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Transonic defect motion is of interest for high strain-rate plastic deformation as well as for crack propagation.
Ever since Eshelby’s 1949 prediction [J. D. Eshelby, Proc. Phys. Soc. A 62, 307 (1949)] in the isotropic limit
of a “radiation-free” transonic velocity vRF = √

2cT, where shock waves are absent, there has been speculation
about the significance of radiation-free velocities (if they truly exist) for defect mobility. Here, we argue that they
do not play any significant role in dislocation dynamics in metals, based on comparing theoretical predictions
of radiation-free velocities for transonic edge dislocations with molecular dynamics simulations for two face-
centered cubic metals: Ag, where theory predicts radiation-free states, and Cu, where it does not.
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I. INTRODUCTION AND BACKGROUND

At very high rates, plastic deformation is governed by high
speed dislocations. Dislocation mobility in this regime, how-
ever, is poorly understood [1–6] and a key unresolved question
is whether dislocations can reach transonic and supersonic
speeds under sufficiently high stress; see also Refs. [7,8] for
reviews of high speed dislocation dynamics. A suite of molec-
ular dynamics (MD) simulations have indicated in recent
years that such speeds are indeed possible [9–21]. Experi-
ments cannot yet track dislocations in metals in real time
at these high speeds but, with continued advances in time-
resolved in situ methods [22–24], one can hope to indirectly
determine the presence of supersonic dislocations and perhaps
estimate the fraction and velocity of these dislocations in the
near future.

An early cause for skepticism about the possibility of
transonic or supersonic dislocation motion is that dislocation
theory predicts divergences in self-energy and stress at certain
limiting velocities [25–28] (at least while the core width is
neglected [29–31]). In the isotropic limit, these velocities
coincide with the transverse and longitudinal sound speeds
[7,32]. In general, a dislocation moving at transonic or su-
personic speed is expected to radiate sound waves because
of the involved shock fronts. However, in the isotropic limit
Eshelby showed that within the theory of linear elasticity there
exists a single transonic velocity for a gliding edge dislocation
where this is not the case [32]. The stress field of a moving
edge dislocation in an isotropic solid in the continuum limit
contains terms depending on the transverse and longitudinal
sound speeds cT and cL. At a gliding velocity of exactly
v = √

2cT, the term depending on cT is identically zero and
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hence the dislocation field is predicted to be radiation-free.
Note that because the term in the dislocation field leading to
shock waves is proportional to (1 − v2

2c2
T

) [33], the radiation
of elastic waves in the transonic regime tends to zero in a
smooth fashion as v → vRF = √

2cT, i.e., radiation energy
is low in the vicinity of vRF. Much speculation about the
relevance of this radiation-free state (if it truly exists) for
both dislocation motion and crack propagation has appeared
in the literature over the years, see Refs. [7,8,16,34–39] and
references therein.

Gao et al. [37] generalized Eshelby’s calculation of
radiation-free velocities to anisotropic crystals for both dislo-
cation motion and crack propagation. A closed form analytic
solution was only found for systems exhibiting orthotropic
symmetry (of which the isotropic limit is a special case),
where the governing differential equations greatly simplify
and only one transonic regime is present. The basal and pris-
matic slip systems of hexagonal close packed (HCP) crystals,
for example, exhibit orthotropic symmetry for gliding edge
dislocations. In more general settings, there exist three limit-
ing velocities c3 < c2 < c1 and hence two transonic regimes.
In the first (i.e., the lower) transonic regime, Gao et al. have
shown formally that there always exists a radiation-free state
for crack propagation. For gliding dislocations, however, mo-
tion is restricted to the glide plane, and the radiation-free state
requires a direction of dislocation motion which need not lie
within the glide plane [37]. In the second transonic regime,
the existence of a radiation-free velocity depends crucially on
the symmetry properties of the crystal, in particular, the slip
plane (in the case of dislocations). The general (i.e., arbitrary
symmetry) solutions discussed by Gao et al. in Ref. [37] are
purely formal.

In this paper, we attempt to determine from the very for-
mal solutions given in Ref. [37] which (if any) anisotropic
cubic crystals exhibit radiation-free velocities for glid-
ing edge dislocations and compare such calculations to
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dislocation mobilities in face-centered cubic (FCC) and
body-centered cubic (BCC) metals obtained from MD sim-
ulations [9,10,12,14,16,19,39]. This motivates us to search
for radiation-free velocities in cubic and HCP crystals using
numerical methods and to study their relevance for dislocation
glide in the transonic regimes. Results for selected metals are
presented and a subset compared with our own MD simula-
tions on two FCC metals: copper (Cu) and silver (Ag). Our
analytical calculations predict a narrow range of radiation-free
velocities for Ag and no radiation-free states for Cu. Never-
theless, the dislocation mobilities of both metals revealed by
MD simulations show no qualitative differences. In particular,
there is no evidence for a reduced drag force on the dislocation
in the vicinity of the calculated radiation-free velocity in Ag.
We conclude that the radiation-free velocities predicted in
idealized theoretical settings (compact core, continuum, linear
elasticity) do not occur in more realistic models (extended
core, discrete lattice, nonlinear elastic response).

II. FINDING RADIATION-FREE VELOCITIES
FROM THEORY

We start by briefly outlining the derivation of Gao et al.
[37] before discussing our numerical implementation and
results for various metals. Restricting the discussion to
steady-state motion greatly simplifies the differential equa-
tions governing dislocation motion, because the time variable
t can be entirely eliminated from the dislocation displacement
field ui(x, y, z, t ) by a translation of the form x′ = x − vt ,
where x is the direction of dislocation motion at velocity v.
Choosing coordinates where z is aligned with the dislocation
line and y is aligned with the slip plane normal, the following
ansatz can be made for a straight dislocation of infinite length:

ui = Re[Ai f (x − vt + py)], (1)

where Ai and p are eigenvectors and eigenvalues within the
framework developed by Stroh and others [46,47]. The dis-
placement field ui is then substituted into the equations of
motion

C′
i jkl

∂2uk

∂x j∂xl
= ρ

∂2ui

∂t2
, (2)

where ρ denotes the material density and xi = (x, y, z) so
we may at times use indices 1, 2, 3 and x, y, z interchange-
ably in what follows. Note that C′

i jkl = Uii′Uj j′Ukk′Ull ′Ci′ j′k′l ′

represents the tensor of second-order elastic constants after
rotation into our present coordinates, which have been aligned
with the dislocation and slip plane instead of with the crystal
coordinates; Ui j denotes the rotation matrix.

The determinant of the resulting 3 × 3 coefficient matrix
must vanish for nontrivial solutions of Ak . In general, there
exist three special dislocation velocities, denoted here as c3 <

c2 < c1, whose values depend on the gliding direction of
the dislocation, where the solution ui becomes singular; see
Ref. [25] for a review. (In the isotropic limit, all directions are
equivalent, c3 = c2 equals the transverse sound speed cT, and
c1 becomes the longitudinal sound speed cL.)

Thus, there are four velocity ranges that lead to very dif-
ferent behaviors of the differential equations. In particular,
depending on the velocity v, the six eigenvalues p appear as
either

(1) three complex conjugate pairs in the subsonic regime
(v < c3), or

(2) two complex conjugate pairs and two real values in the
first transonic regime (c3 � v < c2), or

(3) one complex conjugate pair and four real values in the
second transonic regime (c2 � v < c1), or

(4) six real values in the supersonic regime (v � c1).
Gao et al. [37] ordered the eigenvalues p±α (α = 1, 2, 3)

such that p±α becomes real when v � cα . We are presently
interested in the two transonic regimes. Introducing the stress
eigenvector Lα,i = C′

i2kl + pαC′
i2k2Aα,k , Gao et al. derived con-

ditions the Lα,i must fulfill for a solution to be free of shock
waves and hence radiation-free. In particular, using only the
subset of Lα,i for complex valued pα (i.e., α = 1, 2 in the first
and α = 1 in the second transonic regime), it must be possible
to fulfill the boundary conditions. For an edge dislocation
gliding in the x direction, these are

lim
y→0±

ux(x − vt, y) = ∓b

2
, ∀(x − vt ) > 0,

lim
y→0

σyy = 0, (3)

where b is the Burgers vector length, ux = u1, and σyy = σ22.
In the second transonic regime, these translate to the condi-
tions

L1,2 = 0, Re[ia1L1,1] = 0 = Re[ia1L1,3], (4)

where a1 is an arbitrary complex constant because the eigen-
vector A1,i is determined only up to a complex constant.
Eliminating the undetermined complex constant a1, the last
two conditions imply Re[L1,1]Im[L1,3] = Re[L1,3]Im[L1,1].

In the first transonic regime, the conditions are

(L1,2 + a2L2,2) = 0,

Re[ia1(L1,1 + a2L2,1)] = 0 = Re[ia1(L1,3 + a2L2,3)], (5)

with two arbitrary complex constants a1 and a2. Constant a2

is determined from the first boundary condition, and the latter
two conditions above imply

Re[L1,1 + a2L2,1]Im[L1,3 + a2L2,3]

= Re[L1,3 + a2L2,3]Im[L1,1 + a2L2,1].

Though the Lα,i cannot, in general, be determined analyti-
cally (except for special cases discussed below), we can solve
the relevant eigensystems numerically for any given velocity
and subsequently check the boundary conditions we just dis-
cussed. In the first transonic regime, one either finds a range
of velocities that are radiation-free or none at all, whereas the
second transonic regime exhibits only one (if any) radiation-
free velocity. Our Python implementation of the numerical
search for radiation-free velocities is published as open source
code within PYDISLOCDYN [45], which was developed by one
of us (D.N.B.).

As with defect motion in general, the existence of
radiation-free velocities in the first and second transonic
regime depends strongly on the crystal and slip-plane ge-
ometry. The special case of orthotropic symmetry means
the in-plane and out-of-plane crack deformation decouple
from each other, leaving only one transonic regime for crack
propagation (see Ref. [37]). In the context of dislocations,
orthotropic symmetry allows the edge and screw components
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TABLE I. Material density, second-order elastic constants, and limiting velocities for edge dislocations in selected FCC (first five metals)
and BCC (last five metals) metals. In the case of BCC metals, the limiting velocities are for edge dislocations in the {110} slip planes. Most
of the data shown here are taken from Ref. [40], except for typos in C12 of Cu and C44 of W which were corrected using the original
Refs. [41,42]. The second set of Ag values are determined from the Williams et al. EAM potential [43]. The second set of Cu values are
determined from the Mishin et al. EAM potential [44]. The limiting velocities were computed using PYDISLOCDYN [45]; see Ref. [25] for
a review on how to compute limiting velocities in general. Our numerical implementation used to derive the radiation-free velocities in the
first and second transonic regimes shown in this table as described in this section, has been included in PYDISLOCDYN [45]. In the case of
almost-isotropic tungsten, it is easy to check that c3 ≈ c2 ≈ vRF/

√
2 (i.e., c3 = 2875.03 m/s, c2 = 2875.06 m/s, and vRF/

√
2 = 2883.83 m/s

lies in the second transonic regime). We do not find any radiation-free velocities for edge dislocations in the {112} nor the {123} slip planes
of the BCC metals.

ρ C11 C12 C44 c3 c2 c1 vRF (first) vRF (second)
(g/ccm) (GPa) (GPa) (GPa) (km/s) (km/s) (km/s) (km/s) (km/s)

Ag 10.50 123.99 93.67 46.12 1.20 2.10 3.84 ∼2.09 none
10.47 124.23 93.87 46.42 1.20 2.11 3.85 2.09–2.10 none

Al 2.70 106.75 60.41 28.34 2.93 3.24 6.44 2.93–3.10 none
Au 19.30 192.44 162.98 42.00 0.87 1.48 3.37 1.39–1.47 none
Cu 8.96 168.30 121.20 75.70 1.62 2.91 4.96 none none

8.94 169.90 122.60 76.20 1.63 2.92 4.99 none none
Ni 8.90 248.10 154.90 124.20 2.29 3.74 6.05 none none

Fe 7.87 226.00 140.00 116.00 2.75 2.93 6.41 none 5.43
Mo 10.20 463.70 157.80 109.20 3.61 3.68 6.30 3.66–3.68 4.70
Nb 8.57 246.50 134.50 28.73 2.15 2.34 4.95 2.15–2.18 2.78
Ta 16.40 260.20 154.40 82.55 1.93 1.96 4.28 none 3.16
W 19.30 522.39 204.37 160.58 2.88 2.88 5.21 none 4.08

of ui to decouple such that only a 2 × 2 submatrix needs
to be considered. In this reduced system, only two limiting
velocities and hence only one transonic regime are present
for edge dislocations. Therefore, the first two of conditions
Eq. (4) apply (since i = 1, 2). The radiation-free velocity can
be determined analytically in this case to be

vRF =
√

C′
11C

′
22 − C′2

12

ρ(C′
12 + C′

22)
, (6)

where we used Voigt notation for the elastic constants.
In the isotropic limit, the tensor C′

i jkl = Ci jkl is invari-
ant under rotations and since in this case C22 = C11 and
C44 = (C11 − C12)/2, one recovers Eshelby’s result of vRF =√

2C44/ρ = √
2cT.

A similar result can be analytically derived for edge dislo-
cations in prismatic slip systems of HCP crystals as indicated
in the last column of Table II above, which is reflective of
the fact that the basal plane is isotropic with respect to its
elastic constants and hence the radiation-free velocity is

√
2

times the limiting velocity: For edge dislocations on prismatic
slip planes, the rotated tensor of elastic constants aligned with
the edge dislocation happens to coincide with the one aligned
with the crystal coordinates so C′

i jkl = Ci jkl . Using the review
article of Ref. [25], it is easy to work out that the analytical
result for the lowest limiting velocity is

√
C66/ρ in this case.

Furthermore, since C22 = C11 and C66 = (C11 − C12)/2, it is
easy to see that Eq. (6) reduces to

√
2C66/ρ.

Tables I and II show our results for a number of metals
regarding radiation-free velocities.

III. MD SIMULATIONS

To assess the effect of predicted radiation-free states, we
perform MD simulations of dislocation glide in copper (Cu)

and silver (Ag) using the LAMMPS code [48]. As shown in
Table I, edge dislocation motion in Ag is predicted to have a
radiation-free state in the first transonic regime while in Cu it
is predicted to have no radiation-free states. Therefore, com-
paring the behavior of these two materials allows us to assess
whether the theoretically predicted radiation-free states have
the expected effect on dislocation motion. Interatomic forces
are represented using the embedded atom method (EAM)
[49] potential for Cu by Mishin et al. [44] and for Ag by
Williams et al. [43]. Both of these potentials are reportedly in
good agreement with experiments [43,44] in terms of elastic
constants, which are crucial for computing different charac-
teristic velocities [25], and in terms of stacking fault energies,
which are important for modeling dislocations dissociated
into Shockley partials [50]. Visualizations are performed
using OVITO [51].

Figure 1 shows a schematic of our atomistic models, which
consist of a single crystal of either Cu or Ag with one edge
dislocation inside. Crystal orientations are chosen so the x axis

FIG. 1. Schematic of our atomistic models.
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TABLE II. All data shown in this table are taken from Ref. [40]. The limiting velocities were computed using PYDISLOCDYN [45]; see
Ref. [25] for a review on how to compute limiting velocities in general. The radiation-free velocities for the basal and prismatic slip systems
can be calculated analytically from Eq. (6) as these slip systems are orthotropic, which implies a complete decoupling of edge and screw
components in the differential equations. For this reason, only one of the two lower limiting velocities is “seen” by an edge dislocation,
whereas the other one (indicated by brackets in the table above) would be the limiting velocity of a (hypothetical) screw dislocation with the
same line orientation. Therefore, there is only one transonic region for edge dislocations in the basal and prismatic slip systems. Our numerical
implementation used to derive the radiation-free velocities shown for the pyramidal slip systems in this table as described in this section has
been included in PYDISLOCDYN [45].

ρ (g/ccm) C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa)

Cd 8.690 114.50 39.50 39.900 50.85 19.85
Mg 1.740 59.50 26.12 21.805 61.55 16.35
Ti 4.506 162.40 92.00 69.000 180.70 46.70
Zn 7.134 163.68 36.40 53.000 63.47 38.79
Zr 6.520 143.40 72.80 65.300 164.80 32.00

c3(km/s) c2(km/s) c1(km/s) vRF(first)(km/s) vRF(second)(km/s)

Cd, basal 1.51 (2.08) 3.63 2.32
Mg, basal 3.07 (3.10) 5.85 4.69
Ti, basal (2.79) 3.22 6.0 4.67
Zn, basal 2.33 (2.99) 4.79 3.02
Zr, basal 2.22 (2.33) 4.69 3.59
Cd, prismatic (1.51) 2.08 3.63 2.94 vRF = √

2c2

Mg, prismatic (3.07) 3.10 5.85 4.38 vRF = √
2c2

Ti, prismatic 2.79 (3.22) 6.0 3.95 vRF = √
2c3

Zn, prismatic (2.33) 2.99 4.79 4.22 vRF = √
2c2

Zr, prismatic (2.22) 2.33 4.69 3.29 vRF = √
2c2

Cd, pyramidal 1.51 2.08 3.63 1.53–2.08 none
Mg, pyramidal 3.07 3.1 5.85 none none
Ti, pyramidal 2.79 3.22 6.0 2.8–2.95 none
Zn, pyramidal 2.33 2.99 4.79 2.33–2.99 none
Zr, pyramidal 2.22 2.33 4.69 none none

is the dislocation propagation direction, the y axis is normal
to the glide plane, and the z axis is parallel to the dislocation
line. Thus, the x, y, and z axes align with the [110], [11̄1], and
[1̄12] Miller index directions, respectively. Periodic boundary
conditions are applied in x and z directions. In the y direction,
the model terminates with free surfaces. The dimensions are
30 × 25 × 4 nm3 for the Cu model and 110 × 55 × 5 nm3 for
the Ag model. A larger Ag model is used to accommodate the
larger separation between Shockley partials in this material.
The equilibrium distances between partials are 69 Å for Ag
and 34 Å for Cu. These separations agree with the experimen-
tal observations of Cockayne et al. [52], where the stacking
fault widths between partials are 70–90 Å for Ag and 35–45 Å
for Cu.

Dislocations are made to move in the x direction by dis-
placing loading layers on each free surface at equal and
opposite velocities, vapplied, parallel to the dislocation glide
plane in the direction of the Burgers vector. The constraint of
velocity is applied to the center of mass of loading layers, not
to individual atoms. Tractions on the surfaces are computed
from atomic forces in the loading layers divided by the surface
area. All simulations are initiated at 10 K. Thermostatting
layers are located next to the loading layers to dissipate the
heat generated from dislocation motion. Thermostatting is
performed by rescaling the temperature to 10 K every 0.1 ps.
A detailed description of our loading method is available in
Ref. [39].

According to Orowan’s relation [53], the average disloca-
tion velocity can be computed as

vaverage = 2Lx

b
vapplied, (7)

where Lx is the length of the model in the x direction and b
is the length of the Burgers vector. To investigate dislocations
near vRF in Ag, we choose vapplied so the average velocity is
in the first transonic regime: c3 < vaverage < c2. Figure 2
shows the instantaneous velocity vi of the leading partial
(LP), the trailing partial (TP), and the surface traction as a
function of time for vaverage = 1.73 km/s. Similar to previ-
ous simulations carried out in Cu [39], the dislocation does
not move with a uniform velocity. Rather, its instantaneous
velocity varies cyclically, with each cycle exhibiting abrupt
jumps between three distinct branches: the lowest branch with
vi < c3, a middle one with 1.9 km/s < vi < c2, and an upper
one with 2.9 km/s < vi < 3.2 km/s. The predicted radiation
free velocity is near the upper bound of the middle branch.

Since the derivation from theory of the radiation-free ve-
locity assumed a steady-state gliding dislocation, whereas our
strain rate driven simulations (Fig. 2) exhibit only piecewise
near-constant velocity (whereas stresses vary continuously),
we also conducted additional stress-driven MD simulations
for silver. In particular, a constant shearing force was ap-
plied to the top and bottom layers of the MD simulation.
With this method, we were only able to access steady-state
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FIG. 2. Instantaneous dislocation velocity and surface traction
for an edge dislocation in Ag at vaverage = 1.73 km/s.

gliding velocities and stresses in the subsonic and supersonic
regimes. To achieve steady-state transonic edge dislocations,
we employed a hybrid method, where the dislocation was ac-
celerated into the transonic regime with the strain-rate-driven
method outlined above. Then we switched off the driving
velocity and turned on a constant driving stress in our sim-
ulations to achieve a steady-state transonic edge dislocation,
see Fig. 3. The simulation was repeated for multiple values of
driving stress.

Mobility is the relationship between the resolved shear
stress acting on a dislocation and the resulting uniform

FIG. 4. The mobility relation of an edge dislocation in (a) Ag and
(b) Cu [39].

dislocation velocity. It may be obtained from simulation
results such as those shown in Fig. 2 by plotting the instan-
taneous velocity at each time against the shear stress at that
same time (black data points). From our additional stress-
driven simulations outlined above, we obtained steady-state
dislocation velocities versus constant driving stress (shown
here in yellow) which agree with the strain-rate-driven values.
Figure 4(a) shows the mobility relation of an edge dislocation
in Ag assembled by plotting vi versus resolved shear stress
τ from eight simulations with vaverage ranging from 0.1 km/s
to 3.0 km/s. This mobility relation is piecewise continuous
with three velocity branches separated by bands of forbidden
velocities. The isolated data points that appear within the
forbidden bands correspond to rapidly accelerating disloca-
tions, as they jump between different branches of the mobility

FIG. 3. We show steady-state edge dislocations in Ag using the stress driven simulation method (a) as well as a hybrid method (b) where
the dislocation is accelerated into the transonic regime using the strain rate driven method before switching to the stress-driven method to
maintain a steady-state transonic edge dislocation.
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FIG. 5. Drag coefficient as a function of velocity in Ag.

relation. Since these points represent a transient state of mo-
tion, they are not considered part of the mobility relation.

Figure 4(b) shows the mobility relation of Cu described
in Ref. [39]. Comparison of Figs. 4(a) and 4(b) shows that
the mobility relations in Ag and Cu have the same quali-
tative form. In particular, there is no apparent difference in
the mobilities near the top of the middle branch, which is
where vRF occurs in Ag. Furthermore, the presumed effect of
a radiation-free state would be to reduce the drag force on a
dislocation by decreasing the elastic energy dissipation from
it. Dislocation motion is governed by the quasi-Newtonian
governing relation

mv̇ = τb − Bv, (8)

where m is dislocation mass per unit length, v̇ is dislocation
acceleration, and B is the drag coefficient. Assuming v̇ = 0,
the drag coefficient is

B = τb

v
. (9)

Based on the data in Fig. 4(a), Fig. 5 shows that B increases
significantly in Ag as vi approaches vRF. Thus, contrary to the
expectation from theory, the drag coefficient near vRF is not
reduced.

Linear elasticity theory predicts that dislocations traveling
at vRF emit no shock waves [32,37,54]. In atomistic simula-
tions, such shock waves are easily seen as Mach cones [13].
They have been reported in previous simulations in Cu [13]
and W [17]. Figure 6 visualizes Mach cones from the σyy

component of the instantaneous stress fields in our models at
four different conditions:

(1) Figure 6(a): LP is transonic, TP subsonic, and the
average of the LP and TP velocity is near vRF. In this case,
only the LP emits a Mach cone.

(2) Figure 6(b): both LP and TP transonic, TP velocity
near vRF. In this case, both partials emit Mach cones.

FIG. 6. Plots of σyy allow us to identify shock waves generated
by transonic dislocation in Ag. Red atoms represent the stacking fault
between LP and TP. Dislocations move from left to right, so the LP
is at the rightmost termination of the stacking fault. Mach cones are
easily seen in the local stress distribution, as illustrated in (c).

(3) Figure 6(c): both LP and TP transonic, both with
velocity near vRF. Both emit Mach cones.

(4) Figure 6(d): both LP and TP transonic, LP velocity
near vRF. Both emit Mach cones.

In summary, each partial emits a Mach cone whenever it
is transonic, regardless of whether its velocity is near vRF

where theory predicts no, or highly suppressed, Mach cones.
(As we pointed out earlier, theory predicts suppressed shock
waves even in the vicinity of vRF.) Only the subsonic TP
in Fig. 6(a) does not emit a Mach cone. We arrived at the
same conclusions when examining Mach cones emitted by
dislocations in Cu (not shown). We conclude that realistic
dislocation models (as opposed to the idealized ones of linear
elasticity theory) do not cease to emit shock waves near vRF.
Parenthetically, for Ag, the linear elastic model discussed in
Sec. II predicts nearly identical vRF for both LPs and TPs as it
does for an undissociated edge dislocation. Moreover, in Cu,
it predicts no radiation-free state for either the undissociated
edge dislocation or the individual Shockley partials into which
it dissociates.

As a final test, we carried out simulations where we
(a) reduced the driving stress incrementally after achiev-
ing steady-state dislocation glide and (b) turned off the
driving stress after achieving steady state dislocation glide
starting from both transonic branches. When incrementally
reducing the stress, the dislocation glide velocity decreases
within a given branch before jumping to the next lower branch
(i.e., from the second transonic to the first transonic and sub-
sequently to the subsonic branch). The lowest steady-state
velocity in each branch correlated with the lowest driving
stress in each branch, indicating they are the velocities with
the lowest drag. Since neither of them is close to vRF, we
conclude that vRF is not the velocity of minimum drag. When
suddenly turning off the driving stress for a steady-state dislo-
cation in the second or first transonic branch, the dislocation
velocity immediately drops and oscillates around zero; see
Fig. 7 showing the drop from the second transonic regime.
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FIG. 7. Turning off the driving stress does not maintain any dis-
location velocity, contrary to expectations at a radiation-free velocity.
(Only one exemplary simulation is shown here).

No steady-state velocity could be maintained at zero (or
significantly reduced) driving stress, contrary to the theory
prediction of a radiation-free velocity, where it was conjec-
tured [32] that a significant drop in drag (due to no elastic
waves being emitted) would allow dislocation glide to con-
tinue at vRF with minimal driving stress.

At this point, we can speculate why we do not see
radiation-free states in MD simulations. The theory derivation
required a number of simplifying assumptions to be made
and, in principle, any one (or several) of those could be the
reason we find special radiation-free states which are not
present in more realistic setups. For example, it is known that
divergences in the stress field at the limiting velocities can be
removed when accounting for an extended dislocation core
[29,55], so it stands to reason that the core could also prevent
the shock wave producing part of the strain field solution from
vanishing and hence remove any radiation-free velocity. Fur-
thermore, the theory of linear elasticity in the continuum limit
is based on the assumptions that the displacements are not
only much smaller than the lattice constants but also slowly
varying over the lattice, and hence the dimensionless gradients
are small and slowly varying. Also, nonlinear effects such as
the scattering of phonons on dislocations (an effect known
as phonon wind) could potentially prevent radiation-free
states even though the effect is small in our MD simulations
since the number phonons is limited at the low temperature of
10 K that we simulated.

IV. DISCUSSION

We presented an overview of theory predictions of so-
called radiation-free velocities vRF for edge dislocations in a
number of cubic and HCP metals. Dislocation theory predicts
the absence of shock waves at these special velocities which
lie in the transonic regime and there has been a lot of specula-
tion in the literature about the significance (if any) of these
velocities for transonic dislocation motion. The numerical
values of vRF have been worked out for general anisotropic
crystals, such as FCC and BCC metals, which have been

of particular interest for studying transonic and supersonic
dislocations from MD simulations.

Tables I and II list vRF for a selection of cubic and HCP
metals. Although hinted at in Ref. [37], it does not seem to be
widely known that in the first transonic regime there can be
fairly large ranges of radiation-free velocities for gliding edge
dislocations, depending on not only the crystal symmetry and
slip systems but also on the values of elastic constants. For
example, of the five FCC metals studied here, we found two
(Cu and Ni) that did not exhibit any radiation-free velocity,
whereas others (such as Al and Au) had radiation-free veloc-
ities predicted from theory over a range of values covering a
significant portion of the first transonic regime. Ag showed a
very narrow range of radiation-free velocities in the first tran-
sonic regime in our theory calculations. Similar results as in
FCC metals are also found for pyramidal slip systems of HCP
metals, whereas the basal and prismatic slip systems feature
an orthotropic symmetry so that the analytic result, Eq. (6),
applies. All BCC metals studied here exhibited the prediction
of one radiation-free velocity in the second transonic regime,
though only for the {110} slip systems, and only a subset of
those metals exhibited the prediction of an additional range of
radiation-free velocities in the first transonic regime.

Overall, however, our MD simulations found no evidence
of anything special happening at the predicted radiation-free
velocities, and also looking at MD results in the literature
for other metals we find no evidence of radiation-free states:
Olmsted et al. [9] find transonic edge dislocation motion in
Al at a number of different velocities with no obvious cor-
relation with any of our calculated radiation-free velocities.
Cu and Ni do not exhibit any radiation-free velocity accord-
ing to our calculations presented in Table I. Transonic edge
dislocations have been observed previously in MD simula-
tions of both metals [9–14]. We performed MD simulations
on transonic edge dislocation motion in Cu and Ag. In Ag,
which is predicted to have a radiation-free state in the first
transonic regime, we found transonic edge dislocations (see
Fig. 4), though their velocities did not correlate with the cal-
culated (narrow) radiation-free velocity range (see Table I).
The mobility function of edge dislocations in Cu, where no
radiation-free states are predicted, was qualitatively similar
to that in Ag, suggesting no effect of radiation-free states on
edge dislocation motion. In particular, there is no evidence
of reduced dislocation drag near the radiation-free velocity in
Ag. Furthermore, we observed Mach cones near the predicted
radiation free velocity in Ag (see Fig. 6), where they should
have been highly suppressed if vRF were truly radiation-free,
and found no steady-state transonic gliding velocity which
could be sustained with minimal driving stress.

Tungsten is elastically almost isotropic and transonic mo-
tion of edge dislocations has been studied in Ref. [16]. The
radiation-free velocity is indeed predicted to be close to

√
2

times the shear wave speeds (which are almost identical, see
Table I), but only for the {110} slip planes. The MD results of
Ref. [16] show transonic velocities ranging from 1.38cT-1.5cT

for edge dislocations, though only the {112} slip planes were
studied in that work. For tantalum, we find from theory a
single radiation-free velocity for the {110} slip planes only.
Transonic edge dislocation motion was studied in Ref. [15],
where the authors found a range of transonic edge dislocation
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velocities. In Mg, supersonic edge dislocations were reported
in Ref. [21] only for prismatic slip; no transonic dislocations
were found and no dislocations moved at the radiation-free
velocity which for prismatic slip is

√
2c2 (i.e., significantly

lower than the observed supersonic edge dislocation).
We conclude that nonlinear effects such as phonon wind

and dislocation core width are more important for dislocation
dynamics than vRF. In fact, one might go as far as viewing the
radiation-free velocities as a mathematical curiosity present
only under (unrealistically) ideal conditions which include
vanishing core size, infinitely long and perfectly straight dislo-
cations in the steady-state limit, and the absence of nonlinear
effects.
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