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Anatomy of topological Anderson transitions
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We study mesoscopic signatures of the topological Anderson transitions in topological disordered chains.
To this end we introduce an integer-valued sample-specific definition of the topological index in finite-size
systems. Its phase diagram exhibits a fascinating structure of intermittent topological phases, dubbed topological
islands. Their existence is rooted in the real zeros of the underlying random polynomial. Their statistics exhibits
finite-size scaling, pointing to the location of the bulk topological Anderson transition. While the average theories
in AIII and BDI symmetry classes are rather similar, the corresponding patterns of topological islands and their
statistics are qualitatively different. We also discuss observable signatures of sharp topological transitions in
mesoscopic systems, such as persistent currents and entanglement spectra.
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An interplay between topology and disorder plays an es-
sential role in our understanding of topological materials
[1–6]. Most notably it leads to a concept of topological Ander-
son insulators [7–45], where the robustness of the topological
index is protected by the localized nature of wave functions,
rather than a band gap in the energy spectrum. Phase dia-
grams of topological Anderson insulators generically exhibit
transitions between localized phases with distinct topologi-
cal indexes. Remarkably, localization length diverges at such
transitions [11,20], indicating the presence of extended states.
This happens even in one dimension, where the ensemble
averaged theory in the thermodynamic limit is understood
in terms of a two-parameter scaling [8,9], similar to a two-
dimensional integer quantum Hall effect [46].

Although conceptually appealing, the average theory
misses a trove of interesting information regarding sample-
specific properties of disordered systems. The main goal of
this paper is to uncover a fascinating hidden structure of inter-
mittent topological phases, dubbed topological islands. Both
the number of such islands and their locations on the phase
diagram are determined by the real zeros of the underlying
random polynomial and are completely lost in any ensemble-
averaged treatment. A key step in this direction is a physically
meaningful definition of an integer-valued topological index,
which does not rely on the ensemble averaging nor on the
thermodynamic limit (cf. Refs. [10,11,18,20]) .

We show that the finite-size scaling of the number of topo-
logical islands is a sensitive tool to reveal locations of the
bulk topological Anderson transitions. Moreover, such finite-
size scaling looks qualitatively distinct in different symmetry
classes, e.g., AIII vs BDI, while their ensemble-averaged de-
scriptions [9] are very much alike.

Our results are important for ongoing experimental ef-
forts to detect one-dimensional topological phase transitions
and localization-delocalization phenomena. In many real ex-
periments, such as recent topological Anderson insulator
observations [12], the system size is typically not large.
As a result, self-averaged theories are less suitable for

analysis. However, our results demonstrate what features one
may expect in a real experiment setup, even when dealing with
smaller systems. In the end, we discuss observable manifesta-
tions of topological transitions in mesoscopic-size-disordered
samples [12,47] on persistent currents as well as entanglement
spectra.

To illustrate the idea, let us consider a finite-size-
disordered system defined on a ring,

H =
N∑

j=1

t jc
†
j,Ac j,B + t ′

jc
†
j,Bc j+1,A + H.c., (1)

where cN+1,A = c1,A. Here A and B label two sublattices
and t j and t ′

j are hopping strengths within the unit cell and
between nearest unit cells, respectively. The chiral-symmetry-
preserving disorder is introduced as

t j = m + W w j, t ′
j = 1 + W ′w′

j, (2)

where m is a uniform staggering, W and W ′ are the disorder
strengths, and w j and w′

j are independent random variables
uniformly drawn from the box [−1/2, 1/2]. In all subse-
quent examples, W ′ = 1

2W . The system possesses the chiral
symmetry

τzHτz = −H, (3)

where τz is the Pauli matrix acting in the sublattices’ space. In
the time-reversal-symmetric BDI class [6,48] all the parame-
ters are real, while generalization to the AIII class is discussed
below.

The usual topological index in the k space cannot be de-
fined in a finite-size and translationally noninvariant system.
To overcome it we introduce a flux, threading the ring [8,49],
through the substitution

tN c†
N,Bc1,A → tN eiφc†

N,Bc1,A. (4)

The energy spectrum consists of 2N particle-hole symmet-
ric “bands” as functions of flux φ ∈ [0, 2π ]. One can now
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FIG. 1. Average topological index on the (W, m) phase diagram
for N = 10. To emphasize fluctuations, each point is averaged using
a small sample size of 20. The red lines are the phase boundaries of
the corresponding infinite systems. (a) Class BDI. (b) Class AIII.

introduce the index by using the Hamiltonian in a chiral basis,

H (m, φ) =
(

0 Q(m, φ)
Q†(m, φ) 0

)
, (5)

and defining

ν = 1

2π i

∫ 2π

0
dφ ∂φ log det Q(m, φ). (6)

Since this is a winding number of the φ �→ det Q(m, φ) map,
the index is integer valued.

A transition point, m = mc, is marked by the gap at zero en-
ergy closing for some φ = φmc . At this instance there are two
zero energy eigenvalues, which implies det H = −| det Q|2 =
0. This means that, as φ goes from 0 to 2π , det Q(mc, φ) draws
a closed loop in the complex plane which passes through the
origin. Its winding number is thus undefined, while for m �=
mc it is an integer, which jumps by one over the transition.
For the BDI class, φmc is either 0 or π due to the time-reversal
symmetry.

Figure 1 shows the topological index for N = 10, aver-
aged over 20 disorder realizations, on the phase plane of
(W, m). The red line is the topological phase boundary of the
corresponding infinite system, which is calculated using the
method of Ref. [11]. The enhanced fluctuations can be seen
around the boundary. Notice that, in a certain region, they
extend far beyond the bulk boundary to a very strong disorder.

FIG. 2. (a) The distribution over 105 realizations of the transition
points near m = 1 for W = 1; N = 6 and N = 60 are shown in blue
and orange along with the Gaussian fits. (b) Topological index for a
system with N = 6, W = 4, and a fixed disorder realization. Notice
five intermittent topological phases, dubbed topological islands.

In the weak disorder region, each realization exhibits two
transition points located near m ≈ ±1. The sample-to-sample
fluctuations of each of these transition points [Fig. 2(a)] are
well fitted by the Gaussian distribution. Its center follows the
red boundary, while the width shrinks as N → ∞. This marks
a self-averaging transition.

However, when the disorder is strong, the fluctuations per-
sist even in the N → ∞ limit. This is attributed to the hidden
structure of topological islands—the intermittent topological
phases. Figure 2(b) shows a sample-specific topological index
as a function of m for W = 4. The number of topological
islands can be as large as N . They do not disappear in the
N → ∞ limit but their width and relative area scales to 0.

For a better view of topological islands, the phase diagrams
for fixed disorder realizations are shown in Fig. 3. The dis-
order realizations are fixed except the overall amplitude, W .
The green region is topological, while the blue one is trivial.
The red lines are the phase boundary of the corresponding
infinite systems. The bulk topological region of the BDI model
grows into N topological islands. These islands extend to an
arbitrarily strong disorder. Towards a weaker disorder they
thicken and coalesce, ultimately forming the bulk topological
region.

The presence of topological islands is a general feature,
not restricted to the particular model we examined. They are
determined by the real zeros of the random polynomial

p(m, φ) = det Q(m, φ). (7)

Here, φ takes all possible values. Those zeros are the bound-
aries of the islands and can be used to determine the number
and locations of them. Topological islands exist as long as
there are many real zeros of p(m, φ). Let us consider a general
random BDI model with all ranges of longer hopping. We
first introduce the control parameter m as the hopping within
the unit cell and thus m is the diagonal element of Q. Then
we introduce random hopping between different sites while
respecting the chiral symmetry. Q may be modeled as mI + R,
where I is the identity matrix and R is a random matrix. Real
zeros of p(m, φ) are thus the same as real eigenvalues of R
(up to a minus sign). There are around

√
N real eigenvalues

of R, where N is the number of unit cells [50]. For class BDI,
φ takes 0 and π , which leads to 2

√
N transitions. Hence, we
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FIG. 3. Phase diagrams of fixed disorder realizations. The green region is ν = 1, while the blue region is ν = 0. The red lines are the phase
boundaries of the corresponding infinite systems [11]. (a) and (b) Class BDI with N = 8 and N = 16. (c) and (d) Class AIII with N = 8 and
N = 16.

expect there are roughly
√

N topological islands for a generic
BDI model.

For the specific model we consider, real zeros can be found
by requiring the product of the absolute value of all intraunit
cell hopping strength equals that of interunit cell hopping
strength,

∏N
j=1 |t j | = ∏N

j=1 |t ′
j |. In the bulk of ν = 0 (blue)

region,
∏

j |t j | >
∏

j |t ′
j |. The radiating shape of topological

islands can be understood by looking at the special points
where the chain is accidentally cut in two, given that one of
t j = 0,

m + W w j = 0. (8)

Real zeros of the random polynomial are usually near them for
large W . These straight lines on the (W, m) plane, with a set
of random slopes −w j , mark the centers of the islands. The
width of ν = 1 (green) region around each such a line may be

estimated for W 
 1 as [51],

�mj = W w′
j

(
1

2

)N−1 N∏
i �= j

(
w′

i

wi − w j

)
. (9)

Thus, the angular width of the island, �mj/W , is a fixed
number for a given realization. It decreases exponentially with
N → ∞.

To further understand the anatomy of the topological is-
lands, we look at the number of islands [51] across all m’s
for a fixed W [Fig. 4(a)]. A convenient way to represent
data is to plot Nislands−1

N−1 vs W . As N increases it approaches
a limiting function, smoothly interpolating between zero and
one. To detect the exact location of the transition we look
for the variance of the number of islands (divided by N − 1)
[see the inset in Fig. 4(a)]. It shows that as N increases, the
variance peak become more narrow and centered at Wc = 4.

FIG. 4. The average number of islands versus the disorder strength W for systems with different system sizes N . (a) Class BDI, the
convenient quantity is Nislands−1

N−1 . Inset shows its variance, which peaks at Wc = 4 as N → ∞. (b) Class AIII, the graphs shows a crossing point
at Wc = 4/ log(2).

224201-3



HAO ZHANG AND ALEX KAMENEV PHYSICAL REVIEW B 108, 224201 (2023)

This illustrates that the bulk transition point for m = 0 may be
identified as the maximum of the variance of the number of
islands in a finite-size simulation.

We turn now to the AIII symmetry class with the bro-
ken time-reversal symmetry. To this end we use Hamiltonian
Eq. (1) with the complex hopping amplitudes. Namely, the
absolute values and phases of w j and w′

j are now uniformly
drawn from (0, 1/2) and (−π, π ), respectively. Figure 1(b)
shows the average phase diagram of class AIII. It is similar
to that of BDI class and so is the average theory of the cor-
responding bulk topological Anderson transition [8,9,11,20].
The latter takes place along the red line, where the localization
length diverges.

However, the sample-specific fluctuations of the topologi-
cal index behaves in a way that is very different from the BDI
class. Indeed, the topological islands now have a finite extent
and are limited to a relatively weak disorder part of the phase
diagram [Figs. 3(c) and 3(d)]. Moreover, there are only a few
islands and their number does not increase with N . This is due
to complex random hopping amplitudes which statistically
exclude instances of a cut chain (real and imaginary parts do
not vanish at the same W ). The average number of islands
across all m’s is plotted in Fig. 4(b) for different system sizes
N . It shows a well-defined crossing point at Wc = 4/ log(2), in
agreement with the bulk transition point at m = 0 [11]. As N
grows, the number of islands approaches 1 and 0 for W < Wc

and W > Wc, correspondingly.
We have shown that mesoscopic sample-to-sample fluc-

tuations manifest themselves in the formation of topological
islands. Their number, shape, and statistics are qualitatively
different between BDI and AIII classes. However, in both
cases their finite-size scaling provides the exact location of
the corresponding bulk topological Anderson transition.

Before concluding we discuss observable signatures of the
sharp topological transitions in finite-size systems.

First, consider a mesoscopic persistent current, given by
[52–55]

I (m, φ) = −∂φE (m, φ), (10)

where E (m, φ) is the ground-state energy of the half-filled
system. It is a periodic function φ, which exhibits a maximum
at a certain φ, Imax(m) = maxφ I (m, φ). It appears that this
maximal value exhibits a nonanalytic maximum at the topo-
logical transition critical mc [Fig. 5(a)],

Imax ∝ −|m − mc|α, (11)

where α is the critical exponent that may have dependence on
system parameters.

FIG. 5. (a) Sample-specific maximum value of the persistent cur-
rent Imax (blue dots) and the topological index ν (orange dots) as
functions of m. Imax peaks at the two transition points with power-law
singularities. (b) The entanglement spectrum of a BDI realization
with N = 6 and W = 1. The blue dots are ξi, which are related to
the entanglement energies through Eq. (13). The orange dots are the
topological index. The entanglement spectrum has discontinuities at
transitions. In the topological phase, there are two ξi around 0.5 (and
thus εi around 0).

In simple models with nearest-neighbor hopping, there are
zero energy states located close to weak links in topological
phases and they resemble the edge states while in more gen-
eral models, their localization cannot be tight to any visible
edge.

The transitions also have implications in entanglement
spectra [10,56]. We divide the chain into two equal parts A and
B (do not confuse with the sublattices) and calculate the trace
over the B part. The corresponding reduced density matrix of
A takes the form

ρA =
∑

nB

〈nB|ρ|nB〉 ∝ e− ∑
i εia

†
i ai , (12)

where |nB〉 are basis vectors of the B part and ai are normal
modes. The second equality is a property of Gaussian (i.e.,
noninteracting) models [57]. Here εi is the entanglement spec-
trum, which may be expressed through the eigenvalues ξi of
the one-particle covariance matrix Cj j′ = 〈c†

j c j′ 〉 [57] as

εi = 1

2
log

(
1 − ξi

ξi

)
, (13)

where j and j′ label the lattice sites of the A part and
〈. . .〉 denote ground-state averaging. The entanglement spec-
trum exhibits discontinuities at topological transitions [see
Fig. 5(b)]. For a weak disorder, the spectrum also exhibits
nearly zero entanglement energies within the topological
phase. It can thus be considered as a means to identify the
sharp topological transitions in mesoscopic systems.

We are grateful to Xuzhe Ying for useful discussions. This
work was supported by the NSF under Grant No. DMR-
2037654.

[1] B. A. Bernevig, Topological Insulators and Topologi-
cal Superconductors (Princeton University, Princeton, NJ,
2013).

[2] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course
on Topological Insulators, Lecture Notes in Physics, Vol. 919
(Springer, Cham, 2016).

[3] S.-Q. Shen, Topological Insulators: Dirac Equation in Con-
densed Matters (Springer, Berlin, 2017).

[4] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[5] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

224201-4

https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.82.3045


ANATOMY OF TOPOLOGICAL ANDERSON TRANSITIONS PHYSICAL REVIEW B 108, 224201 (2023)

[6] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classifica-
tion of topological quantum matter with symmetries, Rev. Mod.
Phys. 88, 035005 (2016).

[7] J. Li, R.-L. Chu, J. K. Jain, and S.-Q. Shen, Topological Ander-
son insulator, Phys. Rev. Lett. 102, 136806 (2009).

[8] A. Altland, D. Bagrets, L. Fritz, A. Kamenev, and H.
Schmiedt, Quantum criticality of quasi-one-dimensional topo-
logical Anderson insulators, Phys. Rev. Lett. 112, 206602
(2014).

[9] A. Altland, D. Bagrets, and A. Kamenev, Topology vs. Ander-
son localization: Nonperturbative solutions in one dimension,
Phys. Rev. B 91, 085429 (2015).

[10] E. Prodan, T. L. Hughes, and B. A. Bernevig, Entanglement
spectrum of a disordered topological chern insulator, Phys. Rev.
Lett. 105, 115501 (2010).

[11] I. Mondragon-Shem, T. L. Hughes, J. Song, and E. Prodan,
Topological criticality in the chiral-symmetric AIII class at
strong disorder, Phys. Rev. Lett. 113, 046802 (2014).

[12] E. J. Meier, F. A. An, A. Dauphin, M. Maffei, P. Massignan,
T. L. Hughes, and B. Gadway, Observation of the topological
Anderson insulator in disordered atomic wires, Science 362,
929 (2018).

[13] S. Stützer, Y. Plotnik, Y. Lumer, P. Titum, N. H. Lindner, M.
Segev, M. C. Rechtsman, and A. Szameit, Photonic topological
Anderson insulators, Nature (London) 560, 461 (2018).

[14] C. W. Groth, M. Wimmer, A. R. Akhmerov, J. Tworzydło,
and C. W. J. Beenakker, Theory of the topological Anderson
insulator, Phys. Rev. Lett. 103, 196805 (2009).

[15] D. D. Vu and S. Das Sarma, Weak quantization of noninteract-
ing topological Anderson insulator, Phys. Rev. B 106, 134201
(2022).

[16] T. A. Loring and M. B. Hastings, Disordered topological insu-
lators via C*-algebras, Europhys. Lett. 92, 67004 (2010).

[17] H. Jiang, L. Wang, Q.-f. Sun, and X. C. Xie, Numerical study
of the topological Anderson insulator in HgTe/CdTe quantum
wells, Phys. Rev. B 80, 165316 (2009).

[18] E. Prodan, Disordered topological insulators: A Non-
commutative geometry perspective, J. Phys. A: Math. Theor.
44, 113001 (2011).

[19] Y. Xing, L. Zhang, and J. Wang, Topological Anderson insulator
phenomena, Phys. Rev. B 84, 035110 (2011).

[20] J. Song and E. Prodan, AIII and BDI Topological systems at
strong disorder, Phys. Rev. B 89, 224203 (2014).

[21] I. C. Fulga, F. Hassler, A. R. Akhmerov, and C. W. J.
Beenakker, Scattering formula for the topological quantum
number of a disordered multimode wire, Phys. Rev. B 83,
155429 (2011).

[22] A. Haim and A. Stern, Benefits of weak disorder in one-
dimensional topological superconductors, Phys. Rev. Lett. 122,
126801 (2019).

[23] C.-B. Hua, R. Chen, D.-H. Xu, and B. Zhou, Disorder-induced
Majorana zero modes in a dimerized Kitaev superconductor
chain, Phys. Rev. B 100, 205302 (2019).

[24] A. R. Akhmerov, J. P. Dahlhaus, F. Hassler, M. Wimmer, and
C. W. J. Beenakker, Quantized conductance at the Majorana
phase transition in a disordered superconducting wire, Phys.
Rev. Lett. 106, 057001 (2011).

[25] J. H. Bardarson, P. W. Brouwer, and J. E. Moore,
Aharonov-Bohm oscillations in disordered topological insulator
nanowires, Phys. Rev. Lett. 105, 156803 (2010).

[26] C.-A. Li, B. Fu, Z.-A. Hu, J. Li, and S.-Q. Shen, Topological
phase transitions in disordered electric quadrupole insulators,
Phys. Rev. Lett. 125, 166801 (2020).

[27] J. Claes and T. L. Hughes, Disorder driven phase transitions
in weak AIII topological insulators, Phys. Rev. B 101, 224201
(2020).

[28] M. M. Wauters, A. Russomanno, R. Citro, G. E. Santoro, and
L. Privitera, Localization, topology, and quantized transport
in disordered floquet systems, Phys. Rev. Lett. 123, 266601
(2019).

[29] H.-C. Hsu, P.-M. Chiu, and P.-Y. Chang, Disorder-induced
topology in quench dynamics, Phys. Rev. Res. 3, 033242
(2021).

[30] S. Velury, B. Bradlyn, and T. L. Hughes, Topological crystalline
phases in a disordered inversion-symmetric chain, Phys. Rev. B
103, 024205 (2021).

[31] H. Liu, J.-K. Zhou, B.-L. Wu, Z.-Q. Zhang, and H. Jiang,
Real-space topological invariant and higher-order topological
Anderson insulator in two-dimensional non-Hermitian systems,
Phys. Rev. B 103, 224203 (2021).

[32] D. S. Antonenko, E. Khalaf, P. M. Ostrovsky, and M. A.
Skvortsov, Mesoscopic conductance fluctuations and noise in
disordered Majorana wires, Phys. Rev. B 102, 195152 (2020).

[33] P. Titum, E. Berg, M. S. Rudner, G. Refael, and N. H. Lindner,
The anomalous Floquet-Anderson insulator as a nonadiabatic
quantized charge pump, Phys. Rev. X 6, 021013 (2016).

[34] P. Titum, N. H. Lindner, M. C. Rechtsman, and G. Refael,
Disorder-induced Floquet topological insulators, Phys. Rev.
Lett. 114, 056801 (2015).

[35] H.-M. Guo, G. Rosenberg, G. Refael, and M. Franz, Topolog-
ical Anderson insulator in three dimensions, Phys. Rev. Lett.
105, 216601 (2010).

[36] K. Kobayashi, T. Ohtsuki, and K.-I. Imura, Disordered weak
and strong topological insulators, Phys. Rev. Lett. 110, 236803
(2013).

[37] H. Jiang, Z. Qiao, H. Liu, J. Shi, and Q. Niu, Stabilizing topo-
logical phases in graphene via random adsorption, Phys. Rev.
Lett. 109, 116803 (2012).

[38] J. H. Garcia, L. Covaci, and T. G. Rappoport, Real-space cal-
culation of the conductivity tensor for disordered topological
matter, Phys. Rev. Lett. 114, 116602 (2015).

[39] A. Yamakage, K. Nomura, K.-I. Imura, and Y. Kuramoto,
Disorder-induced multiple transition involving Z2 topological
insulator, J. Phys. Soc. Jpn. 80, 053703 (2011).

[40] J. Song, H. Liu, H. Jiang, Q.-f. Sun, and X. C. Xie, The depen-
dence of topological Anderson insulator on the type of disorder,
Phys. Rev. B 85, 195125 (2012).

[41] S. Ryu and K. Nomura, Disorder-induced metal-insulator
transitions in three-dimensional topological insulators and su-
perconductors, Phys. Rev. B 85, 155138 (2012).

[42] D.-W. Zhang, L.-Z. Tang, L.-J. Lang, H. Yan, and S.-L. Zhu,
Non-Hermitian topological anderson insulators, Sci. China
Phys. Mech. Astron. 63, 267062 (2020).

[43] Y.-Y. Zhang, R.-L. Chu, F.-C. Zhang, and S.-Q. Shen, Localiza-
tion and mobility Gap in topological Anderson insulator, Phys.
Rev. B 85, 035107 (2012).

[44] Y.-B. Yang, K. Li, L.-M. Duan, and Y. Xu, Higher-order topo-
logical Anderson insulators, Phys. Rev. B 103, 085408 (2021).

[45] X. Shi, I. Kiorpelidis, R. Chaunsali, V. Achilleos, G.
Theocharis, and J. Yang, Disorder-induced topological phase

224201-5

https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevLett.102.136806
https://doi.org/10.1103/PhysRevLett.112.206602
https://doi.org/10.1103/PhysRevB.91.085429
https://doi.org/10.1103/PhysRevLett.105.115501
https://doi.org/10.1103/PhysRevLett.113.046802
https://doi.org/10.1126/science.aat3406
https://doi.org/10.1038/s41586-018-0418-2
https://doi.org/10.1103/PhysRevLett.103.196805
https://doi.org/10.1103/PhysRevB.106.134201
https://doi.org/10.1209/0295-5075/92/67004
https://doi.org/10.1103/PhysRevB.80.165316
https://doi.org/10.1088/1751-8113/44/11/113001
https://doi.org/10.1103/PhysRevB.84.035110
https://doi.org/10.1103/PhysRevB.89.224203
https://doi.org/10.1103/PhysRevB.83.155429
https://doi.org/10.1103/PhysRevLett.122.126801
https://doi.org/10.1103/PhysRevB.100.205302
https://doi.org/10.1103/PhysRevLett.106.057001
https://doi.org/10.1103/PhysRevLett.105.156803
https://doi.org/10.1103/PhysRevLett.125.166801
https://doi.org/10.1103/PhysRevB.101.224201
https://doi.org/10.1103/PhysRevLett.123.266601
https://doi.org/10.1103/PhysRevResearch.3.033242
https://doi.org/10.1103/PhysRevB.103.024205
https://doi.org/10.1103/PhysRevB.103.224203
https://doi.org/10.1103/PhysRevB.102.195152
https://doi.org/10.1103/PhysRevX.6.021013
https://doi.org/10.1103/PhysRevLett.114.056801
https://doi.org/10.1103/PhysRevLett.105.216601
https://doi.org/10.1103/PhysRevLett.110.236803
https://doi.org/10.1103/PhysRevLett.109.116803
https://doi.org/10.1103/PhysRevLett.114.116602
https://doi.org/10.1143/JPSJ.80.053703
https://doi.org/10.1103/PhysRevB.85.195125
https://doi.org/10.1103/PhysRevB.85.155138
https://doi.org/10.1007/s11433-020-1521-9
https://doi.org/10.1103/PhysRevB.85.035107
https://doi.org/10.1103/PhysRevB.103.085408


HAO ZHANG AND ALEX KAMENEV PHYSICAL REVIEW B 108, 224201 (2023)

transition in a 1D mechanical system, Phys. Rev. Res. 3, 033012
(2021).

[46] A. Pruisken, On localization in the theory of the quantized Hall
effect: A two-dimensional realization of the θ -vacuum, Nucl.
Phys. B 235, 277 (1984).

[47] S. Barkhofen, S. De, J. Sperling, C. Silberhorn, A. Altland, D.
Bagrets, K. W. Kim, and T. Micklitz, Experimental observation
of topological quantum criticality, arXiv:2301.05428.

[48] A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes
in mesoscopic normal-superconducting hybrid structures, Phys.
Rev. B 55, 1142 (1997).

[49] I. C. Fulga, F. Hassler, A. R. Akhmerov, and C. W. J.
Beenakker, Topological quantum number and critical exponent
from conductance fluctuations at the quantum Hall plateau tran-
sition, Phys. Rev. B 84, 245447 (2011).

[50] A. Edelman, E. Kostlan, and M. Shub, How many eigenvalues
of a random matrix are real? J. Am. Math. So. 7, 247 (1994).

[51] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.108.224201 for the derivation and for the
details of the numerical calculations.

[52] A. C. Bleszynski-Jayich, W. E. Shanks, B. Peaudecerf, E.
Ginossar, F. v. Oppen, L. Glazman, and J. G. E. Harris,
Persistent currents in normal metal rings, Science 326, 272
(2009).

[53] S. Ghosh and A. Saha, Persistent current of relativistic electrons
on a Dirac ring in presence of impurities, Eur. Phys. J. B 87, 167
(2014).

[54] A. Nava, R. Giuliano, G. Campagnano, and D. Giuliano, Per-
sistent current and zero-energy Majorana modes in a p-wave
disordered superconducting ring, Phys. Rev. B 95, 155449
(2017).

[55] D. Sticlet, B. Dóra, and J. Cayssol, Persistent currents in Dirac
fermion rings, Phys. Rev. B 88, 205401 (2013).

[56] H. Li and F. D. M. Haldane, Entanglement spectrum as a gener-
alization of entanglement entropy: Identification of topological
order in non-Abelian fractional quantum Hall effect states,
Phys. Rev. Lett. 101, 010504 (2008).

[57] I. Peschel, Calculation of reduced density matrices from
correlation functions, J. Phys. A: Math. Gen. 36, L205
(2003).

224201-6

https://doi.org/10.1103/PhysRevResearch.3.033012
https://doi.org/10.1016/0550-3213(84)90101-9
http://arxiv.org/abs/arXiv:2301.05428
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.84.245447
https://doi.org/10.1090/S0894-0347-1994-1231689-0
http://link.aps.org/supplemental/10.1103/PhysRevB.108.224201
https://doi.org/10.1126/science.1178139
https://doi.org/10.1140/epjb/e2014-50223-1
https://doi.org/10.1103/PhysRevB.95.155449
https://doi.org/10.1103/PhysRevB.88.205401
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1088/0305-4470/36/14/101

