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Comment on “Effects of shear methods on shear strengths and deformation modes
of two typical transition metal carbides and their unification”
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Recently, Li et al. [C. Li et al., Phys. Rev. B 107, 224106 (2023)] investigated the mechanical behavior of
cubic HfC and TaC under simple shear and pure shear using first-principles calculations. Unfortunately, the
paper contains some serious and fundamental flaws in the field of continuum mechanics and nanomechanics.
The results presented appear to be qualitatively and quantitatively incorrect; they would be correct if we were
in the small/linear deformation/strain regime, which we are not. A correct description therefore requires a
finite/nonlinear deformation/strain apparatus. The solution for simple shear, even from density functional theory
calculations, must follow Frenkel’s sinusoidal solution.
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In the paper by Li et al. [1], cubic HfC and TaC crystals
were subjected to simple shear (SS) and pure shear (PS)
by density functional theory (DFT) simulations. The paper
mistakes concepts from the continuum mechanics, incorrectly
enforces deformations, and it appears that the computational
results are qualitatively and quantitatively incorrect. Even
when we perform DFT calculations, they must not be incon-
sistent with classical solutions, and so for simple shear they
must be consistent with Frenkel’s classical sinusoidal solution
[2].

Li et al. write the following: “During deformation, the
lattice vectors need to be changed,. . .. Hence, the deformation
can be imposed by transforming the i − 1th step lattice vector
matrix Ri−1 to the deformed ith step lattice vector matrix Ri

as follows [36]:

Ri = Ri−1

⎡
⎢⎣I +

⎛
⎜⎝

0 0 0

0 0 0

0 �εzy 0

⎞
⎟⎠

⎤
⎥⎦.” (1)

This formula is incorrect.
In the nonlinear mechanics of crystals there is a well-

known hypothesis, called the Cauchy-Born rule [3], which
assumes that under a homogeneous macroscopic defor-
mation, the primitive Bravais lattice vectors of a three-
dimensional crystal deform in an affine manner via a 3×3
matrix F,

ai = FAi, (2)

where ai stands for spatial lattice vectors, Ai denotes reference
vectors, and F is the deformation gradient [4].

Continuum mechanics has a well-established methodol-
ogy for describing arbitrary finite (not small, linearized)
deformations. The Cauchy-Born rule does nothing more than
replace infinitesimal elements dx and dX by lattice vectors.
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The definition and interpretation of the deformation gradient
F is also known; it is a multiplicative assembly of rota-
tion and stretch (see polar decomposition of the deformation
gradient [5]).

If we even wanted to do it in steps, it is clear from the tensor
calculus point of view that Eq. (1) should be

Rdef = F · Rini. (3)

The vector, or matrix of vectors, is multiplied by the matrix
on the left; in continuum mechanics, using F on the right side
of a vector is unimaginable. However, it may be worthwhile to
use well-established approaches, especially as they come from
such giants of intellect like Cauchy and Born. Moreover, the
components of the deformation gradient F are not, in general,
components of the strain tensor.

Li et al. write further: “For PS, after each εzy, the atomic
coordinates and the other five independent strain compo-
nents (except εzy) are optimized simultaneously to reach a
stress state with σxx = σyy = σzz = σxy = σzx = 0 [35,37,38].
For SS, after applying εzy, the atomic coordinates are op-
timized but remain εxx = εyy = εzz = εxy = εzx = 0 [14,39].
The schematics of PS and SS are illustrated in Figs. 1(a) and
1(b), respectively.”

The above excerpt from Ref. [1] contains several misrep-
resentations. In general, the Lagrangian finite strain tensor E,
also called the Green-Lagrangian strain tensor or Green–St-
Venant strain tensor, is defined as

E = 1
2 (FT F − I) (4)

and its linear approximation, the infinitesimal strain tensor ε,
also called the Cauchy strain tensor, linear strain tensor, or
small strain tensor, takes the form

ε = 1
2 (FT + F) − I. (5)

The classical finite simple shear deformation is an iso-
choric plane deformation defined by the deformation gradient
tensor F in the following form [6] (and this implies the form
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(a) (b)

FIG. 1. Results for HfC [11̄0](110) for (a) simple shear and (b) pure shear stress.

of the tensor E and ε):

FSS =

⎡
⎢⎣

1 0 0

0 1 γ

0 0 1

⎤
⎥⎦ ⇒ ESS =

⎡
⎢⎢⎣

0 0 0

0 0 γ

2

0 γ

2
γ 2

2

⎤
⎥⎥⎦

⇒ εSS =

⎡
⎢⎣

0 0 0

0 0 γ

2

0 γ

2 0

⎤
⎥⎦. (6)

It can be seen here that ESS
zz �= 0. This would be the case if we

were using the small strain tensor εSS
zz . The deformations in

this work are not small. It is important to remember what the
consequences of overusing linear theories can be. Because F
is not objective and hence small, a strain tensor ε and a rigid
rotation can induce any stresses in a deformable body and they
should not (see [7]).

The pure shear deformation [5] is a deformation in which
the body is elongated in one direction while being shortened
perpendicularly and is defined by

FPS =

⎡
⎢⎢⎣

1 0 0

0 β 0

0 0 1
β

⎤
⎥⎥⎦ ⇒ EPS =

⎡
⎢⎢⎢⎣

0 0 0

0 β2−1
2 0

0 0 β−2−1
2

⎤
⎥⎥⎥⎦

⇒ εPS =

⎡
⎢⎢⎣

0 0 0

0 β − 1 0

0 0 β−1 − 1

⎤
⎥⎥⎦. (7)

The details of the PS in the rotated coordinate frame along the
shear plane can be found in [6]. The PS of Li et al. is not in
fact a PS, but another deformation.

The pure shear stress (PSS) is such a deformation for which
the Cauchy stress tensor is a pure shear stress tensor of the
form σ = τ (e2 ⊗ e3 + e3 ⊗ e2), with τ ∈ R [6]. To enforce
such a deformation F must take the form of a simple shear

composed with a triaxial stretch:

σ PSS =

⎡
⎢⎢⎣

0 0 0

0 0 τ

0 τ 0

⎤
⎥⎥⎦ ⇒ FPSS =

⎡
⎢⎢⎣

a 0 0

0 b cη

0 0 c

⎤
⎥⎥⎦

⇒ EPSS =

⎡
⎢⎢⎣

a2−1
2 0 0

0 b2−1
2

bcη
2

0 bcη
2

η2c2+c2−1
2

⎤
⎥⎥⎦. (8)

In Fig. 2 in [1], in which the “[m]echanical response
of samples sheared along [11̄0](110)” is shown, including
“[v]ariations of stress components of HfC and TaC with εzy

under SS and PS, respectively . . .,” Li et al. presented the
results of their DFT shear computations. The HfC and TaC
crystals analyzed here have cubic symmetry and there is no
reason for them to behave differently in shear than other cubic
crystals (see [8]). It is known that for centrosymmetric lattices
the Cauchy-Born rule applies directly and for the noncen-
trosymmetric lattices the relaxation of atoms in the periodic
cell must be taken into account as well. The analyzed HfC and
TaC structures crystallizes in the cubic Fm3̄m, No. 225 space
group, which is centrosymmetric. The shear component of the
stress during SS deformation, as well as for PSS, should have
a sinelike character (see Frenkel’s classical sinusoidal solution
[2]). In order to verify this, the HfC [11̄0](110) crystal was
subjected to SS and PSS by ab initio calculations based on
DFT [9,10] within the pseudopotential plane-wave approx-
imation performed by the ABINIT [11] code. The projector
augmented wave method (PAW) pseudopotentials used for the
Perdew-Burke-Ernzerhof [12] generalized gradient approxi-
mation exchange-correlation functionals were obtained from
the PseudoDojo project [13]. The valence electron configu-
rations and the cutoff energy used for Hf and C atoms were
consistent with those utilized in the PAW pseudopotentials.
The calculation accuracy settings correspond to those used
in [14].

It can be seen from Fig. 1 that the results presented here are
substantially different from those presented by Li et al. in their
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Fig. 2 for HfC. For SS, the σyz shear component of the stress
has a proper sinelike character and the σyy component of the
stress is about twice as large. Zeroing the normal stresses in
the PSS reduces the shear stress and introduces its asymmetry.
These results also differ substantially from those presented by
Li et al. A look at other results in the article also raises further
questions.
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