplings. These
imply that, concerning the finite-size scaling of the excitation
energy ε1, two regimes can be distinguished depending on the
strength of disorder. Specially for s = 0, balanced disorder
is irrelevant for D < 1/2, in the sense that the scaling of
the homogeneous system, ε1 ∼ L−1 holds to be valid. For
D > 1/2, however, the gap is determined essentially by the
smallest coupling present in the system, and we have ε1 ∼
L− 1

2 −D. At the borderline case, D = 1/2, balanced disorder is
marginal and merely induces a logarithmic correction of the
form ε1 ∼ 1

L
√

ln L
. Thus the dynamical exponent of the model

is finite and depends on the strength of disorder as

z = 1
2 + max

{
D, 1

2

}
. (10)

The other ingredient to Kibble-Zurek scaling theory is the
correlation-length exponent. According to numerical results
on the bulk correlation function in Ref. [21], the correlation-
length exponent of the homogeneous model ν = 1 remains
unaltered under balanced disorder. Now, we justify this
finding by making use of the closed form of the surface mag-
netization at site n = 1, which is valid for a fixed boundary
condition hL = 0 at the opposite end of the chain [33,34]:

〈
σ x

1

〉 =
{

1 +
L−1∑
l=1

l∏
n=1

[
hn(t )

Jn(t )

]2
}−1/2

. (11)

This quantity can be regarded as an end-to-end correlation
function 〈σ x

1 σ x
L 〉 of the order parameter since, due to the

boundary condition, the local order parameter at n = L is fixed
to 〈σ x

L 〉 = 1. Evaluating the formula in Eq. (11) with balanced
disorder in Eq. (8), choosing h1 = J1−s

1 for a general s, we
obtain

〈
σ x

1

〉 =
(

1 +
L−1∑
n=1

e2n�J−2s
n

)−1/2

, (12)

where

� = ln(τ/t − 1) (13)

is a reduced control parameter (defined for 0 < t < τ ). We
can see from this formula that, close to the critical point,
|�| � 1, the magnetization 〈σ x

1 〉 shows essentially critical
behavior for small enough system sizes fulfilling 2L|�| �
1, and deviations from criticality appear only well beyond
the size L∗ ∼ |2�|−1. This characteristic size can be iden-
tified with the correlation length, so we conclude that the
correlation-length exponent is ν = 1 just as for the homo-
geneous system, in agreement with numerical results of
Ref. [21].

III. QUANTUM ANNEALING WITH
BALANCED DISORDER

A. Dynamics

The unitary time evolution of the model during annealing
can be conveniently studied by the time-dependent Bogoli-
ubov theory [6,7], which we will formulate in terms of
Clifford operators, ân ≡ d̂n = c†

n + cn and b̂n ≡ d̂L+n = c†
n −

cn, n = 1, 2, . . . , L. Using this set of operators, the Hamilto-
nian in Eq. (2) can be rewritten as

H = −1

4

2L∑
n,m=1

d̂†
n Hnmd̂m, (14)

where

H =
[

0 M
MT 0

]
(15)

with the bidiagonal matrix M defined in Eq. (6). In the Heisen-
berg picture, the time-evolved Clifford operators, denoted by
d̂n(t ), obey the following equations of motion:

˙̂dn(t ) = i
2L∑

m=1

Hnmd̂m(t ). (16)

At the beginning of the annealing procedure (t = 0), a
Bogoliubov-Valatin transformation is performed, which can
be written in terms of Clifford operators in matrix notation as[

α̂(0)
β̂(0)

]
=

[
φT 0
0 ψT

][
â(0)
b̂(0)

]
, (17)

where α̂n(0) ≡ η†
n(0) + ηn(0) and β̂n(0) ≡ η†

n(0) − ηn(0).
The evolution equations can then be solved by the ansatz

d̂ (t ) =
[

â(t )
b̂(t )

]
=

[
Reφ(t ) −iImφ(t )

−iImψ (t ) Reψ (t )

][
α̂(0)
β̂(0)

]
. (18)
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Substituting this into Eqs. (16), we are led to the following
differential equations for the time-dependent Bogoliubov co-
efficients φ(t ) and ψ (t ):

φ̇ = −iMψ, ψ̇ = −iMT φ. (19)

B. Measures of defect production

To quantify the deviation of the final state from the true
ground state, we used two quantities. One of them is the
density of defects, defined by

n(t ) = 1

2(L − 1)

L−1∑
n=1

〈0|
[
1 − σ x

n (t )σ x
n+1(t )

]|0〉, (20)

where |0〉 denotes the initial state at t = 0. In the case of
a perfectly adiabatic driving, for which the system arrives at
the ferromagnetically ordered ground state at the end of the
annealing procedure (t = τ ), the defect density defined in this
way is zero. The spin operator appearing in Eq. (20) can be
expressed with Clifford operators as σ x

n σ x
n+1 = b̂nân+1 and its

expectation value can be readily evaluated to be 〈b̂nân+1〉 =
−[ψφ†]n,n+1. Thus the defect density is given by the time-
dependent Bogoliubov coefficients as

n(t ) = 1

2(L − 1)

L−1∑
n=1

(1 + [ψ (t )φ†(t )]n,n+1). (21)

In addition to this, we also calculated the residual energy
density, which is the difference between the expectation value
of the energy density E (t ) = 1

L 〈0|H(t )|0〉 and the instan-
taneous ground-state energy density Egs(t ):

Eres(t ) = E (t ) − Egs(t ). (22)

The latter is obtained by diagonalizing the instantaneous
Hamiltonian and using Eq. (4): Egs(t ) = − 1

2L

∑L
k=1 εk , while

the former can be written by straightforward calculations in
a compact form in terms of the time-dependent Bogoliubov
coefficients:

E (t ) = − 1

2L
ReTr{φ†(t )Mψ (t )}. (23)

Just as the defect density, the residual energy density is zero if
the annealing procedure is perfectly adiabatic.

C. Kibble-Zurek scaling theory

The basic concept of the Kibble-Zurek mechanism of de-
fect formation is the following. The time evolution of the
system is essentially adiabatic sufficiently far from the crit-
ical point, up to some freezing time t∗. Beyond this time,
the state remains unchanged (freezes), while, on the other
side of the QCP and sufficiently far from it, the dynamics
will be again adiabatic. Thus the characteristic size of fer-
romagnetic domains at the end of the annealing procedure,
the inverse of which is the defect density, will be determined
by the correlation length ξ ∗ at the freezing time. The freez-
ing point is determined by the condition that, here, the time
t̃∗ ≡ τ

2 − t∗ remaining to reach the QCP is comparable with
the relaxation time which is given by the inverse of the energy

gap [5,35]:

t̃∗ ∼ ε−1[�(t̃∗)]. (24)

According to Eq. (13), �(t̃ ) 
 4 t̃
τ

close to the QCP, i.e., for
|�| � 1. Using ξ ∼ |�|−ν , which is valid for L � ξ , and the
dynamical relationship between the gap and the correlation
length

ε−1 ∼

⎧⎪⎪⎨
⎪⎪⎩

ξ if D < 1
2

ξ
√

ln ξ if D = 1
2

ξ
1
2 +D if D > 1

2

, (25)

which follows from the finite-size scaling presented in Sec. II,
we obtain that freezing occurs for D �= 1

2 at t̃∗ ∼ τ
zν

1+zν with
ν = 1 and z given in Eq. (10), whereas, for D = 1

2 , at t̃∗ ∼
τ

1
2 (ln τ )

1
4 . For the error density in the final state, which is

n(τ ) ∼ 1/ξ ∗ ∼ �(t̃∗) ∼ t̃∗/τ , we obtain ultimately

n(τ ) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ− 1
2 if D < 1

2(
τ√
ln τ

)− 1
2 if D = 1

2

τ
− 1

3/2+D if D > 1
2

. (26)

All these relations are expected to be valid asymptotically, for
large annealing times τ and for large enough system sizes
fulfilling L � ξ ∗ ∼ 1/n(τ ), for which finite-size effects are
negligible.

Next, we consider the residual energy density at the end of
the annealing procedure. For t = τ , the instantaneous Hamil-
tonian is that of a classical Ising model, the excitations of
which are domain walls. These domain walls, the density of
which is n(τ ), tend to form at links with weak couplings.
Thus we may assume that the fraction n(τ ) of links having
the couplings in the range [0, nD(τ )] are all excited, giving a
mean residual energy density

E res(τ ) = Jn(τ )n(τ ), (27)

where Jn(τ ) denotes the mean coupling under the condition
that J < nD(τ ):

Jn(τ ) = 1

n(τ )

∫ nD (τ )

0
J f (J )dJ = D

1 + D
nD(τ ). (28)

Here, we made use of the form of the coupling distribution
given in Eq. (9). We have thus

E res(τ ) = D

1 + D
[n(τ )]1+D, (29)

yielding the following asymptotic scaling form of the residual
energy density with the annealing time:

E res(τ ) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ− 1+D
2 if D < 1

2(
τ√
ln τ

)− 3
4 if D = 1

2

τ
− 1+D

3/2+D if D > 1
2

. (30)

D. Numerical results

In order to check the validity of the scaling relations of
the defect density and residual energy density obtained in the
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previous section, we studied the annealing procedure numeri-
cally. The first step is to obtain the initial values of Bogoliubov
coefficients φ(0) and ψ (0). Since the Hamiltonian in Eq. (1)
at t = 0 is already diagonal, these will be simply φnk (0) =
−ψnk (0) = δnk . Then, the differential equations for the Bo-
goliubov coefficients in Eq. (19) are solved numerically up to
time τ , which has been done by the fourth-order Runge-Kutta
method. In the final state, we evaluated the defect density
and the residual energy density using Eqs. (21) and (23).
These computations were performed for different system sizes
L = 128, 256, and 512, for different annealing times τ = 2n,
n = 2, 3, . . . , 9, and for different strengths of the disorder
D = 1/3, 1/2, and 1. In each case, the computations were
performed for 100 random samples and averages of n(τ ) and
Eres(τ ) were calculated.

The average error densities and residual energy densities
in the final state are plotted against the annealing time τ in
Figs. 1 and 2. As can be seen, the dependence on τ is in good
agreement with the predictions of Kibble-Zurek scaling the-
ory both in the regime, where balanced disorder is irrelevant
(D = 1/3) and in the anomalous regime, where the exponents
are different from those of the homogeneous system (D = 1).
At the border of these regimes (D = 1/2), the corrections to
scaling at small τ are somewhat stronger than in the other
two cases, nevertheless, the large-τ behavior seems to be
compatible with the asymptotic law predicted by the theory.

IV. ENVIRONMENT-TEMPERATURE QUENCH

In the remaining part of the paper, we study an
environment-temperature quench of an open variant of the
RTFIC, when the system is initially in a thermal equilibrium
state, and it is slowly cooled down to zero temperature. In an
infinitely slow process, the system would remain in thermal
equilibrium states throughout the process and would reach
its ground state (which is nondegenerate for this model).
However, for a finite cooling rate, the final state will be a
mixed state with a finite density of defects. In this process,
the Hamiltonian itself is constant and it is chosen to be at
its critical point at zero temperature. We are interested in the
question how the density of defects depends on the cooling
rate.

A. The model

To model the environment, we use a Lindblad description,
similar to that used in Ref. [28] for the homogeneous system.
The time evolution of the density operator ρ is governed by
the equation

dρ

dt
= −i[H, ρ] +

L∑
n=1

∑
s=±1

γn,s

×
(

Ln,sρL†
n,s − 1

2
{L†

n,sLn,s, ρ}
)

. (31)

Here, the Hamiltonian H ≡ H( τ
2 ) of the system is time inde-

pendent and it is given in Eq. (1); the Lindblad operators Ln,s

are chosen to be the fermionic operators which diagonalize
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FIG. 1. The average error density at the end of the annealing
procedure plotted against the annealing time for different sizes L, for
D = 1/3 (a), 1/2 (b), and 1 (c). The solid lines indicate the predic-
tions of the Kibble-Zurek theory given in Eq. (26). Power-law fits to
the data [in terms of τ/(ln τ )1/2 for D = 1/2] in the large-τ domain
give the following estimates for the exponents: 0.51 (D = 1/3), 0.53
(D = 1/2), and 0.41 (D = 1).

the Hamiltonian, see Eq. (4), as

Ln,+1 = η†
n, Ln,−1 = ηn, (32)
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FIG. 2. The average residual energy density at the end of the
annealing procedure plotted against the annealing time for different
sizes L, for D = 1/3 (a), D = 1/2 (b), and D = 1 (c). The solid lines
indicate the predictions of the Kibble-Zurek theory given in Eq. (30).
Power-law fits to the data [in terms of τ/(ln τ )1/2 for D = 1/2] in the
large-τ domain give the following estimates for the exponents: 0.67
(D = 1/3), 0.78 (D = 1/2), and 0.80 (D = 1).

while the coupling constants are

γn,s = γ
1

1 + esβεn
, (33)

with a constant transition rate γ . Note that these coupling
constants fulfill detailed balance at the temperature T = 1/β

of the bath. For the role played by the coupling to the bath
in nonequilibrium scaling behavior in general, we refer the
reader to Ref. [36].

Starting from a thermal equilibrium state of the system at
some initial temperature, T0 = 1/β0, we will consider a slow
cooling of the environment, i.e., the temperature T (t ) is time
dependent and ramped down slowly to zero. Due to that the
jump operators are just the diagonal fermion operators, the
Linblad equation will decompose into independent dynamical
equations for each mode. For a general form of time depen-
dence of the temperature, it has been shown in Ref. [28], that
the occupation of mode k at time t can be obtained as

pk (t ) ≡ 〈η†
kηk〉 = e−γ t

1 + eβ0εk
+ γ

∫ t

0

e−γ (t−t ′ )

1 + eβ(t ′ )εk
dt ′. (34)

We considered two functional forms for the time depen-
dence of the temperature. One of them is a linear cooling,

T (t ) = T0

(
1 − t

τ

)
, (35)

which is commonly used in the literature. Here, time varies
between t = 0 and t = τ , τ defining the timescale of the
process. In the case of linear cooling, one has to resort to a
numerical evaluation of the integral in Eq. (34). The other
protocol we considered was the “hyperbolic” cooling, given
by

T (t ) = T0

1 + t/t0
, (36)

where t0 is a constant of time dimension. Here, the process
starts at t = 0 and can take any length of time. The hyperbolic
cooling is used less frequently, but it has the advantage that
one can find a closed formula for the occupation numbers.
Here, the integral appearing on the right-hand side of Eq. (34)
can be shown to be expressed by a hypergeometric function
after expanding the integrand in a Taylor series and integrating
by terms as

Ik (t ) = e−γ t
∫ t

0

eγ t ′

1 + eβ0εk (1+t ′/t0 )
dt ′

= e−γ t
[
eγ t

2F1
(
1, b; c; −e−β0εk (1+ t

t0
))]t

0, (37)

where b = c − 1 = − γ t0
β0εk

+ 1. At late times, i.e., for
β0εk

t
t0

� 1, one obtains the following asymptotic time de-
pendence of the occupation of modes (with small excitation
energies fulfilling β0εk < γ t0):

pk (t ) = γ t0
γ t0 − β0εk

e−β0εk (1+ t
t0

) + O(e−2β0εk
t

t0 ) + O(e−γ t ).

(38)

In Ref. [37], the scaling of the defect density has been
investigated for the two types of cooling protocols by a scaling
theory and adiabatic perturbation theory for generic quantum
and classical systems. As pointed out, the defect density obeys
the same scaling law in terms of τ for linear cooling as in
terms of t/t0 for hyperbolic cooling.
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To quantify the deviation of the actual state at time t from
the (zero temperature) ground state of the system, we consid-
ered the number density of fermion excitations

n f (t ) = 1

L

L∑
k=1

pk (t ), (39)

and the thermodynamic entropy density of the system given
by

s(t ) = − 1

L

L∑
k=1

{pk (t ) ln pk (t ) + [1 − pk (t )] ln[1 − pk (t )]}.
(40)

B. Scaling of defect density

Next, we will determine the asymptotic scaling of the num-
ber density of fermions, n f , either with τ for linear cooling or
with the time t for hyperbolic cooling. To do so, we need to
know the form of the energy density at low energies.

In the case of uncorrelated disorder, i.e., for i.i.d. couplings
and either constant or i.i.d. transverse fields, the cumulative
distribution of states displays the well-known universal Dyson
singularity [38,39] at zero energy:

N<(ε) ∼ 1

(ln ε)2
. (41)

Assuming that the excitation energies are independent random
variables, then, according to extreme-value statistics, the typi-
cal value of the lowest excitation energy ε1 in a system of size
L can be obtained from the condition

LN<(ε1) = O(1). (42)

This leads to | ln ε1| ∼ √
L, which is in agreement with the

results of the SDRG method [16,19]. Note that, applying
Eq. (42) naively to the homogeneous, critical transverse-field
Ising chain which has an asymptotically linear dispersion rela-
tion, N<(ε) ∼ ε, leads again to the correct finite-size scaling
of the gap, ε1 ∼ L−1. Concerning the model with balanced
disorder of the form hn = Jn, the low-energy tail of the density
of states is not known directly; nevertheless, the finite-size
scaling of the gap, as presented in Sec. II, is available. We can
then, heuristically, suppose that the small excitations are inde-
pendent from each other, and ask what would be the density
of states with the known extreme values [40]. Answering this
inverse question for balanced disorder yields the following for
the distribution of states at low energies:

N<(ε) ∼ ε1/z if D �= 1/2,

N<(ε) ∼ ε| ln ε|1/2 if D = 1/2, (43)

with the dynamical exponent z given in Eq. (10). The density
of defects defined in Eq. (39) can be written in the limit of
infinite system size as

n f (t ) =
∫

p(ε, t )ρs(ε)dε, (44)

where ρs(ε) = d
dε

N<(ε) is the density of states.

1. Linear cooling

First, let us consider the case of linear cooling. Finding the
saddle point of the integrand in Eq. (34), one can show that the
second term on the right-hand side at t = τ is upper bounded
by const · γ τe−2

√
γ τβ0εk . This suggests that the occupation

number is dominated by the second term of Eq. (34) for long
cooling times, τ � β0εk/γ . Moreover, even the contribution
of this term is negligibly small if γ τβ0εk � 1. This implies
that the upper limit of the integral in Eq. (44) can be cut off at
ε = (γ τβ0)−1 and we may write

n f (τ ) ∼ N<[(γ τβ0)−1]. (45)

This yields

n f (τ ) ∼ [ln(γ τβ0)]−2 (46)

for uncorrelated disorder and

n f (τ ) ∼

⎧⎪⎨
⎪⎩

τ−1 if D < 1
2√

ln(γ τβ0 )
τ

if D = 1
2

τ
− 1

1/2+D if D > 1
2

(47)

for balanced disorder.

2. Hyperbolic cooling

For the hyperbolic cooling, we can see in Eq. (38) that,
at late times t � γ −1, the occupation of modes having an
excitation energy much greater than T0t0/t is negligible. We
may therefore write

n f (t ) ∼ N<

(
T0t0

t

)
, (48)

which results in

n f (t ) ∼
(

ln
t

T0t0

)−2

(49)

for uncorrelated disorder and

n f (t ) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t−1 if D < 1
2√

ln
(

t
T0t0

)
t if D = 1

2

t− 1
1/2+D if D > 1

2

(50)

for balanced disorder.
Concerning the entropy density, one can see that the sum

appearing in Eq. (40) is essentially determined by the O(1)
contributions of active low-energy modes, similar to the defect
density in Eq. (39). Therefore the entropy density is expected
to follow generally the same scaling with time as the defect
density:

s(t ) ∼ n f (t ). (51)

Results on the dependence of defect density and entropy
density on time found in this section for the two protocols and
various types of disorder are summarized in Table I.

C. Numerical results

We calculated numerically the time dependence of de-
fect density n f (t ) and entropy density s(t ) for both cooling
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TABLE I. Scaling of the defect density and entropy density for
different types of disorder during environment-temperature quench.

uncorrelated balanced balanced balanced
disorder D < 1/2 D = 1/2 D > 1/2

linear [ln(γ τβ0 )]−2 τ−1
√

ln(γ τβ0 )
τ

τ
− 1

1/2+D

hyperbolic (ln t
T0t0

)−2 t−1

√
ln( t

T0t0
)

t t− 1
1/2+D

protocols. The excitation spectrum was obtained by numer-
ically solving Eq. (5) and, using these excitation energies,
the occupation numbers were calculated either by numerically
evaluating the integral in Eq. (34) (for linear cooling), or by
using Eq. (37) (for hyperbolic cooling). This has been carried
out for 1000 random samples, and the average defect density
and entropy density were calculated. For linear cooling, the
system size was L = 128 and 256; the cooling times were
τ = 2n, with n = 4, 5, . . . , 12. For hyperbolic cooling, we
performed the computations for L = 128, 256, and 512. The
parameters of the model were fixed in all cases to T0 = 1,
γ = 0.1, and t0 = 1.

First, we considered the model with uncorrelated disorder.
Here, both the couplings and transverse fields were indepen-
dently drawn from a uniform distribution given in Eq. (9)
with D = 1. The numerical results for the time dependence of
defect density and entropy density are shown in Fig. 3. Plot-
ting n f (t )−1/2 and s(t )−1/2 against ln t (with t = τ for linear
cooling), one can indeed see a linear asymptotic dependence
at late times, in agreement with Eqs. (46) and (49).

Next, we turn to the model with balanced disorder. Nu-
merical results for D = 1/3 are shown in Fig. 4. In this case,
balanced disorder is irrelevant and, according to Eqs. (46)
and (49), both the defect density and the entropy density
are expected to decay inversely proportionally to the time.
As can be seen in the figures, this is indeed the case, after
a transient time ln t ∼ 4 up to a size-dependent cutoff time,
which is, in the case of hyperbolic cooling, at ln t ∼ 6 for
the largest size. As the limitations of the scaling prediction
appear most spectacularly in these data, we briefly discuss
the range of validity of scaling results here; nevertheless,
the following reasoning is generally valid. In the short-time
regime (ln t < 4 in Fig. 4), the corresponding energy scale
ε ∼ t−1 is not sufficiently low, so that the corrections to the
asymptotic behavior of the density of states N<(ε) used in
Sec. IV B are still considerable. As a consequence, the tem-
poral scaling of the defect density will deviate significantly
from the prediction obtained there. At late times (ln t > 6 in
Fig. 4), the scaling is broken by finite-size effects. The reason
for this is that, beyond a cutoff time scale t ∼ 1/ε1(L), which
is determined by the energy gap ε1(L) of the finite system,
even the lowest-energy mode will be hardly excited. Therefore
the defect density will quickly decrease here with time; much
more rapidly than in the preceding scaling regime. Note that,
compared to the case of uncorrelated disorder, the finite-size
cutoff of the data occurs here earlier, due to the more slowly
vanishing gap (ε1 ∼ L−1).

Numerical results obtained in the marginal case D = 1/2
are shown in Fig. 5. According to Eqs. (46) and (49), the

5
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 15

 20

4 6 8

(a)

1/
n f

1/
2

ln τ, ln t

LIN L=128
LIN L=256

HYP L=512
HYP L=1024

5

 10

 15

 20

4 6 8

(b)

1/
s1/

2

ln τ, ln t

LIN L=128
LIN L=256

HYP L=512
HYP L=1024

FIG. 3. Time dependence of defect density (a) and entropy den-
sity (b) under slow cooling in the open RTFIC with uncorrelated
disorder. In each panel, the lower data points correspond to linear
cooling (LIN), while the upper curves correspond to hyperbolic
cooling (HYP). In the former (latter) case, the horizontal axis is ln τ

[ln t]. The straight red lines are linear fits to the data for L = 256
(LIN) and L = 1024 (HYP).

defect density and entropy density are expected to decrease
asymptotically as n f (t ) ∼ s(t ) ∼ √

ln t/t (with t = τ for lin-
ear cooling). As can be seen in the figures, the data are in
agreement with this asymptotic form at late times.

Finally, Fig. 6 shows the dependence of defect density and
entropy density on time for D = 1. According to Eqs. (46)
and (49), these are expected to scale asymptotically as n f (t ) ∼
s(t ) ∼ t−2/3. As can be seen in the figures, the numerical data
are compatible with this scaling form after a transient time.

V. DISCUSSION

In transverse-field Ising models, disorder leads in gen-
eral to a stretched-exponentially vanishing energy gap at the
critical point, and to a slower-than-algebraic (logarithmic)
decrease of the defect density with annealing time as the
system is driven through its quantum critical point. For quan-
tum annealing, it is therefore an important question whether
the unfavorable effects of disorder can be reduced. In this
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FIG. 4. Time dependence of defect density (a) and entropy den-
sity (b) under slow cooling in the open RTFIC using balanced
disorder with D = 1/3. In each panel, the upper data correspond to
linear cooling (LIN), while the lower data correspond to hyperbolic
cooling (HYP). In the former (latter) case, the horizontal axis is ln τ

[ln t]. The straight lines have a slope −1. Linear fits to the data for the
largest system size in the scaling regime give the following estimates
of the exponents: 0.98 (LIN) and 1.06 (HYP) in the case of the defect
density, and 0.98 (LIN) and 1.03 (HYP) in the case of the entropy
density.

paper, we studied this question in a simple model, the random
transverse-field Ising chain. Considering quantum and thermal
annealing in this model, the effects of coupling disorder were
balanced by applying appropriately chosen inhomogeneous
driving fields which are locally correlated with the couplings.
In the case of quantum annealing, we adapted the Kibble-
Zurek scaling theory of defect formation to this model. For
this purpose, we made use of earlier results on the finite-
size scaling of the gap [25] and, by analyzing the surface
magnetization, we justified earlier numerical observations on
the robustness of the correlation-length exponent [21]. Predic-
tions of Kibble-Zurek theory on the scaling of defect density
and residual energy density have been confirmed by numerical
simulations of quantum annealing. The results consistently
demonstrate that both quantities decrease algebraically with

 100
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 100  200  300  400

(a)1/
n f

τ/(ln τ)1/2, t/(ln t)1/2

LIN L=256
LIN L=512

HYP L=128
HYP L=256
0.34x-0.51
2.89x-20.0

 100

 200

 100  200  300  400

(b)
1/

s

τ/(ln τ)1/2, t/(ln t)1/2

LIN L=256
LIN L=512

HYP L=128
HYP L=256
0.16x+0.71
1.93x-11.9

FIG. 5. Time dependence of the inverse of defect density (a) and
entropy density (b) under slow cooling in the open RTFIC using
balanced disorder with D = 1/2. In each panel, the lower data cor-
respond to linear cooling (LIN), while the upper data correspond to
hyperbolic cooling (HYP). In the former (latter) case, the horizontal
axis is τ/

√
ln τ [t/

√
ln t]. The solid lines are linear fits to the data for

L = 512 (LIN) and L = 256 (HYP).

the annealing time as opposed to the logarithmically slow
decrease in the model with unbalanced random couplings.
For coupling distributions the support of which is bounded
away from zero, the scaling exponents will be the same as in
the homogeneous model. Thus, in this case, inhomogeneous
fields can completely balance the disorder of couplings. For
distributions having a power-law tail at zero coupling, like that
in Eq. (9), the scaling exponents depend on the strength of
disorder D. For weak enough disorder, i.e., D < Dc = 1

2 , the
scaling exponents characterizing the error production during
the annealing process hold to be the same as in the homoge-
neous system. Thus balancing with inhomogeneous fields is
still perfect. For D > Dc, however, the scaling exponents start
to deviate from that of the homogeneous system, and vary with
D. In this region, the defect density decreases with annealing
time slower than in the homogeneous case. Thus a complete
balancing with inhomogeneous fields cannot be realized here.
Although the results of this paper have been obtained for
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FIG. 6. Time dependence of defect density (a) and entropy den-
sity (b) under slow cooling in the open RTFIC using balanced
disorder with D = 1. In each panel, the upper data correspond to
linear cooling (LIN), while the lower data correspond to hyperbolic
cooling (HYP). In the former (latter) case, the horizontal axis is ln τ

[ln t]. The straight lines have a slope −2/3. Linear fits to the data for
the largest system size at late times give the following estimates of
the exponents: 0.67 (LIN) and 0.68 (HYP) for both the defect density
and the entropy density.

the special choice of s = 0 in Eq. (8), the generalization to
any value of s is straightforward. For instance, using the
general form of the dynamical exponent z = max{Ds, 1

2 } +
max{D(1 − s), 1

2 } from Ref. [25], we obtain that the boundary
separating perfect balancing from partial one lies at Dc(s) =
Dc(1 − s) = 1

2(1−s) for 0 � s � 1
2 .

We also studied thermal annealing in the open variant of
the critical RTFIC with uncorrelated, as well as balanced
disorder. Here, the environment is slowly cooled down to zero
temperature. According to our scaling and numerical results
for balanced disorder, the defect density and the entropy den-
sity decrease algebraically with the cooling time, with the
same exponent, irrespective of the type of cooling protocol
(linear or hyperbolic). This latter finding is in agreement with
results of Ref. [37]. In general, the defect density at the same
timescale is found to be smaller for the hyperbolic cooling
than for the linear one, and, in the former case, the finite-size
effects are found to be stronger. The algebraic scaling found
for balanced disorder is in agreement with the general scaling
theory of Refs. [28,29] formulated for a finite dynamical expo-
nent. The logarithmic scaling found for uncorrelated disorder
is a generalization of that to the case of a Dyson type of
singularity in the density of states.

We have seen that the logarithmic scaling of the defect
density can be changed to a more favorable algebraic scaling
by using inhomogeneous driving fields in any case in the
one-dimensional transverse-field Ising model. Based on these
findings, it is natural to ask whether, in higher-dimensional
variants of the model or in the presence of random longitudi-
nal fields, the scaling of defect density could be improved (and
if yes, to which extent) by applying optimally chosen inhomo-
geneous driving fields. These much more difficult questions
are left for future research.
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(London) 568, 207 (2019).

[14] A. D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting,
F. Altomare, A. J. Berkley, S. Ejtemaee, E. Hoskinson,
S. Huang, E. Ladizinsky, A. MacDonald, G. Marsden,
T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato,
J. D. Whittaker, J. Yao et al., Nat. Phys. 18, 1324
(2022).

[15] M. H. S. Amin, Phys. Rev. Lett. 102, 220401 (2009).
[16] D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992); Phys. Rev. B 51,

6411 (1995).

224203-10

https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1088/1361-6633/ab85b8
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevLett.95.245701
https://doi.org/10.1103/PhysRevB.74.064416
https://doi.org/10.1103/PhysRevB.76.144427
https://doi.org/10.1088/1367-2630/12/5/055007
https://doi.org/10.1103/PhysRevLett.122.080604
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1038/317505a0
https://doi.org/10.1142/S0217751X1430018X
https://doi.org/10.1038/s41586-019-1070-1
https://doi.org/10.1038/s41567-022-01741-6
https://doi.org/10.1103/PhysRevLett.102.220401
https://doi.org/10.1103/PhysRevLett.69.534
https://doi.org/10.1103/PhysRevB.51.6411


REDUCING DEFECT PRODUCTION IN RANDOM … PHYSICAL REVIEW B 108, 224203 (2023)

[17] S.-k. Ma, C. Dasgupta, and C.-k. Hu, Phys. Rev. Lett. 43, 1434
(1979); C. Dasgupta and S.-k. Ma, Phys. Rev. B 22, 1305
(1980).

[18] F. Iglói and C. Monthus, Phys. Rep. 412, 277 (2005); Eur. Phys.
J. B 91, 290 (2018).

[19] D. S. Fisher and A. P. Young, Phys. Rev. B 58, 9131 (1998).
[20] D. Binosi, G. De Chiara, S. Montangero, and A. Recati, Phys.

Rev. B 76, 140405(R) (2007).
[21] J. A. Hoyos, N. Laflorencie, A. P. Vieira, and T. Vojta,

Europhys. Lett. 93, 30004 (2011).
[22] J. C. Getelina, F. C. Alcaraz, and J. A. Hoyos, Phys. Rev. B 93,

045136 (2016).
[23] J. C. Getelina and J. A. Hoyos, Eur. Phys. J. B 93, 2 (2020).
[24] T. Shirai and S. Tanaka, Ann. Phys. 435, 168483 (2021).
[25] R. Juhász, Phys. Rev. B 106, 064204 (2022).
[26] S. Knysh, E. Plamadeala, and D. Venturelli, Phys. Rev. B 102,

220407(R) (2020).
[27] M. M. Rams, M. Mohseni, and A. del Campo, New J. Phys.

18, 123034 (2016); A. del Campo, T. W. B. Kibble, and W. H.
Zurek, J. Phys.: Condens. Matter 25, 404210 (2013).

[28] Á. Bácsi and B. Dóra, Sci. Rep. 13, 4034 (2023).

[29] E. C. King, J. N. Kriel, and M. Kastner, Phys. Rev. Lett. 130,
050401 (2023).

[30] P. Pfeuty, Ann. Phys. 57, 79 (1970).
[31] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407 (1961).
[32] A. P. Young and H. Rieger, Phys. Rev. B 53, 8486 (1996).
[33] I. Peschel, Phys. Rev. B 30, 6783 (1984).
[34] F. Iglói and H. Rieger, Phys. Rev. B 57, 11404 (1998).
[35] B. Damski, Phys. Rev. Lett. 95, 035701 (2005); W. H. Zurek,

U. Dorner, and P. Zoller, ibid. 95, 105701 (2005); R. W. Cherng
and L. S. Levitov, Phys. Rev. A 73, 043614 (2006).

[36] S. Yin, P. Mai, and F. Zhong, Phys. Rev. B 89, 094108 (2014);
S. Yin, C.-Y. Lo, and P. Chen, ibid. 93, 184301 (2016).

[37] A. Chandran, A. Erez, S. S. Gubser, and S. L. Sondhi, Phys.
Rev. B 86, 064304 (2012).

[38] T. P. Eggarter and R. Riedinger, Phys. Rev. B 18, 569 (1978).
[39] F. J. Dyson, Phys. Rev. 92, 1331 (1953).
[40] In the strong-disorder regime z > 1, the energy gap scales

with L in the same way as the smallest coupling present in
the system. This suggests that the low excitation energies are
essentially given by the weak couplings, justifying thereby the
assumption on independence, at least in the z > 1 regime.

224203-11

https://doi.org/10.1103/PhysRevLett.43.1434
https://doi.org/10.1103/PhysRevB.22.1305
https://doi.org/10.1016/j.physrep.2005.02.006
https://doi.org/10.1140/epjb/e2018-90434-8
https://doi.org/10.1103/PhysRevB.58.9131
https://doi.org/10.1103/PhysRevB.76.140405
https://doi.org/10.1209/0295-5075/93/30004
https://doi.org/10.1103/PhysRevB.93.045136
https://doi.org/10.1140/epjb/e2019-100472-7
https://doi.org/10.1016/j.aop.2021.168483
https://doi.org/10.1103/PhysRevB.106.064204
https://doi.org/10.1103/PhysRevB.102.220407
https://doi.org/10.1088/1367-2630/aa5079
https://doi.org/10.1088/0953-8984/25/40/404210
https://doi.org/10.1038/s41598-023-30840-4
https://doi.org/10.1103/PhysRevLett.130.050401
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1103/PhysRevB.53.8486
https://doi.org/10.1103/PhysRevB.30.6783
https://doi.org/10.1103/PhysRevB.57.11404
https://doi.org/10.1103/PhysRevLett.95.035701
https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1103/PhysRevA.73.043614
https://doi.org/10.1103/PhysRevB.89.094108
https://doi.org/10.1103/PhysRevB.93.184301
https://doi.org/10.1103/PhysRevB.86.064304
https://doi.org/10.1103/PhysRevB.18.569
https://doi.org/10.1103/PhysRev.92.1331

