
PHYSICAL REVIEW B 108, 224109 (2023)

Quasicrystalline structure of the hat monotile tilings
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Tiling models can reveal unexpected ways in which local constraints give rise to exotic long-range spatial
structure. The recently discovered hat monotile (and its mirror image) has been shown to be aperiodic [Smith
et al., arXiv:2303.10798]; it can tile the plane with no holes or overlaps, but cannot do so periodically. We show
that the structure enforced by the local space-filling constraints is quasiperiodic with hexagonal (C6) rotational
symmetry. Although this symmetry is compatible with periodicity, the incommensurate ratio characterizing the
quasiperiodicity stays locked to the golden mean as the tile parameters are continuously varied. We analyze a
modification of the metatiles introduced by Smith et al. that yields a set of key tiles that can be constructed
as projections of a subset of six-dimensional hypercubic lattice points onto the two-dimensional tiling plane.
We analytically compute the diffraction pattern of a set of unit masses placed at the tiling vertices, establishing
the quasiperiodic nature of the tiling. We point out several unusual features of the family of key tilings and
associated hat tilings, including the tile rearrangements associated with the phason degree of freedom associated
with incommensurate density waves, which exhibit novel features that may influence the elastic properties of a
material in which atoms or larger particles spontaneously exhibit the symmetries of the hat tiling.
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I. INTRODUCTION

The recently discovered hat tile has the remarkable prop-
erty that congruent copies of it (together with its mirror image)
can tile the plane but cannot do so in periodic manner [1].
Smith et al. have shown the hat tilings can be viewed as
decorations of tilings composed of metatiles that support a
substitution symmetry. Furthermore, they have shown that
when the substitution operation is carried out ad infinitum,
the tile shapes converge to ones with edge lengths related
by the golden ratio. The forcing of nonperiodic structure, the
substitution symmetry, and the emergence of the golden ratio
are all reminiscent of the well-known Penrose tiles [2], which
have served as a paradigmatic example of quasicrystalline
structure, providing significant insights into the properties of
physical quasicrystals [3–5]. Smith et al. have shown that the
hat tile shape (or matching rules for the metatiles) forces some
form of nonperiodic structure. The purpose of the present pa-
per is to provide a characterization of that structure, showing
that these tilings are quasicrystalline but possess some novel
symmetry properties.

The signature of perfect quasicrystalline structure is a
diffraction pattern consisting entirely of a dense set of Bragg
peaks at wave vectors that are integer linear combinations
of a set of incommensurate basis vectors. In the Penrose
tiling case, the natural choice of basis vectors is a fivefold
symmetric star, kn = k0[cos(2πn/5), sin(2πn/5)], for which
kn−1 + kn+1 = φ−1kn, where φ = (1 + √

5)/2 is the golden
ratio. One way to understand and calculate the diffraction
pattern is based on viewing the tiling as a projection of a
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subset of points of five-dimensional (5D) hypercubic lattice
onto a 2D plane oriented such that the basis vectors of the
hypercubic lattice project onto the five vectors that are edges
of the rhombic Penrose tiles [6,7]. A crucial feature of the
construction is that the subset of 5D lattice points uniformly
fills a bounded region (a window) when projected instead onto
the 3D space orthogonal to the tiling plane. The diffraction
pattern for a set of unit masses placed at the vertices of the
Penrose rhombus tiling consists of Bragg peaks located at the
projection of the 5D reciprocal space lattice onto the physical
reciprocal space, where the peak intensities are determined by
the Fourier transform of the window [8–10].

We show here that the hat tiling can be constructed in an
analogous manner. It is a projection onto the tiling plane of
a subset of 6D hypercubic lattice points that is bounded in a
4D subspace, though unlike the Penrose case, the window is
not orthogonal to the tiling plane. More conveniently, the hat
tiling can be viewed as a decoration of a set of four tiles that
display the essential structure of the tiling. Smith et al. made
extensive use of four metatiles in proving that the hat can only
tile the plane in a nonperiodic pattern. Here we modify their
definition of the metatiles to form a set of key tiles, so named
because their vertices are the key vertices identified by Smith
et al. [1]. We show that the tilings formed by key tiles have a
simple structure in the 6D space.

The natural class of key tiles is larger than the set associ-
ated with hat tiles. From the physics perspective, all of these
key tilings have similar properties, and the special subset that
permits a hat decoration does not show any unique features
other than allowing for a decomposition into a tiling by a hat
and its mirror image; for a broader class of key tilings, there is
a decomposition into two distorted hatlike tiles, but the second
is no longer the mirror image of the first. For a broader class
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still, the decomposition algorithm produces overlapping tiles
and one tile shape with a self-intersecting boundary. This last
class includes a case that we call the golden key, which plays
a special role in the analysis of the entire class.

Smith et al. showed that the metatiles (or, equivalently,
the key tiles) in an infinite tiling can always be grouped into
supertiles that are topologically equivalent to the originals and
can be again grouped into still larger supertiles ad infinitum
[1]. We refer to the operation of grouping tiles into larger
tiles as inflation. Given an inflated tiling, the operation can
be inverted to recreate a tiling of smaller tiles, a process we
call deflation [6,11]. All that is needed for the proof that
the hat tiling is nonperiodic is a proof that inflation opera-
tion is unique and can be iteratively performed ad infinitum
on any infinite, space-filling tiling. The golden key tiles are
the unique choices that allow for infinitely iterated deflation.
They correspond to the limiting shape produced by infinite
inflations of any initial set of key tiles; i.e., the key tile set
corresponding to the limiting metatile shapes identified by
Smith et al. [1]. For generic key tile sets, the tile shapes are
not stable under deflation, and repeated iteration eventually
produces tiles with perimeters that form figure-eight curves
rather than simple polygonal regions.

This paper is organized as follows. Section II presents
the lifting of key tiling vertices onto a six-dimensional (6D)
hypercubic lattice and defines the inflation and deflation op-
erations in the 6D space. This allows for a determination of
the golden key tile shapes. Section III shows how a subclass
of key tilings can be decomposed into hat tiles. Section IV
presents strong evidence (though not a rigorous proof) for the
precise structure of the window that defines the relevant subset
of hypercubic lattice points, then shows how this leads to the
computation of the diffraction pattern for a set of unit masses
located at the vertices of a key tiling, which establishes the
quasicrystalline nature of the tilings. Finally, Sec. VI contains
remarks on unusual features of the key tilings and hat tilings
and an illustration of the tile rearrangements associated with
infinitesimal phason shifts.

II. KEY TILINGS AS PROJECTIONS FROM A 6D
HYPERCUBIC LATTICE

A set of key tiles consists of the four shapes shown on the
left in Fig. 1. We use the same labels, H , T , P, and F , as those
used by Smith et al. for their corresponding metatiles [1]. The
a edges occur in three hexagonally symmetric orientations.
The b edges also form a hexagonal set, but twisted by an
angle θ from the set of a edge orientations. Edges of length
c connect vertices displaced by a vector that can be uniquely
expressed as a sum of two vectors of length a and two of
length b. We can thus lift the tiling into six dimensions by
defining a set of six star vectors, en, in the tiling plane, arbi-
trarily choosing one tiling vertex as the origin, and indexing
each vertex by the number of edges in each star direction
that must be traversed from the origin to reach the vertex.
Figure 1 shows the set of star vectors, and Fig. 2 illustrates
the construction of the lift to 6D. In this manner, each tiling
vertex can be mapped to a lattice point in a 6D hypercubic
lattice. (The lift is uniquely determined up to a choice of the
origin; i.e., there are no loops that could yield e1 + e2 on one

FIG. 1. Top: A generic set of key tiles and the star vectors cor-
responding to the a and b edges with θ = π/4. The angles between
adjacent a edges and between adjacent b edges are 120◦. Bottom: A
portion of a tiling composed of this set of tiles. Note that every vertex
of the tiling lies on at least one F tile.

FIG. 2. Lifting an F key tile onto a 6D hypercubic lattice. Dis-
placements along each edge of length a or b correspond to the star
vectors that lift into the basis vectors of the 6D lattice.
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FIG. 3. The deflation operation for a generic set of key tiles.
Black dots indicate the orientation of each tile for purposes of further
inflation/deflation or placement of hat decorations. Note that the
deflated P and F tiles shapes (on the right) are not similar in the
strict geometric sense to the originals, and the orientations of the H
and T deflated tiles are slightly different from their parents.

path and −e3 on the other). The tiling vertices are projections
of 6D lattice points onto a 2D plane oriented such that the
basis vectors of the 6D lattice project onto the desired set of
star vectors.

The deflation operation on key tiles is depicted in Fig. 3
and is equivalent to the substitution operation on the Smith
metatiles [1]. The smaller tiles are the originally defined key
tiles. The larger ones represent one iteration of the inflation
operation. Note that the original and inflated P and F tiles
have different shapes, and the original and inflated H and
T tiles have different orientations. As shown below, it is
straightforward to derive the shapes of the inflated tiles given
the original tiles. Deriving the shapes of deflated tiles from an
original set is more difficult, though in principle it can be done
by inverting the relations obtained for the inflation operation.
In practice, to construct a tiling with a given set of tiles,
one begins with those tiles and iterates the inflation operation
multiple times to obtain the appropriate sets of tile shapes
for each iteration of the inflation operation. One can then
begin with a high-level inflated tile and perform the deflation
operation repeatedly, using the tile shapes that have already
been determined, to construct a large patch of the tiling.

The substitution matrix for the numbers of tiles generated
by deflation is

M =

⎛
⎜⎜⎜⎝

3 1 2 2
1 0 0 0
1 1 2 2
0 3 4 4

⎞
⎟⎟⎟⎠, (1)

where each column represents the numbers of H , T , P, and
F tiles present in the deflation of each type of tile, with the
columns listed in the same order. The largest eigenvalue is
λ1 = φ4 = 6.854 . . ., and the eigenvector associated with it
gives the following relative frequencies ρX of the four tile
types in the infinite tiling:

ρH : ρT : ρP : ρF = φ4 : 1 : 3φ : 3φ2. (2)

Note that the second largest eigenvalue is λ2 = 2, which is
greater than unity. For one-dimensional substitution tilings, a
second eigenvalue greater than unity indicates strong fluctua-
tions that give rise to continuous components of the diffraction
spectrum [12]. In two dimensions, the situation is more com-
plicated. We note that in the present case λ1 is a Pisot number

and λ2 < λ
1/2
1 , which indicates that under repeated deflation

of a patch of tiles, fluctuations in tile densities scale more
slowly than the perimeter of patch. For analysis of the impli-
cations of these features, we refer the reader to the literature
on spectra of d-dimensional substitution tilings [13–15]. For
present purposes, we will provide strong numerical evidence
below that the key tilings exhibit pure point diffraction, as
rigorously confirmed in Ref. [16].

We now consider the tile shapes generated by repeated
inflation of the tiles. Let x be a 6D integer vector representing
an edge in the original tiling, and let R be the matrix that acts
on x to rotate the corresponding edge by π/3 in the tiling
plane. Inspection of the set of star vectors as they are indexed
in Fig. 1 immediately allows us to construct

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0
−1 0 0 0 0 0

0 −1 0 0 0 0
0 0 0 0 0 −1
0 0 0 −1 0 0
0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

Let e(n)
i be the 6D lift of the ith star vector associated

with the nth inflation of the original key tiles, where e(0)
i

corresponds to the 6D lift of the corresponding star vector
shown in Fig. 1. The inflation operation consists of grouping
sets of edges in the original tiling together to form edges of
the inflated tiles. Inspection of the F tile in Fig. 3 reveals that
the vector corresponding to the bottom a edge of the inflated
tile is

e(n+1)
3 = e(n)

3 + e(n)
6 + R5 · e(n)

3 + e(n)
6 + e(n)

3 (4)

= (2I + R5) · e(n)
3 + 2I · e(n)

6 , (5)

where I is the 6 × 6 identity matrix. Similarly, we have

e(n+1)
6 = R · e(n)

3 + R · e(n)
6 . (6)

Defining s(n) as the 12-component concatenation of e(n)
3 and

e(n)
6 , we have

s(n+1) = S · s(n); S =
(

(2I + R5) 2I

R R

)
. (7)

S has four degenerate eigenvalues φ2, four pure imaginary
eigenvalues ±i, and four degenerate eigenvalues φ−2. We
begin with the 6D lifts of star vectors e3 and e6; i.e., s(0) =
(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1). Decomposing s(0) into a sum
of eigenvectors of S, we find

lim
n→∞ s(n) = φ2ns∗, (8)

where s∗ is a vector in the subspace spanned by the eigenvec-
tors with eigenvalue φ2:

s∗ = 1

3
√

5
(2 + φ, φ−1, −φ3, 2, 2, −4,

−1, 2, −1, φ − 3, φ, −φ−3 ) (9)

≡ (e∗
3, e∗

6 ). (10)
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FIG. 4. Inflations and deflations of an F tile. Left: A generic
case. Inflation produces a sequence of larger tile shapes that con-
verge to the golden key F tile shape, while deflation at some point
generates inverted or self-intersecting tiles. Right: The golden key
case. Inflation and deflation preserve the shape and orientation of the
tile at each step, so deflation can be carried out ad infinitum. Tiles
deflated n times have been scaled by factors of φn/2 in the generic
case and φn in the golden case for visualization purposes. Dots mark
the corresponding vertices on the series of deflated tiles.

The vectors e∗
3 and e∗

6 define a 2D plane in the 6D space that is
invariant under inflation, and the golden key tiles lie in this
plane. Thus the 6D vectors e∗

i can be taken to be the star
vectors ei of the golden key tiling, and the angle θ for this
case can be calculated from them:

θ∗ = cos−1

(
e∗

3 · e∗
6

||e∗
3|| ||e∗

6||
)

= cos−1

( √
2

4φ2

)
. (11)

The golden key tile shapes are unique in that they can be
deflated infinitely many times. For any other choice of key
tile star vectors, the 6D star vectors must be projected onto
a 2D plane to create a planar tiling, and the projection of the
6D star vectors onto the eigenvectors of S−1 that grow under
deflation will at some iteration produce self-intersecting 2D
tile shapes, as illustrated in Fig. 4.

Figure 5 shows the dimensions of the golden key tiles.
A key feature of the analysis by Baake et al. [16] is the
determination of the set of return vectors of the tiling; i.e., the
displacements required to bring two tiles of the same type and
orientation into coincidence. The boxed F tile shows that three
points on the F tile correspond to certain complex numbers,
where ξ = eiπ/3 and ζ is a constant setting the scale and
orientation of the tiling. The tiling patch illustrates the fact
that the return vectors of the golden key tiling are members of
ζZ[φ, ξ ], where Z[φ, ξ ] is the set of all integer-coefficient lin-
ear combinations of 1, φ, ξ , and φξ , consistent with Ref. [16].

III. HAT TILINGS

We now consider the sets of key tiles that permit the hat
decoration. Figure 6 shows the relation between hat edges and
the a and b edges of an F key tile. The tiles specified as tile
[r6, r3] in Ref. [1] correspond to the special case γ = π/2.
The angle γ and the lengths r3 and r6 define the hat shape,
as shown in Fig. 7. The associated key tiles have parameters
(defined in Fig. 1)

a =
√

r2
3 + 3r2

6 − 2
√

3r3r6 cos
(π

6
+ γ

)
, (12)

b =
√

r2
3 + r2

6 − 2r3r6 cos γ , (13)

θ = π

3
− β + χ, (14)

FIG. 5. The set of golden key tiles with edge lengths and angles
labeled. φ = (1 + √

5)/2 is the golden mean, and α = θ∗ − π/6.
The boxed tile and tiling patch illustrate the geometry of the set of
return vectors (see text). The shaded tiles in the tiling patch are all H
tiles with the same orientation.

where

β = cos−1

⎛
⎜⎝ r3 − √

3r6 cos
(

π
6 + γ

)
√

r2
3 + 3r2

6 − 2
√

3 r3r6 cos
(

π
6 + γ

)
⎞
⎟⎠, (15)

FIG. 6. The relation between hat edges (thin lines) and F key tile
edges (thick lines). The key tile parameters match Fig. 1. The angles
between consecutive r3 edges and between consecutive r6 edges are
both 2π/3.
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χ = cos−1

⎛
⎜⎝ r3 − r6 cos γ√

r2
3 + r2

6 − 2r3r6 cos γ

⎞
⎟⎠. (16)

Figure 7 shows two key tilings with hat decorations. Note
that the reflected hat that appears in each H tile is a mirror
image of the primary hat if and only if γ = π/2. Note also
that not all values of b/a and θ for the key tiles can be
obtained from choices of r3, r6, and γ . In particular, the golden
key parameters cannot be produced from hat decorations. A
complete solution for the set of parameters of key shapes that
admit hat tilings is beyond the scope of this paper.

It appears most natural to conceive of the hat tiles as a dec-
oration of the key tiles. Many other decorations are possible,
of course, and it is not clear whether the hat tilings have any
special properties other than the fact that their shapes alone
force a nonperiodic tiling and that a one-parameter family
of them become monotiles by reflection symmetry. We note

FIG. 7. Two hat tilings. Top: A generic case with γ > π/2. Note
that the hat at the center of the H tile (top left) is not isomorphic
to the other hats. Bottom: A case with γ = π/2. Here the hat at the
center of the H tile is a mirror image of the primary hat, so the tiling
consists of a single tile shape in the class discovered by Smith et al.

FIG. 8. Schematic illustration of the projection construction of
the tiling vertices. Each vector shown here represents a 2D space.
Small spheres represent points that have the same projection onto 

(horizontal plane) and lie within a certain window in W (between the
two vertical planes). This set of points is projected onto the tiling
space to form the tile vertices. While W and the tiling space are both
orthogonal to , they are not orthogonal to each other.

also that the hat tilings themselves can be lifted onto a 6D
hypercubic lattice, where now the edges of the lattice project
onto the six edge vectors that form the hats. The vertices of
the associated key tiling are a subset of the hat vertices. We
will see below that the lift of the hat tiling vertices presents a
substantially more complex structure than the lift of the key
tiling vertices.

IV. 6D STRUCTURE AND DIFFRACTION

To characterize the type of order displayed by the key
tilings, we compute their diffraction patterns. The computa-
tion presented here is based on strong numerical evidence
for the shape of the 4D acceptance window that determines
which 6D hypercubic lattice points project to the vertices of
the tiling. A rigorous derivation of this window shape has not
yet been completed. The logic of the calculation is as follows:

(1) We first show that the projection of the 6D tiling ver-
tices onto the plane spanned by (1,1,1,0,0,0) and (0,0,0,1,1,1)
consists of just four points. We refer to this 2D subspace as
. This is schematically illustrated in Fig. 8 as points lying
in a horizontal plane normal to the  direction, all of which
project into one point in  in the illustration.

(2) We then show that the 6D tiling vertices project into a
certain compact window in a 2D subspace W that is orthogo-
nal to . The window is illustrated in Fig. 8 as the segment of
the line in the W direction that lies between the two vertical
planes normal to W. (The figure also illustrates the projection
of lattice points onto the tiling plane, which is orthogonal
to  but but not to W ). The window in W consists of four
equilateral triangles, each corresponding to a different point in
, and each of which is filled densely and uniformly with the
same density. Each triangle is the 2D analog of the segment
in Fig. 8 corresponding to a particular point in . (Reference
[16] presents an alternative approach to the description of the
tiling as a projection of a higher-dimensional lattice).

(3) We then carry out a slight modification of a standard
technique for computing the diffraction pattern of projected
(quasicrystal) structures [9,10]. Each 6D reciprocal space lat-
tice vector k can be decomposed into a sum kt + kw + kg,
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where the subscripts indicate vectors lying in the reciprocal
space of the tiling plane, of W , and of , respectively. This
allows us to express the Fourier transform of a set of unit
masses placed at the tiling vertices in terms of a sum of the
Fourier transforms of the four triangular windows with rela-
tive phase factors determined by the corresponding positions
in . We note that more recently developed techniques for
determining the dynamical spectrum of a substitution tiling
have been applied to the present case by Baake et al. [16]
to yield a rigorous proof that the spectrum consists entirely
of Bragg peaks. That approach leads to a projection scheme
involving a 4D lattice, and we note that the 6D construction

adopted in the present work could in principle be reduced to
4D by writing e3 = −e1 + e2 and e6 = −e4 + e5, effectively
collapsing the  subspace.

The diffraction pattern consists of δ-function (Bragg) peaks
at the dense set of points kt that are projections of the
hypercubic reciprocal space lattice, each with an amplitude
determined by the corresponding kw and kg. For a given 6D
lattice vector k, the components kt , kw, and kg are determined
by (P−1)T k, where P is the matrix that converts hypercubic
lattice point coordinates in the standard orthonormal basis
into coordinates in a basis consisting of pairs of unit vectors
spanning each of the three subspaces:

(xt , xw, xg) = P · x, (17)

where

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a cos
(

2π
3

)
a cos

(
4π
3

)
a cos

(
6π
3

)
b cos

(
θ + 2π

3

)
b cos

(
θ + 4π

3

)
b cos

(
θ + 6π

3

)
a sin

(
2π
3

)
a sin

(
4π
3

)
a sin

(
6π
3

)
b sin

(
θ + 2π

3

)
b sin

(
θ + 4π

3

)
b sin

(
θ + 6π

3

)
φν (φ − 3)ν −φ−3ν −2ν ν ν

−φ−2μ −φ−1μ μ 0 μ −μ

1/
√

3 1/
√

3 1/
√

3 0 0 0

0 0 0 1/
√

3 1/
√

3 1/
√

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

Here a, b, and θ are the edge lengths and angle defined in
Fig. 1, where a and b have been scaled such that the row is
normalized to unity, and ν and μ are factors that normalize
their respective rows to unity. The first two rows of P are the
x and y coordinates of the projections of the 6D basis vectors
onto the tiling plane. The fifth and sixth rows are unit vectors
in the  subspace. The third and fourth rows are orthogonal
coordinates in the W subspace, each being orthogonal to the
 subspace and to both e∗

3 and e∗
6 as defined in Eq. (10). This

ensures that the W subspace is orthogonal to the 6D vectors
representing the edges of infinitely inflated tiles.

Figure 9 shows a diffraction pattern for the generic case of
Fig. 1. The peaks shown correspond to all 6D reciprocal lattice
points 2π (k1, k2 . . . k6) with −4 � kn � 4. The elements of
the reasoning outlined above are explained in more detail in
the following paragraphs.

To see that the tiling vertices project onto only four distinct
points in the  subspace, first observe that every vertex in the
tiling lies on at least one F tile. Figure 10 shows the deflation
of a pair of F tiles with vertices labeled according to their 

coordinates. Moving along the direction e1, e2, or e3 causes
g1 to increase by 1/

√
3; moving along e4, e5, or e6 causes

g2 to increase by 1/
√

3. Note also that vertices connected by
a c edge project to the same point in . Examination of the
configurations in which a P tile connects two F tiles reveals
that all F tiles in orientations related by rotation by ±2π/3
have vertices with one pattern of (g1, g2) values, and all F
tiles rotated by π/6 from those three orientations have a single
pattern. The two patterns are displayed in Fig. 10, one F tile
having one magenta, three dark red, and one dark blue vertex
and the other having one cyan, three dark blue, and one dark
red vertex.

An analytical derivation of the boundaries of the region
containing the projection of the 6D tiling vertices onto the W
subspace is beyond our present scope. We content ourselves
here with an extrapolation from numerical data obtained by
projecting a large finite portion of a tiling onto W . Figure 11
shows the result. It appears clear that the projection consists
of four uniform density equilateral triangles. The triangles
associated with

√
3(g1, g2) = (0, 0) and (−1, 0) have areas φ4

larger than than those associated with (0,1) and (−1,−1). We
can confirm that they have the same density by calculating the
frequency ratio of different color vertices in a tiling decorated
as in Fig. 10. Noting that the (−1,−1) and (0,1) vertices
are the ones at the intersection of two b edges in an F tile,
counting the numbers of different vertex types contributed by
each deflated tile in Fig. 1, and using the tile frequency rations
from Eq. (2), we find

# (−1, 0) + # (0, 0)

# (0, 1) + # (−1,−1)
= 6ρH + 3ρT + 6ρP + 19

3 ρF

ρT + 4
3ρP + 4

3ρF
= φ4,

(19)

confirming that the uniform density hypothesis is plausible.
Let x be a 6D lattice point and let xt , xw, and xg be its

projections onto the tiling plane, W , and , respectively. We
want to compute the structure factor for a set of unit masses
placed at the vertices of the key tiling:

S(kt ) =
∑

xt

eikt ·xt . (20)

The Fourier transform of the hypercubic lattice consists of
δ-function peaks of equal amplitude at all points k of a hy-
percubic reciprocal lattice for which eik·x = 1 for all lattice
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FIG. 9. The diffraction pattern of unit masses placed at the ver-
tices of the tiling of Fig. 1. Disk area is proportional to the intensity of
the Bragg peak at that location. Blue and purple vectors indicate the
projections of the 6D reciprocal lattice basis vectors. Cyan vectors
indicate that a sum of three basis wave vectors yields a wave vector
in the direction of one of another basis wave vectors, but scaled by
φ. Red circles mark two rings of high-intensity peaks that highlight
the chiral nature of the pattern. Purple circles are peaks with the same
6D indices as those shown in Fig. 12 below. In the generic case, these
peaks are not related by a mirror symmetry.

vectors x. Each kt in the tiling plane is specified by the six
integers defining its lift into the 6D hypercubic reciprocal
lattice. We then define

(kt , kw, kg) = (P−1)T k (21)

so that

kt · xt + kw · xw + kg · xg = kP−1Px = k · x. (22)

A straightforward calculation (performed analytically using
Mathematica [17]) reveals that

(P−1)T (0, 0, 2, 0, 1, 0) = (P−1)T (0, 0, 0, 0, 0, φ), (23)

FIG. 10. Labeling of key tile vertices by values of projection
onto the  subspace. Colors represent pairs of components in the
g1 and g2 directions: magenta (0, 1)/

√
3; dark red (0, 0); dark blue

(−1, 0)/
√

3; cyan (−1, −1)/
√

3.

FIG. 11. Projection of the 6D tiling vertices onto the  and W
spaces. These images show the projections of 5658 vertices obtained
by five deflations of a cluster of four tiles. Colors of points in the
four regions of W correspond to the colors of the projections of those
points in .

indicating that an integer linear combination of reciprocal
space basis wave vectors k3 and k5 yields a wave vector in
the direction of k6 but scaled by φ, as illustrated by the cyan
arrows in Fig. 9. The relation holds for any values of a, b, and
θ , indicating that the ratio characterizing the incommensurate
wavelengths present in the tiling remains locked to the golden
mean as the key tile shapes are varied continuously.

We can now write

S(kt ) =
∑
x∈L

eik·xe−ikw ·xw e−ikg·xg (24)

=
∑

(g1,g2 )

(
e−ikg·x(g1 ,g2 )

∫
�(g1,g2 )

e−ikw ·xw dxw

)
, (25)

where the sum in Eq. (24) runs over all of the hypercubic
lattice points in the lift, L, of the tiling; the sum in Eq. (25)
runs over the four (g1, g2) pairs defined above; and �(g1, g2)
is the uniform density triangle in W containing the points
associated with the given (g1, g2) pair.
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The Fourier transform of the triangular region in Fig. 11 corresponding to xg = (0, 1) (dark red), is obtained by straightfor-
ward integration, yielding

F(−1,0)(kw ) =
√

3kw,ye−ikw,x + (
3ikw,x sin

(√
3

2 kw,y
) − √

3kw,y cos
(√

3
2 kw,y

))
eikw,x/2

πkw,y
(
k2
w,y − 3k2

w,x

) . (26)

The transforms of the other windows are

F(0,0)(kw,x, kw,y) = F(−1,0)(−kw,x, kw,y); F(−1,−1)(kw,x, kw,y) = F(−1,0)(kw,x/φ
2, kw,y/φ

2);

F(0,1)(kw,x, kw,y) = F(−1,0)(−kw,x/φ
2, kw,y/φ

2). (27)

We then have

S(kt ) = F(0,0)(kw ) + eikg·(−g1 )F(−1,0)(kw ) + eikg·g2F(0,1)(kw ) + eikg·(−g1−g2 )F(−1,−1)(kw ), (28)

where

g1 ≡ (1, 1, 1, 0, 0, 0)/
√

3, (29)

g2 ≡ (0, 0, 0, 1, 1, 1)/
√

3. (30)

The calculated diffraction pattern for a generic key tiling
is shown above in Fig. 9, and it displays the chirality that is
apparent in the tiling itself. Figure 12 shows the calculated
diffraction pattern for the golden key tiling. Somewhat sur-
prisingly, the diffraction pattern displays mirror symmetries
even though the tiling is clearly chiral. This is because the pat-
tern of vertices is actually not chiral; the grouping of vertices

FIG. 12. The diffraction pattern of unit masses placed at the
vertices of the golden key tiling. Blue and purple arrows indicate the
projections of the 6D reciprocal lattice basis vectors. Cyan vectors
indicate that a sum of three basis wave vectors yields a wave vector
in the direction of one of the basis vectors and scaled by φ. Red and
purple circles mark the peaks with the same indices as their counter-
parts in Fig. 9. Here their wave vectors and intensities are related by
a reflection symmetry corresponding to the mirror symmetry of the
set of tiling vertices.

to form tiles creates a chiral pattern, but, rather remarkably,
one can connect the same vertices with a mirror image set of
tiles, as shown in Fig. 13.

For completeness, we show in Fig. 14 the projection of the
vertices of a hat tiling onto W . Here we have defined the lift
to the hypercubic lattice using the edges of the hats, and we
have collapsed the regions correspond to different points in 

onto a single plane. The vertices of the key tiles, shown in red,
are a subset of the points in this lift of the hat tiles (see Figs. 6
and 7). Note that the acceptance window is substantially more
complex than that of the key tiling and itself has a chiral
structure. One thus expects the diffraction intensities of the hat
tiling to display a more exaggerated chiral structure than that
of the corresponding key tiling. This and other decorations
of the key tiles with point masses or continuous densities
will yield a diffraction pattern with Bragg peaks at the same
wave vectors but with intensities modified by form factors
associated with the different types of vertices in the tiling (see
the remark below concerning the almost unique determination
of tile orientations from key tile vertex locations).

V. PHASON REARRANGEMENTS: WORMS AND SNAKES

In the theory of Penrose tilings, the so-called cartwheel
tiling plays an important role [18]. It is an infinite tiling that
is tenfold symmetric except for the tiles covering ten infinite
rays emanating from its center. These tiles make up worms
that are internally rearranged (or flipped) under infinitesimal
phason shifts [19]. Here we construct the analog of the Pen-
rose cartwheel and use it to reveal the phason flips in the key
and hat tilings.

Figure 15 shows two tilings that differ by the flip of a single
infinite worm. The red panel shows a cartwheel tiling where
six semi-infinite worms intersect at the central disk. The blue
panel shows a configuration in which one of those worms has
been flipped, corresponding to the infinitesimal shift in the
location of the window within the W subspace. The central
panel shows a superposition of the two, with purple indicating
coincidence of the two patterns, showing that the two differ
by the reconfiguration of a single worm. The surprise comes
when one examines the orientations of the tiles more carefully.
If this were an exact analog of the Penrose case, the pattern
would have complete hexagonal symmetry when the three
infinite worms and central disk are removed, and indeed it is
true that the tile pattern exhibits this symmetry. However, the
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FIG. 13. The golden key tiling, its mirror image, and an overlay of the two. Note that the two tilings have exactly the same set of vertices,
which is not a chiral set. In each tiling, the mirror symmetry is broken by the choice of which vertices are connected to form the P and F tiles.

tile orientations, as indicated by the small dots, do not respect
this symmetry. This can be seen most easily by inspection of
the six triangular H tiles that border the outside of the central
circle in Fig. 15, where only one of them has a dot at the vertex
farthest from the circle. Because these dots determine how
the hat decorations are placed, the hat tiling derived from this
key tiling does not exhibit the expected symmetry. The fact
that the key tiling with orientation dots removed can exhibit
the hexagonal symmetry has it origin in the symmetry of the
deflation rule for the P tiles. As shown in Figs. 3 and 7, the
deflated tile configuration is symmetric under rotation by π ,

FIG. 14. The projection of hat tiling vertices onto W . Gray points
are hat vertices; red points are the subset that are vertices of the
associated key tiling. Planes corresponding to different points in 

are superimposed here. Note that the sizes and orientations of the
triangular regions here differ from above because the basis vectors of
the 6D lattice correspond to hat edges rather than key tile edges.

but the hat decoration of the P tile is not. Figure 16 shows the
superposition of the hat tilings derived from the two cartwheel
tilings of Fig. 15, revealing the structure of the worm in the
hat tiling. Each hat is marked with a disk at its center, with
red indicating a hat from one tiling, blue indicating a hat from
the other, and gray indicating coincidence of the two. These
observations may point the way to development of a local
growth algorithm for constructing an infinite hat tiling from
a central defective seed similar to the Penrose tiling growth
algorithm [20,21].

The phason rearrangements described above are comprised
of key tiles sharing a set of vertices that project onto the
straight-line boundaries of the projection window. There is,
however, a different type of phason rearrangement comprised
of tiles that share vertices lying on the fractal boundaries
that separate different types of vertices in the interior of the
window. Figure 17 shows one sheet of the window in which
vertices have been coded according to the configuration of
tiles surrounding them. The fractal boundaries separate ver-
tices with identical tile shapes but different tile orientations,
indicated by the black dots. (These fractal boundaries are the
origins of the fractal boundary of the window for the hat ver-
tices shown in Fig. 14, but the detailed relationship is beyond
our present scope). A translation of the window that causes
points to cross such boundaries results in a rearrangement of
hat tiles along a path that we refer to as a snake. Figure 18
shows a superposition of two cartwheel tilings that differ only
by the rearrangement of tiles along a snake. The two key
tilings are identical except for the locations of the orientation
dots along the snake.

We note that the H , T , and P tiles in the key tiling form a
network in which every branch may be a segment of a snake
and there are no closed loops. By inspection, we see that the
orientation of the H tile at the tip of a branch is fixed, so a path
can only be flipped if it is infinite in both directions; i.e., only
the infinite snake can be flipped. This observation implies that
the orientation of the key tiles is completely determined by
the locations of the tile vertices with the possible exception
of the tiles on an infinite snake. This in turn confirms that the
diffraction pattern calculated from the key tile vertex locations
contains all of the information required to construct the hat
tiling itself, which is consistent with the rigorous result of
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FIG. 15. A portion of a generic key tiling illustrating one type of tile rearrangement associated with an infinitesimal phason shift. Dots
indicate the orientations of tiles, which provide necessary information for constructing the hat decoration. Left: A tiling formed from multiple
deflations of the configuration contained within the encircled region, with F tiles assigned a semitransparent red color. Right: A tiling obtained
in the same way, but where the central region is rotated with respect to its counterpart on the left and differs from it in the orientations of some
of the tiles, with F tiles assigned a semitransparent blue color. Center: An overlay of the flanking panels. Coinciding red and blue regions
become purple, revealing that the tilings differ only by the rearrangement of tiles along an infinite worm. Bottom panels are scaled versions of
the corresponding top panels.

Baake et al. showing that the diffraction from a key tiling
in which all (oriented) tiles of the same type are decorated
with the same (oriented) mass distribution consists purely of
Bragg peaks at the same locations as the pattern calculated
above [16].

VI. REMARKS

In an effort to understand the structure of the hat tilings, we
have discovered a broader, two-continuous-parameter class of
quasicrystalline tilings with C6 symmetry. These key tilings
are all constructed by projection of the same set of 6D hyper-
cubic lattice points onto the tiling plane; i.e., those that project
onto a certain window in the 4D subspace spanned by W and
. The difference between tilings consisting of different shape
key tiles is the orientation of the tiling plane with respect to
the hypercubic lattice. The tiling plane must be orthogonal to
 but is not constrained by symmetry to be orthogonal to W .
A continuum of possible orientations yield geometrically (but
not topologically) distinct tilings, all of which inherit a substi-
tution (or inflation) operation from the substitution procedure
defined on the 6D lattice. In general, the substitution operation
does not preserve the shapes of the key tiles, and repeated
deflations eventually produce self-intersecting tile perimeters.

In the special case of the golden key tiles, the tile shapes
are preserved, allowing for infinite iteration of the deflation
operation. In this case (and only in this case) the set of tiling
vertices exhibits mirror symmetry.

As noted by Smith et al., the hat tilings are simple decora-
tions of a one-parameter family of metatiles or, equivalently,
of the key tiles. This family is embedded in a two-parameter
class. Other members of the two-parameter class admit deco-
rations consisting of two hat tiles that are not mirror images of
each other but yield tilings combinatorially equivalent to the
hat tilings. Still others, including the golden key tilings, do not
admit such decorations. Whether they may admit decorations
by some other shape that reduces the number of tile types from
four to two—or perhaps even one—is an open question.

The view from six dimensions reveals that these tilings are
all quasicrystalline, having diffraction patterns consisting of a
dense set of Bragg peaks. The set includes incommensurate
wave vectors with wavelengths form (n + mφ)k0, where φ is
the golden mean, k0 is the wave number of one of the basis
vectors, and n and m are integers. Although the hexagonal
point group symmetry does not necessarily force a partic-
ular incommensurate ratio, the ratio φ remains fixed as the
parameters of the key tiles are varied continuously. This lock-
ing of the incommensurability justifies the quasicrystalline
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FIG. 16. A portion of a hat tiling illustrating a worm of tile
rearrangements associated with an infinitesimal phason shift. Red
and blue dots mark the centers of hats decorating the two different
defect-free tilings of Fig. 15 with lengths scaled as indicated by the
corresponding central circles. Light gray dots indicate tiles where the
two tilings coincide. The tilings differ only by hat rearrangements
along an infinite worm passing through the central circle.

label, distinguishing these hexagonal structures from those
exhibiting incommensurate density waves with continuously
variable wavelength ratios. We note also that this structure is
qualitatively different from the limit-periodic structure of the

FIG. 17. One sheet of the 4D window showing the regions cor-
responding to different vertex configurations. The color of a dot
indicates the vertex configuration shown on the right. Regions related
by rotation correspond to vertex configurations related by rotation.
Note that vertices with identical surrounding key tile configurations
but different tile orientations are separated by fractal boundaries. The
different orientations give rise to different patterns of hats, as shown
in Fig. 18 below.

FIG. 18. A portion of a hat tiling illustrating a snake of tile re-
arrangements associated with an infinitesimal phason shift. Red and
blue dots mark the centers of hats decorating two different defect-free
tilings, one of which is the red tiling of Fig. 15, with lengths scaled
as indicated by the corresponding central circles. Light gray dots
indicate tiles where the two tilings coincide. The tilings differ only
by hat rearrangements along an infinite snake passing through the
central circle.

hexagonal Taylor-Socolar monotile tiling, which has Bragg
diffraction peaks at wavelengths of the form 2−nk0 for arbi-
trarily large n [22].

In the Penrose case, the tenfold symmetry of the system
forces the incommensurate wavelengths to be related by the
golden mean. There is no obvious reason, however, for the
ratio φ to be uniquely selected for structures with hexagonal
symmetry. Analogous constructions may exist in which the
subspace W is oriented so as to produce different locked in-
commensurate ratios. One may also wonder whether an analo-
gous construction based on a 4D hypercubic lattice might pro-
duce a class of golden mean tilings with square symmetry—
and possibly one that admits another monotile decoration.

The projection construction provides a window into many
properties of the hat tilings. All of the projection techniques
that have been brought to bear in the analysis of Penrose
tilings and other quasicrystals can be adapted to the key tilings
and, by extension, to the hat tilings. These include methods for
analyzing the empires of finite patches of the tiling [18,23],
the tile configurations associated with phason defects and dis-
locations [19], and the possible development of local growth
algorithms.
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