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(1−x)Na0.5Bi0.5TiO3-(x)BaTiO3 is one of the important Pb-free piezoelectric alloy systems. Despite extensive
investigation over the years, the composition x–electric field (E) phase diagram of this alloy system has not
received sufficient attention. Here, we performed an x-ray diffraction study in situ with electric fields at close
composition intervals in a wide range: 0.0 � x � 0.18. We discovered that this system exhibits field-driven,
reversible interferroelectric transformations in a large composition range: 0.02 < x < 0.14. Based on this work,
we present the first comprehensive x-E phase diagram of this system. Apart from addressing inconsistencies in
an earlier study, our phase diagram can precisely explain the composition trend of both the weak-field (dielectric
and piezoelectric) and high-field (electrostrain) properties of this Pb-free piezoelectric system.
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Many critical engineering applications of functional mate-
rials are derived from the extraordinary responses of inherent
or emergent properties at phase instabilities. Examples in-
clude large piezoelectricity in ferroelectric alloys [1–4],
large magnetostriction in rare earth-based ferromagnets [5],
colossal magnetoresistance in manganites [6], etc. Advanced
piezoelectrics are sought after as compact and energy-efficient
actuators and transducers [7]. They are ferroelectric alloys
with compositions close to a morphotropic phase bound-
ary (MPB) representing an interferroelectric instability in
the composition (x)-temperature (T) phase diagram [8]. For
over six decades, MPB compositions of Pb(ZrxTi1−x )O3-
based piezoelectrics have been used in wide-ranging ap-
plications. However, legislation restricting hazardous sub-
stances in electronic devices [9] has increased attention to
nontoxic, Pb-free piezoelectrics [10–12]. MPB solid solu-
tions of the Pb-free ferroelectrics like BaTiO3 [3,13–17],
KNbO3 [18,19], BiFeO3 [20], Na0.5Bi0.5TiO3 (NBT) [21–25],
and K0.5Bi0.5TiO3 [26] have received significant attention in
this regard. Among them, the NBT-based piezoelectrics have
attracted particular attention for their ability to exhibit rela-
tively higher levels of electrostrain (>0.5%) in comparison to
Pb(Zr, Ti)O3 [27–30].

Although the MPB compositions are attractive for their
large weak-field electromechanical (piezoelectric) response,
hysteresis becomes a major concern in applications involving
high-field cyclic processes. The MPB compositions exhibit-
ing a maximum electromechanical response also show large
hysteresis, which is detrimental from the application perspec-
tive. A careful balance between enhanced electromechanical
response and low hysteresis requires a detailed understanding
of the phase diagrams, not only as a function of compo-
sition (x) and temperature (T) but also as a function of
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composition (x) and electric field (E). While the composition
(x)-temperature (T) phase diagram of NBT-BaTiO3 has sig-
nificantly evolved over the years [24,31–33], the x-E phase
diagram has not received sufficient attention. A good under-
standing of the high-field properties has yet to be developed
for this Pb-free piezoelectric system. The previously reported
x-E phase diagram was solely based on transmission elec-
tron microscopy (TEM) examination in situ with a field of
three representative compositions (x = 0.055, 0.06, and 0.07)
in close proximity to the MPB (x = 0.06) [24,34]. Except
for a very limited composition range (0.05 < x < 0.07), the
depiction of the phases in this phase diagram [24,34] is not
consistent with the conclusions of several x-ray diffraction
studies (XRD) [33,35–37]. For example, while the XRD
studies suggest tetragonal (P4mm) ferroelectric distortion for
the unpoled non-MPB compositions x > 0.07, this composi-
tional range is instead depicted as the P4bm relaxor phase,
which irreversibly transforms to the ferroelectric tetragonal
(P4mm) phase only at high fields (∼ 20 kV/cm). Such in-
consistencies can be a source of confusion concerning our
understanding of the properties. The plausibility of an x-E
phase diagram should also be tested on its ability to explain
the weak-field and high-field properties trend across compo-
sitions. With this motivation, we investigated the E-driven
structural transformation behavior and high-field/weak-field
property measurements over the entire composition range of
interest (0 � x � 0.18). We discovered new E-driven phase
transition scenarios and metastable regimes. Our x-E phase
diagram explains both the weak-field (dielectric constant,
piezoelectric coefficient) and high-field (ferroelectric polar-
ization, electrostrain) property trends with all its subtle details.

(1−x)Na0.5Bi0.5TiO3-(x)BaTiO3 (NBT-xBT) [(0.00 �
x � 0.18)] specimens were synthesized using the
conventional solid-state reaction method, the details of
which can be found in the Supplemental Material Appendix
S1 [38]. We performed an XRD study in situ with a unipolar
electric field applied on virgin (unpoled) pellets. Experiments
were carried out at close composition intervals in the
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FIG. 1. (a) Evolution of the XRD Bragg profiles of {111}pc and {200}pc pseudocubic reflections as a function of increasing and decreasing
field for x = 0.04 of NBT-(x)BT. An additional peak appears just before the {200}pc peak at 35 kV/cm This additional peak corresponds to
the (002)T peak of the tetragonal P4mm phase. (b)–(g) show the {111}pc and {200}pc XRD Bragg profiles of (b) x = 0.02, (c) x = 0.03, (d)
x = 0.04, (e) x = 0.05, (f) x = 0.06, and (g) x = 0.065 in the virgin state (black), at 70 kV/cm (red), and after switching off the field (blue). It
is important to note that the tetragonal peak appears when the field is on and disappears after switching off the field.

range of 0.00 � x � 0.18. Consistent with a previous
study [39], NBT (x = 0) exhibits Cc → R3c irreversible
transformation with increasing field (Supplemental Material
Fig. S1 [38]). All x < 0.03 show a similar transformation
behavior (Supplemental Material Fig. S2(a) [38]). Additional
features can be seen for 0.03 � x < 0.06, which exhibit
a rhombohedral (R3c) structure (Figs. 1(c)–1(e) and
Supplemental Material Fig. S2(b) [38]) even in the unpoled
state [22,24]. For example, in addition to the common
phenomenon of field-induced preferred orientation due
to switching of the rhombohedral domains, an additional
peak at 2θ ∼ 45.91◦ [just before the (200)R peak] appears
at E ∼ 35 kV/cm for x = 0.04. As discussed later, this
additional peak’s position matches the (002)T position
of the tetragonal (P4mm) ferroelectric phase. Thus,
unlike for x < 0.03, x = 0.04 exhibits a field-induced
R3c → P4mm transformation. We limited the maximum
electric field to 70 kV/cm as a higher field increased the
chances of dielectric breakdown. On reducing the field
strength, the tetragonal phase vanished below ∼ 27 kV/cm
[Fig. 1(a)]. This confirms the reversible nature of the E-driven
R3c-P4mm transformation. All compositions in the range
0.03 � x < 0.06 show the same transformation behavior
[Fig. 1(e) and Supplemental Material Fig. S2(b) [38]). No

such phase transformation scenario has been depicted in the
available x-E phase diagram [34].

The next crossover happens at x = 0.06, the MPB com-
position that appears as a cubic-like phase (CL) on a global
scale [22,33,36,40]. At 10 kV/cm, the split of both {111}pc and
{200}pc pseudocubic profiles confirms CL → rhombohedral
(R3c) + tetragonal (P4mm) transformation (Supplemental
Material Fig. S2(c) [38]). The field-induced coexistence of
R3c and P4mm persists even after the removal of the field,
confirming the irreversible nature of this transformation. The
two other neighboring compositions, x = 0.065 (Supplemen-
tal Material Fig. S2(d) [38]) and x = 0.07 (Supplemental
Material Fig. S3(a) [38]), show similar behavior. Our observa-
tions are at variance with previous studies [24,34,35], which
indicate that at a field of ∼ 70 kV/cm, x = 0.06 and x = 0.07
should exhibit R3c and P4mm phases, respectively. The ab-
sence of the rhombohedral phase in unpoled x � 0.08 marks
another crossover. These compositions show only the P4mm
tetragonal distortions on a global scale [Figs. 2(c)–2(g)]. For
x = 0.08, in addition to the E-driven preferred orientation of
the tetragonal domains, which can be seen to have started
at 8 kV/cm, the {111}pc pseudocubic Bragg profile develops
a shoulder at 24 kV/cm. The {111}pc split is a signature of
the rhombohedral (R3c) phase [Fig. 2(a)]. That this P4mm →
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FIG. 2. (a) Evolution of {111}pc and {200}pc pseudocubic Bragg profiles as a function of increasing and decreasing field for x = 0.08.
The {111}pc splits into two above 20 kV/cm, suggesting the onset of the R3c phase. This phase disappears at 20 kV/cm during the decreasing
cycle. (b)–(g) show the {111}pc and {200}pc x-ray Bragg profiles of (b) x = 0.07, (c) x = 0.08, (d) x = 0.10, (e) x = 0.12, (f) x = 0.14, and (g)
x = 0.16 in the virgin state (black), at 70 kV/cm (red), and after switching off the field (blue).

R3c transformation is reversible is evident from the disap-
pearance of the rhombohedral peak when the field strength
is reduced to 15 kV/cm. The compositions 0.08 < x � 0.12
show the same E-driven transformation behavior [Figs. 2(d)
and 2(e)]. For x > 0.12, the propensity for the rhombohedral
distortion ceases (Figs. 2(f) and 2(g), and Supplemental Ma-
terial Figs. S3(c) and S3(d) [38]).

We used these observations to draw a comprehensive x-E
phase diagram of NBT-(x)BT (Fig. 3). For the sake of clarity
concerning the reversible and irreversible evolution of the
phases, the phase diagram is shown both as a function of
increasing and decreasing field on the vertical axis. The most
remarkable feature of this phase diagram is the coexistence
of the P4mm and R3c phases in a wide composition range of
0.03 � x � 0.12 above 40 kV/cm. That the tetragonal P4mm
phase could be induced with an electric field in 0.03 � x <

0.06, but not in x < 0.03 implies that the P4mm phase is
metastable in the zero field state of 0.03 � x < 0.06, but not
for x < 0.03. Similarly, the ability of the electric field to in-
duce the rhombohedral phase in 0.08 � x � 0.12, but not for
x > 0.12 indicates that the rhombohedral phase is metastable
in the zero field state for 0.07 � x � 0.12 but not so for
x > 0.12. The MPB composition range 0.06 � x � 0.07, on
the other hand, represents the stability of both the ferroelectric
phases in the zero field state.

It is worth highlighting the qualitative differences in our
x-E diagram (Fig. 3) and the one available in the litera-
ture [24,34]. First, the previous x-E diagram depicted the
E-induced transformations to be irreversible for all com-
positions 0.06 � x � 0.10, whereas our findings limit the
irreversibility only for 0.06 � x � 0.07. Second, our findings
do not support the relaxor P4bm-ferroelectric P4mm phase
boundary depicted earlier at E ∼ 25 kV/cm for x > 0.07 in
Refs. [24] and [34]. Given that the P4bm tetragonal phase
is ferrielectric (weak polarization) and the P4mm tetrago-
nal phase is ferroelectric (relatively strong polarization), a
P4bm-to-P4mm transformation is expected to show an abrupt
increase in the tetragonality above 25 kV/cm. As shown in
Supplemental Material Fig. S4 [38], no such feature can be
seen. We argue that the local in-phase octahedral tilt (charac-
terized as the P4bm distortion) and their evolution with the
electric field, picked up in TEM studies [34], may not qualify
them as a thermodynamic phase to represent in the phase
diagram. In this context, similar local P4bm regions are also
seen in the TEM study of unpoled NBT [21]. However, this
local distortion is not depicted as a phase in any of the reported
x-T/x-E phase diagrams [24,34,41–43]. The P4bm-P4mm
boundary depicted at x ∼ 0.12 in the x-E phase diagrams of
Refs. [24] and [34] can be referred to as a pseudoboundary
separating two similar tetragonal P4mm (I)-P4mm (II) phases.
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FIG. 3. Composition–electric field phase diagram of NBT-(x)BT.
E1, fields at which the monoclinic (Cc) to rhombohedral (R3c) tran-
sition occurs for 0.00 � x � 0.03. E2 and E3, fields corresponding
to the onset of the tetragonal (P4mm) phase and the onset of the R3c
phase, respectively; E

′
2 and E

′
3 pertains to the disappearance of the

tetragonal (P4mm) phase and the disappearance of the R3c phase
when the field is reduced (for 0.03 � x � 0.12). The red shaded
region highlights R3c + P4mm phase coexistence in an extended
range (0.03 � x � 0.12).

The qualitative difference is that P4mm (I) shows a P4mm →
R3c transformation, but not by the P4mm (II) phase.

We examined the implications of our observations on the
high-field, cyclic unipolar electrostrain behavior [Figs. 4(a)
and 4(b)] across the entire composition range. The strain
(S) is maximum for x = 0.08, the single-phase tetragonal
P4mm composition just at the boundary of the R3c + P4mm
MPB region. The strain decreases continuously on either
side of this composition and almost saturates for x < 0.03

and x > 0.12 [Fig. 4(c)]. We also estimated the composition
dependence of the degree of S-E hysteresis, defined as �S
(%), = S1(%)-S2(%), at Emax/2 (see Supplemental Material
Fig. S5 [38] for details). It follows the same trend with
composition as the strain [Fig. 4(d)]. The strain hysteresis
and the magnitude of the strain become almost composition
independent for x < 0.03 and x > 0.12. This is consistent
with the fact that the x-E phase diagram (Fig. 3) shows no
field-driven interferroelectric transformation for these com-
positions. We also found that the two weak-field properties,
longitudinal direct piezoelectric coefficient (d33) and relative
permittivity, follow the same trend as the high-field prop-
erties [Fig. 4(e) and 4(f)]. Though these properties do not
correlate directly with the field-induced transformations de-
picted in Fig. 3, they indicate the compositional regime, which
has polar heterogeneity because of the metastable phases.
The near-composition independence of the weak-field prop-
erties for x < 0.03 and x > 0.12 manifests the absence of
metastable phases.

In summary, based on the x-ray diffraction
study in situ with an electric field study of
(1−x)Na0.5Bi0.5TiO3-(x)BaTiO3 over a large compositional
space, we present the first comprehensive x-E phase
diagram of this Pb-free piezoelectric system. We show
that (i) the pre-MPB compositions 0.03 � x � 0.05 exhibit
field-induced reversible rhombohedral (R3c) to tetragonal
(P4mm) transformation, and (ii) the post-MPB compositions
0.07 < x < 0.14 exhibit field-induced reversible tetragonal
(P4mm) to rhombohedral transformation. We establish a
one-to-one correspondence between this transformation
behavior and the composition trend of electrostrain and
hysteresis. Our phase diagram can also precisely explain the
composition trend of the piezoelectric charge coefficient of
this system. In the process, we resolve some inconsistencies in
the previous understanding of the x-E diagram of this system.

G.D.A. and R.R. acknowledge the Science and Engi-
neering Research Board for financial assistance (Grant No.
CRG/2021/000134).
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