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In our recent study [Phys. Rev. B 107, 224106 (2023)], we investigated the effects of shear methods on the
shear strengths and deformation modes of two typical transition metal carbides using first-principles calculations
and preliminarily unified the shear stresses obtained in different ways based on the Mohr-Coulomb relation.
Mázdziarz raised a comment on our study and claimed that our work contains some serious and fundamental
flaws in the field of continuum mechanics and nanomechanics. Unfortunately, the author seemed to misunder-
stand our work. Therefore, we respond to the preceding Comment [Phys. Rev. B 108, 216101 (2023)] on our
article to clarify the confusion and misunderstanding.

DOI: 10.1103/PhysRevB.108.216102

First, we would like to sincerely express our gratitude for
Mázdziarz’s interest in our work [1]. However, after carefully
reading the preceding Comment [2], we know that the author
may have misunderstood some of our article. To address the
issues raised, we provide additional details to clarify the con-
fusion and misunderstanding.

The author stated in the abstract, “The results presented
appear to be qualitatively and quantitatively incorrect; they
would be correct if we were in the small/linear deforma-
tion/strain regime, which we are not. A correct description
therefore requires a finite/nonlinear deformation/strain appa-
ratus.” It is known that there are two conventional analytical
theories to determine the theoretical strength [3], the mean-
field theory (such as the Frenkel model), and the finite
deformation theory (such as the work by Li and co-workers
[3,4]). Wang and Li [4] presented an analytical solution for
pure shear in metallic glasses based on finite deformation
theory. In addition, there is another modern approach that
utilizes the first-principles calculations to obtain the theoreti-
cal strength, which is an atomic-scale approach that relies on
numerical modeling rather than analytical theories. Our work
followed the latter (first-principles calculation) to directly ob-
tain the mechanical response of an atomic system, where the
fundamental assumptions used for a continuum may no longer
hold true. Although it was suggested that the Cauchy-Born
rule could be used to estimate the strain in the system, there is
not sufficient evidence showing that the conventional theory
for nonlinear and finite deformation can well describe the
response of an atomic system without any problems or errors.
The purpose of using the Cauchy-Born-rule–based analysis
method in our work was to establish a connection between our
analysis and continuum mechanics so that readers can more
intuitively understand the relevant results.

*Corresponding author: futao@cqu.edu.cn
†Corresponding author: xhpeng@cqu.edu.cn

We will respond one by one to the issues raised in the
preceding Comment.

Regarding the left or right multiplication of F in Eq. (1) of
the Comment, we acknowledge that in continuum mechanics,
left multiplication is used conventionally. However, in our ar-

ticle [1], the term
[
I +

(0 0 0
0 0 0
0 �εzy 0

)]
is not the deformation

gradient F but the transpose of F; therefore, there is nothing
wrong with right multiplication. The detailed derivation pro-
cess is as follows.

For our incremental loading approach of simple shear, the
deformation field is

x = X, y = Y + Z tan θ, z = Z. (1)

We define shear strain

γ = tan θ = y − Y

Z
= �y

Z
=

∑N
i=0 �yi

Z

=
N∑

i=0

�yi

Z
=

N∑
i=0

�γi. (2)

The schematic is shown in Fig. 1, consistent with the defor-
mation mode illustrated in Fig. 1(a) of our original article [1].
When i = 0, �γ0 = 0, indicating that the deformation has not
yet occurred.

According to the Eqs. (1) and (2), we can get

F =
⎡
⎣

1 0 0
0 1 γ

0 0 1

⎤
⎦ =

⎡
⎣

1 0 0
0 1

∑N
i=0 �γi

0 0 1

⎤
⎦. (3)

We assume that Fn =
[1 0 0

0 1
∑n

i=0 �γi

0 0 1

]
. Then the incre-

mental loading approach is adopted as follows: When n = 0
and �γ0 = 0,

F = F0 = F(�γ0) =

⎡
⎢⎣

1 0 0

0 1 �γ0

0 0 1

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ (4)
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when n = 1,

F = F1 = F(�γ1) · F0 =

⎡
⎢⎣

1 0 0

0 1 �γ1

0 0 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0

0 1 �γ1

0 0 1

⎤
⎥⎦; (5)

when n = 2,

F = F2 = F(�γ2) · F1 =

⎡
⎢⎣

1 0 0

0 1 �γ2

0 0 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0

0 1 �γ1

0 0 1

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0

0 1 �γ2 + �γ1

0 0 1

⎤
⎥⎦; (6)

and when n = N ,

F = FN = F(�γN ) · FN−1 =

⎡
⎢⎣

1 0 0

0 1 �γN

0 0 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0

0 1
∑N−1

i=0 �γi

0 0 1

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0

0 1
∑N

i=0 �γi

0 0 1

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0

0 1 γ

0 0 1

⎤
⎥⎦. (7)

From Eqs. (4)–(7) we can get

F = FN = F(�γN ) · · · F(�γ2) · F(�γ1) · F(�γ0). (8)

The transpose of Eq. (8) is

FT = FT
N = FT(�γ0) · FT(�γ1) · · · FT(�γN ) =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0

0 1 0

0 �γ1 1

⎤
⎥⎦ · · ·

⎡
⎢⎣

1 0 0

0 1 0

0 �γN 1

⎤
⎥⎦

=

⎡
⎢⎣

1 0 0

0 1 0

0
∑N

i=0 �γi 1

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0

0 1 0

0 γ 1

⎤
⎥⎦. (9)

According to Eqs. (7)–(9), we can get

FT = FT
N = FT

N−1 · FT(�γN ) = FT
N−2 · FT(�γN−1) · FT(�γN )

= . . . = FT(�γ0) · FT(�γ1) · FT(�γ2) · · · FT(�γN−1) · FT(�γN ), (10)

in which FT, FT
n , and FT(�γn) are the transposes of F, Fn, and F(�γn), n = 0, 1, 2, . . . , N , respectively. More specifically, in

our incremental loading approach, we use the transpose of Eq. (3) in the preceding Comment [2], i.e.,

FT
n = FT

n−1 · FT(�γn) =
⎡
⎣

1 0 0
0 1 0
0

∑n−1
i=0 �γi 1

⎤
⎦

⎡
⎣

1 0 0
0 1 0
0 �γn 1

⎤
⎦,

in the nth (n = 1, 2, . . . , N) increment, where FT
n , FT

n−1, and FT(�γn) correspond to Rdef, Rini, and FT, respectively. In our

original work FT is FT(�εzy) =
[
I +

(0 0 0
0 0 0
0 �εzy 0

)]
.

In other cases, such as pure shear and semiconstrained shear, the same incremental loading approach was adopted, but the
difference lies in the relaxation mode after each increment of displacement. Furthermore, since the research in Ref. [1] is mainly
based on first-principles calculation, to facilitate the reproduction of our work and enable direct production of the POSCAR file,
we presented Eq. (10) in our original article, which enabled our writing style to be consistent with that of the renowned literature
in this field [5–7]. Moreover, since the relevant method using first-principles calculation is relatively mature, the above derivation
process was not presented in our original article.

Therefore, there is no problem using right multiplication in the expression when Eq. (10) is used. As said by Mázdziarz, “it
may be worthwhile to use well-established approaches, especially as they come from such giants of intellect like Cauchy and
Born.” Here we would like to note that the use of left or right multiplications cannot simply rely on rote memorization, but
should be applied according to the actual situation.

The strain used in our article [1] is not the Green-Lagrangian strain. It is known that the Green-Lagrangian strain is calculated
by F. However, in our work, after each incremental displacement is applied, for simple shear, the size and shape of the supercell
remain unchanged, while the coordinates of the internal atoms are optimized; for pure shear, the atomic coordinates and the
other five independent components of strain (except εzy) are optimized simultaneously to reach the pure shear stress state. It is
not controlled easily and directly if Green-Lagrangian strain and/or the corresponding stress are used in calculations because
they are not defined in the current configuration but in the initial configuration. However, it can be proved that the material
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objective of the Green-Lagrangian strain obtained by our method is identical to that obtained from the Green-Lagrangian strain
given in the preceding Comment by Mázdziarz [2].

For simple shear, we implemented the deformations through Ḟ, which, as well as the corresponding results, can be obtained
as

F =
⎡
⎣

1 0 0
0 1 γ

0 0 1

⎤
⎦, Ḟ =

⎡
⎣

0 0 0
0 0 γ̇

0 0 0

⎤
⎦, L = Ḟ · F−1 =

⎡
⎣

0 0 0
0 0 γ̇

0 0 0

⎤
⎦

⎡
⎣

1 0 0
0 1 −γ

0 0 1

⎤
⎦ =

⎡
⎣

0 0 0
0 0 γ̇

0 0 0

⎤
⎦, (11)

V = 1

2
(L + LT) =

⎡
⎣

0 0 0
0 0 γ̇

2
0 γ̇

2 0

⎤
⎦, W = 1

2
(L − LT) =

⎡
⎣

0 0 0
0 0 γ̇

2
0 − γ̇

2 0

⎤
⎦, (12)

Ė = FT · V · F = 1

2

⎡
⎣

1 0 0
0 1 0
0 γ 1

⎤
⎦

⎡
⎣

0 0 0
0 0 γ̇

0 γ̇ 0

⎤
⎦

⎡
⎣

1 0 0
0 1 γ

0 0 1

⎤
⎦ = 1

2

⎡
⎣

0 0 0
0 0 γ̇

0 γ̇ 2γ γ̇

⎤
⎦, (13)

where F, L, V, and W are the deformation gradient, velocity
gradient, rate of deformation, and spin tensor, respectively.
Equation (13) is just the material derivative of E given by
Mázdziarz [the material derivative of ESS in Eq. (6)].

For pure shear, we did use the pure shear stress state rather
than the pure shear deformation mentioned by Mázdziarz,
which can be evidenced by Fig. 1(b) and its corresponding
description in our original article. The specific approach is that
we preset an incremental shear deformation using the same
method, but in each step of deformation, the size and shape of
the supercell, as well as atomic coordinates, are fully relaxed
to reach a pure shear stress state. The reason for adopting this
approach is that it is still challenging to perform stress loading
in first-principles calculations using VASP. Mázdziarz kindly
derived the deformation gradient from a pure shear stress
state [Eq. (8)]; unfortunately, it seems that this derivation
is based on isotropic constitutive relations, which may not
be applicable to the anisotropic supercells of our work. Due
to the anisotropy of the supercell and additional anisotropy
associated with the relative motion between atoms during
deformation in our work, after optimization, some of the su-
percells may align with the results from Eq. (8) by Mázdziarz
and Fig. 2 in our article [1], while others might exhibit tilting
in different directions (as shown in Fig. 3 [1]). From the
perspective of theoretical analysis, it would require a more rig-
orous derivation using anisotropic constitutive relationships.
For example, if it is anisotropic, Eq. (8) by Mázdziarz may

FIG. 1. Schematic of simple shear.

need to be further refined. It would be interesting, but it is not
the focus of our work.

The simple shear and pure shear methods using the
first-principles calculation align with those in the well-
established literature [8–11]. Moreover, our results align with
Mázdziarz’s, as shown in Figs. 2–4 below. Considering what
is mentioned above, our method is reasonable.

Frenkel’s sinusoidal solution is actually a reflection of the
periodic variation of atomic structure during deformation. It
is a simplified model that assumes a perfect crystal lattice
without any defects, phase transition, and perturbations during
deformation, i.e., F of any local and global regions remains
the same and unchanged during deformation. However, in
practice, it is difficult to satisfy all the conditions required
for Frenkel’s sinusoidal solution. In fact, perturbations and
various defects are always present and/or nucleated in materi-
als during deformation, especially at the atomic scale. When
performing atomistic simulations, such as first-principles cal-
culations or molecular dynamics simulations, it is important

FIG. 2. Stress-strain curves of HfC in the [11̄0](110) direction
calculated by first-principles calculations with the atomic coordi-
nates, size, and shape of the supercell unchanged. Three different
parameter settings with strain increments of 0.01 and one stress-
strain curve with strain increments of 0.10 are shown, as well as a
comparison with the work of Mázdziarz [2].
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FIG. 3. Stress-strain relations calculated using higher compu-
tational accuracy and comparison with that by Mázdziarz [2]. (a)
Variations of stress components with εyz under simple shear with
strain increments of 0.01. (b) Variations of σyz with εyz under pure
shear with strain increments of 0.01, 0.05, and 0.10.

to consider these defects and perturbations in the model. In
our work, while the supercells were defect-free single crys-
tals, perturbations were present during relaxation due to the
allowance for the optimization of atomic coordinates. We
speculated that when the above conditions (perfect crystal
lattice without any defects, phase transition, and perturbations
during deformation) were strictly satisfied, Frenkel’s sinu-
soidal solution could easily be obtained.

To verify this hypothesis, we perform additional shear
deformation using first-principles calculations with specific
constraints that keep the atomic coordinates, size, and shape of
a supercell unchanged during relaxation after each incremen-
tal displacement is applied. Specifically, four sets of simple
shear deformation of HfC in the [11̄0](110) direction (�εyz =
0.01 with three different parameter settings and �εyz = 0.10
with one parameter setting) are performed. All stress-strain
curves obtained are aligned with Frenkel’s sinusoidal solution
and close to that presented by Mázdziarz, as shown in Fig. 2
(employing a uniform strain measure). The results also show
that the morphology of the stress-strain curve is independent
of the strain increment under such conditions.

Although the above results match very well, we consider
that they are not meaningful because, in actual deformations,
it is impossible to guarantee that the atomic coordinates have
no local optimizations, especially at the atomic scale. In addi-
tion, it would not be possible to explore various deformation
modes without allowing for local atomic coordinate optimiza-
tion, if we follow Frenkel’s solution. However, deformation

FIG. 4. (a) Comparison of results obtained under simple shear in
our article [1] with that by Mázdziarz [2]. (b) Comparison of results
obtained under pure shear by us with those by Yang et al. [15], Jhi
et al. [16], and Mázdziarz [2].

mode is one of the focuses of the original article. Therefore,
in our article [1], the atomic coordinates are allowed to be
optimized, even though we employ the concept of simple
shear. It is essential to consider that atoms undergo vibrations
around their equilibrium positions rather than remaining fixed
in actual deformations.

When allowing the optimization of atomic coordinates,
the computed results are dependent on the computational
accuracy. We calculated the stress-strain curves of HfC in the
[11̄0](110) direction using higher computational accuracy
(the plane-wave cutoff energy is set to 600 eV, and the
electronic energy and the ionic force convergence criteria are
10−5 eV per supercell and 0.01 eV/Å), as shown in Fig. 3.
Figure 3(a) shows the variations of stress components under
simple shear, where the stress-strain curve shows sinusoidlike
characteristics, which are aligned with that by Mázdziarz
(employing a uniform strain measure). Furthermore, it
should be noted that the strain increment may significantly
affect the stress-strain curve under pure shear, as shown in
Fig. 3(b), where there is still a difference in the morphology
of the stress-strain curve. Because the deformation is based
on the previous step, and the size and shape of the supercell
are allowed to change during deformation under pure shear,
the stress-strain curve is more affected by the incremental
strain step. We utilized three different strain increments to
calculate the stress-strain curves, and the stress-strain curve
under �εyz = 0.10 is closest to that presented by Mázdziarz
than to others.

As pointed out by a Referee of our original article [1], due
to the high symmetry of the cell and the idealized environmen-
tal conditions, the point corresponding to the highest stress
obtained through first-principles calculations may not accu-
rately represent actual behavior. It is necessary to consider
the effects of elastic instability and phonon instability [12],
and phonon instabilities may precede the elastic instability for
certain states of strain and therefore limit the ideal strength
of the material [13,14]. Thus, the significance of obtaining
the maximum stress without considering elastic instability and
phonon instability is minor.

We compared the results by Mázdziarz with that in our
article [1], employing a uniform strain measure, as shown
in Fig. 4. It can be seen that our results align precisely with
those presented by Mázdziarz, except the primary discrep-
ancy observed at the yield point. Our stress-strain curves only
display the yield of the supercell prior to the stress-strain
curves indicated by Mázdziarz [Fig. 4(a)]. Because the atomic
coordinates are allowed to be optimized, the results in our
article [1] differ from those of Mázdziarz and do not always
follow Frenkel’s sinusoidal solution. In addition, we also ex-
tracted the results by Yang et al. [15] for comparative analysis
[Fig. 4(b)]. It is evident that the values before yield point are
identical, and the discrepancy in values can be attributed to
the variations in computational accuracy. Different parameter
settings and computational accuracy, such as k points and cut-
off energy, can lead to divergent yield points. We assume that
the variations in k points and energy cutoff can be interpreted
as different degrees of perturbation, resulting in deviations in
the calculated results.

Introducing displacement perturbations is an approach
to consider the influence of elastic instability and phonon
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instability [16]. We highlight the need to consider the effects
of perturbation, as illustrated in Fig. 5 in our article [1], or to
determine stability through phonon calculations. Furthermore,
given the complex nature of perturbation effects, we provide
an outlook in our article [1], stating the following: “In this
work, we use a series of perturbations for shear simulation,
but determine the most appropriate perturbation amplitude
corresponding to an unstable phonon mode requires further
investigation.”

Moreover, we extracted the results by Jhi et al. [16], as
shown in Fig. 4(b), where slight perturbation was introduced
into the lattice in each incremental loading, so the lowest
critical strain and yield stress were obtained compared with
those of the other three stress-strain curves. However, the four
stress-strain curves are close to each other reasonably before
yield. As was stated in our article [1], “ … Fig. 6 shows
that the stress-strain curves before yield are also close to
each other, indicating that displacement perturbation has little
effect on the deformation before yield. … The perturbation
mainly affects the yield point, thereby affecting the deforma-
tion mode, and the influence before yield can be ignored.”

The stress-strain curve obtained through analytical solu-
tions is of significance, but we cannot deny that it is under
conditions that are too ideal and difficult to consider the

nonuniformity of F in actual situations (such as nucleation and
motion of dislocations). First-principles calculations can offer
a more realistic representation of strength and deformation
mode by employing displacement perturbation methods and
coupled phonon calculations.

To conclude, some of our work might have been misunder-
stood. The right multiplication is correct, because we are using
the transposed form of F. Since we employ first-principles
calculations to obtain the mechanical response directly, it is
not necessary to consider the finite deformation theory, unless
some kind of strain other than γ = tan θ has to be calculated.
Frenkel’s sinusoidal solution is an ideal analytical solution
that cannot take into account the formation of defects, phase
transitions, and the influence of displacement perturbations,
which are precisely the progress and advantages of atomic-
scale calculations. Therefore, all the results presented are
correct and objective.
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