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Electron correlations and superconductivity in La3Ni2O7 under pressure tuning
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Motivated by the recent discovery of superconductivity in La3Ni2O7 under pressure, we discuss the basic
ingredients of a model that captures its microscopic physics under pressure tuning. We anchor our description in
terms of the spectroscopic evidence of strong correlations in this system. In a bilayer Hubbard model including
the Ni 3d x2 − y2 and z2 orbitals, we show the ground state of the model crosses over from a low-spin S = 1/2
state to a high-spin S = 3/2 state. In the high-spin state, the two x2 − y2 and the bonding z2 orbitals are all
close to half-filling, which promotes a strong orbital selectivity in a broad crossover regime of the phase diagram
pertinent to the system. Based on these results, we construct an effective multiorbital t-J model to describe
the superconductivity of the system, and find the leading pairing channel to be an intraorbital spin singlet with
a competition between the extended s-wave and dx2−y2 symmetries. Our results highlight the role of strong
multiorbital correlation effects in driving the superconductivity of La3Ni2O7.
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I. INTRODUCTION

The discovery of iron-based superconductors more than a
decade ago provided hope for high temperature superconduc-
tivity in a variety of transition-metal-based materials [1–3].
The recent discovery of superconductivity in the bilayer Ni-
based compound La3Ni2O7, with a transition temperature of
about 80 K when the applied pressure exceeds 14 GPa [4],
was soon confirmed [5] and zero resistivity was recently ob-
tained [6]. Unlike the infinite-layer nickelate (Sr, Nd)NiO2

thin films [7], which was expected to resemble the physics
of the cuprates given the valence count of Ni1+ with a d9

electron configuration, a simple valence count gives Ni2.5+ in
the bilayer compound La3Ni2O7, corresponding to d7.5. These
results have naturally attracted extensive interest [8–22].

Some of the key questions concern the roles of multiple
orbitals and electron correlations [23] for both the normal
state and superconductivity of La3Ni2O7. The first-principles
density functional theory (DFT) calculation [4] shows that
the bands near the Fermi level have mainly Ni eg orbital
characters; bands with t2g orbital characters are located about
2 eV below the Fermi level. It also reveals a strong interlayer
hopping between the two Ni z2 orbitals through the apical
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oxygen ion, which leads to the formation of bonding-
antibonding molecular orbitals (MOs) as illustrated in
Fig. 1(a). Considering DFT results and the simple valence
count, a naive picture of the electron state is as follows:
Within a two-Ni unit cell, the t2g orbitals are almost fully
occupied, and the four eg molecular orbitals are occupied by
three electrons. To make progress, it is important to under-
stand the exact ground-state configuration and the low-energy
electronic degrees of freedom that underlie the normal state
and are responsible for the superconductivity.

In this paper, we address these important issues by study-
ing the electron correlations in a bilayer two-orbital Hubbard
model for La3Ni2O7. Importantly, we anchor our description
in terms of the spectroscopically derived experimental evi-
dence for strong correlations [23]. One of our key findings
is to show that the electron correlations drive the ground state
from a low-spin S = 1/2 configuration to a high-spin S = 3/2
one. In the broad crossover regime of the phase diagram, the
system exhibits strong orbital selectivity. This regime falls in
the parameter range pertinent to La3Ni2O7, as highlighted in
Fig. 1(b). We clarify the nature of this crossover regime by
showing that further increasing the interaction strength sta-
bilizes an orbital-selective Mott phase (OSMP) in which the
two x2 − y2 orbitals are Mott localized whereas the z2 orbitals
remain itinerant: Thus, a proximity to the OSMP underlies the
strong orbital selectivity seen in the crossover regime. Our
results provide the natural understanding of the recent optical
conductivity experiments, which provided evidence that the
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FIG. 1. (a) Sketch of formation of the bonding-antibonding MO
states between the Ni z2 orbitals in the top and bottom layers.
(b) Ground-state phase diagram in the U -JH plane of the bilayer
two-orbital Hubbard model for La3Ni2O7, calculated by the U (1)
slave-spin theory in the MO basis. The red line with squares shows
the transition between the low-spin S = 1/2 state and the high-spin
S = 3/2 state in the atomic limit. The blue regime is the orbital-
selective Mott phase (OSMP) in which the x2 − y2 orbitals are Mott
localized whereas the z2 orbitals are itinerant [see Fig. 3(a)]. The
dashed line with triangles characterizes the low-spin to high-spin
crossover, and in the gray regime the system exhibits strong orbital
selectivity (see text). Highlighted by the golden shading in the plot is
the parameter region pertinent to La3Ni2O7.

electrons’ kinetic energy is less than 0.1 of its noninteracting
counterpart [23] and that the Drude peak contains two com-
ponents [23]. Our results on the correlation effect, in turn,
allow us to advance the low-energy physics that drives the
superconductivity.

II. MODEL AND METHOD

We consider a bilayer multiorbital Hubbard model for the
two eg orbitals of Ni: H = HTB + Hint . Here, HTB is a tight-
binding Hamiltonian,

HTB = 1

2

∑
iδn(z)αβσ

tαβ

δn(z)
d†

iασ di+δn(z)βσ +
∑
iασ

(εα − μ)d†
iασ diασ ,

(1)

where d†
iασ creates an electron in orbital α (α = x, z denoting

the two eg orbitals, x2 − y2 and z2, respectively) with spin
σ at site i of a bilayer square lattice, δn(z) denotes the nth
neighboring site in the same (opposite) layer, εα refers to the
energy level associated with the crystal field splittings, and μ

is the chemical potential. The tight-binding parameters tαβ

δn(z)

and εα , which are summarized in Table I, are obtained by
fitting the calculated DFT band structure and projecting to
the two-eg-orbital basis in a unit cell including two Ni sites
as described in detail in Appendix A. Note that for simplifi-
cation we have used a tetragonal lattice structure in the DFT
calculation, as explained in the Appendix. To avoid confusion,
in band structure results, we also list names of high-symmetry
points corresponding to the actual structure of the compound.
We adjust the chemical potential so that the total electron

TABLE I. Tight-binding parameters of the bilayer two-orbital
model for La3Ni2O7. xx (zz) denotes the intraorbital hopping be-
tween the x2 − y2 (z2) orbitals, whereas xz denotes the interorbital
hopping between the x2 − y2 and z2 orbitals. tn(z) refers to intralayer
(interlayer) hopping between the nth neighboring sites. Finally, ±
means that the hopping parameter is positive along the x direction
but negative along the y direction. All units are in eV.

Orbital ε t1 t2 t3 t0z t1z

xx 10.8735 −0.4899 0.0670 −0.0600 0.0022 0.0003
zz 10.5142 −0.1159 −0.0109 −0.0187 −0.6363 0.0231
xz �0.2420 0 �0.0333 0 ±0.0382

density is 3 per unit cell to reflect the valence count of Ni2.5+.
The on-site interaction Hint reads

Hint = U

2

∑
i,α,σ

niασ niασ̄

+
∑

i,α<β,σ

{U ′niασ niβσ̄ + (U ′ − JH)niασ niβσ

− JH(d†
iασ diασ̄ d†

iβσ̄ diβσ + d†
iασ d†

iασ̄ diβσ diβσ̄ )}, (2)

where niασ = d†
iασ diασ . Here, U , U ′, and JH, respectively de-

note the intra- and interorbital repulsion and the Hund’s rule
coupling, and U ′ = U − 2JH is used [24].

As already mentioned, the strong hopping between the two
Ni z2 orbitals in the upper and lower layers causes bonding-
antibonding MO states. To examine this bonding effect, we
perform a transformation from the atomic orbital basis to the
bonding MO basis, namely by defining the MO as

db(a)
iασ = 1√

2
(diασ ± di+δ0zασ ), (3)

where the index b(a) corresponds to the bonding (antibond-
ing) MO, and i (i + δ0z) on the right-hand side refers to a site
in the top (bottom) layer. Note that we define MOs for both
z2 and x2 − y2 orbitals for convenience, though the x2 − y2

orbital is expected to be largely nonbonding given the small
interlayer hopping amplitude associated with this orbital as
shown in Table I. We can rewrite the tight-binding and inter-
action Hamiltonians of Eqs. (1) and (2) in the MO basis. In
particular,

Hint = Hb-b
int + Hb-a

int , (4)

where Hb-b
int refers to the interactions between bonding (or

antibonding) states, whereas Hb-a
int refers to the interactions

mixing the bonding and antibonding states. The exact forms
of Hb-b

int and Hb-a
int are presented in Appendix B.

The correlation effects of the above model in the MO
basis are then investigated by using a U (1) slave-spin the-
ory [25,26]. In this approach, the d-electron operators are
rewritten as d†

iασ = S+
iασ f †

iασ (here we absorb the MO index in
α), where S+

iασ ( f †
iασ ) is a quantum S = 1/2 spin (fermionic

spinon) operator introduced to carry the electron’s charge
(spin) degree of freedom, and Sz

iασ = f †
iασ fiασ − 1

2 is a local
constraint. At the saddle-point level, we employ a Lagrange
multiplier λα to handle the constraint, and decompose the
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slave-spin and spinon operators. In this way, the model rewrit-
ten in the slave-spin representation is solved by determining
λα and the quasiparticle spectral weight Zα ∝ |〈S+

α 〉|2 self-
consistently [25,26].

III. LOW-SPIN TO HIGH-SPIN CROSSOVER
AND ORBITAL-SELECTIVE MOTT PHYSICS

We first diagonalize the interaction Hamiltonian of Eq. (4)
in the MO basis. The ground state is either a low-spin S = 1/2
state at small JH or a high-spin S = 3/2 state at large JH, as
shown in Appendix B. In the low-spin state, the z2 bonding
state is largely doubly occupied, whereas the antibonding state
is almost empty. The x2 − y2 orbitals are near quarter filling.
In the high-spin state, on the other hand, the bonding z2 and
x2 − y2 orbitals are all half filled, and the antibonding z2 state
stays empty. Either the low-spin or the high-spin configuration
is fourfold degenerate. For the low-spin state, the additional
degeneracy comes from the doubly degenerate x2 − y2 or-
bitals, which can be described by an isospin τ = 1/2. The
transition from the low-spin to high-spin state is shown as the
red line with square symbols in Fig. 1(b). In the presence of
electron hopping, this transition turns into a crossover.

To examine how this crossover takes place in the multior-
bital Hubbard model, we perform slave-spin calculation in the
MO basis. Note that the antibonding z2 state has a very low
electron density n < 0.1 at U = 0. Accordingly, we expect it
to be only weakly affected by interactions. To simplify the
calculation, we set Z = 1 in this MO and turn off interaction
terms associated with this orbital. The results of the slave-spin
calculation is summarized in the phase diagram of Fig. 1(b). In
this figure, the dashed line characterizes the low-spin to high-
spin crossover. Here we note that the crossover is actually a
very broad regime. To see this, we define the variances of
the electron density profile from that dominating the low- and
high-spin states in the atomic limit:

σ 2
L = 1

4

[
(nz2(b) − 1)2 + (nz2(a) )

2 + 2(nx2−y2 − 1/4)2
]
,

σ 2
H = 1

4

[
(nz2(b) − 1/2)2 + (nz2(a) )

2 + 2(nx2−y2 − 1/2)2
]
. (5)

The variances with U at JH/U = 0.25 is depicted in Fig. 2. It
is clearly seen that the system deviates from either the ideal
low- or high-spin state within a wide range of U values. To
be precise, in the phase diagram of Fig. 1(b), the low-spin to
high-spin crossover is determined by the criterion σ 2

H = σ 2
L .

Across this crossover line with increasing U to the gray
regime, the system exhibits strong orbital selectivity: As
shown in Fig. 3(a), quasiparticle spectral weights and electron
densities in all orbitals change drastically and Zx2−y2 � Zz2

in this regime. Further increasing U , the system undergoes
an orbital-selective Mott transition (OSMT) to an OSMP at
the blue line with circles. As shown in Fig. 3, in the OSMP
Zx2−y2 = 0 and nx2−y2 = 1/2, but Zz2(b) > 0: The electrons in
the x2 − y2 orbitals are Mott localized whereas those in the z2

bonding states are still itinerant, though very close to the Mott
localization.

The OSMP is associated with the high-spin state. One sees
from Fig. 3(b) that in this state the electron densities of the
x2 − y2 and z2 bonding orbitals are all close to 1/2. If the
antibonding state were to be completely empty, the system

0 1 2 3 4 5
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0.06

0.08
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U (eV)

Low spin
High spin

FIG. 2. Variance of the electron density profile from the low-
spin and high-spin states at JH/U = 0.25. The low-spin to high-spin
crossover is determined from the crossing point of the two variance
curves.

consisting of the other three orbitals would be exactly at half
filling and would become Mott insulating when the red line
of transition in Fig. 1(b) is approached. However, at finite U
an OSMP is more favorable because keeping the z2 bonding
orbital itinerant reduces the kinetic energy. This naturally ex-
plains why the OSMT line almost traces the red transition line
to the high-spin Mott insulator (MI), especially when JH/U is
large.

We next consider the effects of orbital-selective Mott corre-
lations to the electronic structure. Figure 4(a) shows the bands
along high-symmetry directions of the Brillouin zone at U =
5.3 eV compared to those at U = 0. Close to the OSMP, bands
with the x2 − y2 and z2 bonding orbital characters are strongly
renormalized whereas the z2 antibonding band, located top-
most in energy, hardly shifts compared to the U = 0 case.
As shown in Figs. 4(b) and 4(c), compared to the significant
renormalization in the total bandwidth W from about 4 eV
to about 1.5 eV, the Fermi surface only changes moderately.
While the relatively small inner hole pocket centered at the M
point exhibits a sizable expansion, the outer hole and electron
pockets centered around the 	 point only slightly shrink and
expand, respectively.

IV. AN EFFECTIVE MULTIORBITAL t-J MODEL
FOR SUPERCONDUCTIVITY

The above slave-spin results set the stage to build a low-
energy effective model to understand superconductivity of the
system, which can be done by performing a t/U perturbation
expansion when U is sizable. However, the resulting form
of the effective theory depends on the low-energy manifold
the perturbed Hamiltonian is projected to. For example, when
projecting to the S = 1/2 low-spin sector, one ends up with
an effective model that includes interactions between the to-
tal spin and isospin operators, which takes the form of the
Kugel-Khomskii model [27]. On the other hand, one obtains
three-orbital Heisenberg couplings for the interacting part
of the Hamiltonian when projecting to the high-spin sector.
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FIG. 3. Evolution of the orbital-resolved quasiparticle spectral weight Z [in (a)] and electron density n [in (b)] with increasing U at
JH/U = 0.25 of the bilayer two-orbital model in the MO basis calculated by using the U (1) slave-spin theory. The blue and gray regimes
correspond to OSMP and metallic state with strong orbital selectivity, respectively.
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FIG. 4. (a) Band structure at U = 5.3 eV compared to the one
at U = 0, indicating strong orbital-selective band renormalization.
(b) The corresponding electron density of states (DoS) showing a
large renormalization on the bandwidth W . (c) Comparison of the
Fermi surface at U = 5.3 eV and U = 0. In the calculation, we have
used a simplified tetragonal structure. The BZ corresponding to the
orthorhombic structure of the compound is shown as dashed lines in
panel (c), and the corresponding names of the high-symmetry points
in this BZ are given in parentheses. 	′ refers to the 	 point of the
second BZ.

Which model is pertinent to the low-energy physics depends
on the strength of the interaction.

For La3Ni2O7, U is estimated to be within 4 to 6 eV [4,10].
According to the phase diagram in Fig. 1(b), this suggests
that the system is in the regime with strong orbital selectivity
near the OSMP [as highlighted in Fig. 1(b)]. Therefore, we
construct the effective model by starting from the S = 3/2
high-spin ground state and taking into account effects of the
S = 1/2 low-lying excitations by projecting out doubly occu-
pied states. As a result, it takes the form of a multiorbital t-J
model where the Hamiltonian reads

Heff = 1

2

∑
i jαβσ

√
ZαZβtαβ

i j f †
iασ f jβσ +

∑
iασ

(ε′
α − μ) f †

iασ fiασ

+
∑
i jαβ

′
Jαβ

i j Siα · S jβ. (6)

Here we have employed the slave-spin method to renormalize
the kinetic part of the Hamiltonian; Zα is the quasiparticle
spectral weight of the αth MO, and ε′

α refers to the renor-
malized energy level of orbital α. This is a generalization
of the slave-boson theory [28] to the finite U case. Siα =
1
2 f †

iαsσss′ fiαs′ denotes the spin density operator at site i in
the α orbital. Considering the high-spin state, the summation∑′ runs over the two x2 − y2 and the one z2 bonding MOs.
Jαβ

i j refers to the orbital dependent exchange coupling which
can be determined from the second-order t/U perturbation
expansion, as detailed in Appendix C. Here we neglect the
interlayer couplings between x2 − y2 orbitals and second-
nearest and further neighboring interactions because of their
small hopping amplitudes, and only consider the in-plane
nearest neighboring exchange interactions Jxx

1 , Jzz
1 , and Jxz

1 .
We find Jxz

1 to be negligibly small, and Jxx
1 , Jzz

1 are antifer-
romagnetic. In the following, we take the convention Jαβ for
Jαβ

1 . To explore how the superconducting pairing evolves with
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TABLE II. Superconducting pairing symmetry of the effective
multiorbital t-J model. 
(r) and 
(k) refer to gap functions in real
and momentum space, respectively. Their symmetry is characterized
by the corresponding irreducible representation of the tetragonal D4h

group. η0 and η3 refer to the 2 × 2 unit marix and z component of the
Pauli matrix, respectively. x̂ (ŷ) refers to unit vector along the x (y)
direction.

Orbital 
(r) 
(k) Symmetry

x2 − y2 (
x̂ + 
ŷ )η0 sx2+y2η0 A1g

(
x̂ − 
ŷ )η0 dx2−y2η0 B1g

(
x̂ + 
ŷ )η3 sx2+y2η3 A2u

(
x̂ − 
ŷ )η3 dx2−y2η3 B2u

z2 
x̂ + 
ŷ sx2+y2 A1g


x̂ − 
ŷ dx2−y2 B1g

orbital-selective correlations, we take Jzz = 0.025W0 (with
W0 referring to the bandwidth at U = 0), and tune the ratio
r = Jxx/Jzz.

V. SUPERCONDUCTING PAIRING SYMMETRY

The superconducting pairing in the model of Eq. (6) is
studied by a Bogoliubov mean-field decomposition of the
exchange interactions in the intraorbital spin singlet sector:

Jαα
δ

(
Siα · Si+δα − 1

4
niαni+δα

)

≈ −Jαα
δ

2

(

̂

†
δα
δα + H.c. − |
δα|2), (7)

where 
̂δα = fiα↓ fi+δα↑ − fiα↑ fi+δα↓, and the gap function

δα = 〈
̂δα〉. La3Ni2O7 under pressure has an orthorhombic
structure. But the difference between the a and b lattice con-
stants is small (about 1%) [4]. As such, for convenience, we
examine the symmetry of the gap functions by studying how
they transform under the tetragonal D4h group. The result is
summarized in Table II. One sees that the multiorbital nature
leads to six different pairing channels. We then perform a
self-consistent calculation to determine the leading pairing
channel [29]. As shown in Fig. 5, the leading pairing channel
changes from the extended s-wave A1g

z2 to d-wave B1g in both
x2 − y2 and z2-bonding orbitals with increasing Jxx. In the A1g

dominant regime, the pairing is also strongly orbital selective,
with the leading channel associated with the z2 bonding or-
bital. Besides the larger pairing amplitude stabilized by Jzz,

FIG. 5. Evolution of the leading superconducting pairing sym-
metry, from an extended s-wave A1g to a d-wave B1g with increasing
Jxx . Here we take Jzz = 0.025W0, and vary the ratio r = Jxx/Jzz,
where W0 is the total bandwidth of the multiorbital Hubbard model
at U = 0.

this pairing channel is also favored by causing a full super-
conducting gap along the inner hole pocket centered at the
M point. However, nodes along the outer hole pocket cannot
be avoided by either pairing channel. To avoid nodes, it is
possible that a pairing function with mixed s- and d-wave
characters, such as the time-reversal breaking s + id [29] or
s + d (given the orthorhombic lattice symmetry of the com-
pound) [30], is stabilized in the regime where A1g and B1g

pairing channels are in competition.

VI. DISCUSSIONS AND CONCLUSIONS

Several remarks are in order. First, the OSMP found in
our model for La3Ni2O7 shares some similarity to that of
the iron-based superconductors [31], for which extensive ev-
idence has come from angle-resolved photoemission [32,33]
and other measurements [3]. In both systems, the OSMP is
stabilized when the electron filling of each relevant orbital
is either at or slightly away from half filling. This justifies
the reduction from the multiorbital Hubbard model to the t-J
one. Second, as shown in Fig. 3(a), very close and inside the
OSMP the overall quasiparticle spectral weight is less than
0.1. This causes the system to be in proximity to an OSMP,
which naturally explains the substantially suppressed Drude
weight (with the renormalized electrons’ kinetic energy ratio
less than 0.1) as observed in a recent optical conductivity mea-
surement [23]. The strong orbital selectivity between the z2

and x2 − y2 orbitals accounts for the observed two-component
contribution to the Drude weight [23]. Third, applying a
pressure corresponds to increasing the hopping amplitudes,
or equivalently, reducing the U/t ratio in our model. This
increases the itinerancy of electrons, and causes bandwidth
tuning of the superconductivity. But in multiorbital systems
reducing the U/t ratio has additional effects. It can trigger
a high-spin to low-spin crossover, as shown in the present
work. This activates the orbital degree of freedom, which
makes the exchange couplings orbital dependent and may lead
to strong competition of fluctuations in the antiferromagnetic
spin and orbital channels, as reflected in the complicated tem-
perature evolution of the magnetic susceptibility in La3Ni2O7

at ambient pressure [34,35]. Moreover, reducing the U/t ratio
also causes redistribution of the electrons among the orbitals,
leading to an effect similar to either hole or electron doping a
MI in each orbital. This effect resembles a multiorbital version
of the physics in doping the cuprates, which is known to favor
superconductivity.

In conclusion, we have studied electron correlation effects
in a bilayer two-orbital Hubbard model for La3Ni2O7 in the
MO basis, and found a strong orbital selectivity when the
interaction strength is moderate. Further increasing the in-
teraction, an OSMP is stabilized. The OSMP is close to an
S = 3/2 high-spin state, in which the x2 − y2 and z2 bonding
orbitals are all very close to half filling. In light of these
results, we obtain an effective multiorbital t-J model for su-
perconductivity of the system in the crossover regime towards
the high-spin configuration. We show that the system exhibits
orbital-selective pairing and the leading superconducting pair-
ing channel evolves from the extended s-wave A1g to d-wave
B1g when the intraorbital nearest-neighbor exchange coupling
Jxx is increased. Our work paves the way for systematically
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describing the pressure-induced high-Tc superconductivity of
La3Ni2O7.
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APPENDIX A: DETAILS ON THE TIGHT-BINDING MODEL

To include the realistic band structure at low energies to
our tight-binding modeling, we first carried out band struc-
ture calculations for La3Ni2O7 within the framework of DFT.
We have used the plane wave basis set as implemented in
the Vienna Ab initio Simulation Package (VASP) code [36].
Projector augmented-wave potentials and the Perdew-Burke-
Ernzerhof exchange-correlation functional were used in the
calculations. We consider the experimental lattice parameters
(a = 5.289 Å, b = 5.218 Å, c = 19.734 Å) [4] in the simu-
lations. Since the difference between a and b is only about
1.3%, we use their average value (a = b = 5.2535 Å) in the
calculations. Though this procedure has modified the space
group from Fmmm to I4/mmm, it should have little effect on
the electronic structure.

As shown in Fig. 6, the bands near the Fermi energy have
mainly the Ni 3d eg orbital character. The bands associated
with the t2g orbitals are at least 1 eV below the Fermi level.
The oxygen 2p bands are dominant at about 4 eV below the
Fermi energy. Therefore, the relevant orbitals within a 2 eV
energy window about the Fermi energy are the Ni eg ones.
We hence fit the Wannierized bands with a bilayer two-orbital
tight-banding Hamiltonian including these eg orbitals in the
BZ corresponding to the two Ni (in the top and bottom lay-
ers) unit cells. At this step we have used projected Wannier
functions; the procedure of disentanglement was performed
with the maximally localized Wannier functions scheme as
implemented in the WANNIER90 code [37]. The tight-binding
parameters from the fitting are summarized in Table I.

The band structure of the bilayer two-orbital tight-binding
model compared to the DFT results is shown in Fig. 6. The
tight-binding model reproduces a similar band structure of
DFT in the energy window of interest, from −1.5 to 2.5 eV.

APPENDIX B: THE INTERACTION HAMILTONIAN
IN THE BONDING MOLECULAR ORBITAL BASIS
AND THE LOW-SPIN TO HIGH-SPIN CROSSOVER

In Eq. (3), we performed a transformation from the atomic
orbital basis to the MO basis. Here we define MOs for both
the z2 and x2 − y2 orbitals for convenience. But, as listed in
Table I, the interlayer hopping amplitude between the x2 − y2

orbitals is much smaller than both its intralayer counterpart
and the interlayer hopping between the z2 orbitals. We there-
fore expect that the x2 − y2 orbital is largely nonbonding.

In this MO basis, the interaction Hamiltonian is
rewritten to

Hint = Hb-b
int + Hb-a

int , (B1)
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where the boning-bonding and antibonding-antibonding interactions are

Hb-b
int = U

2

∑
α

(
na

Iα↑na
Iα↓ + nb

Iα↑nb
Iα↓

) + U ′

4

∑
α �=β,σ �=σ ′

(
na

Iασ na
Iβσ ′ + nb

Iασ nb
Iβσ ′

)

+ U ′ − J

2

∑
α>β,σ

(
na

Iασ na
Iβσ + nb

Iασ nb
Iβσ

) − J

2

∑
α �=β

(
da+

Iα↑da+
Iβ↓da

Iβ↑da
Iα↓ + db+

Iα↑db+
Iβ↓db

Iβ↑db
Iα↓

)

− J

2

∑
α �=β

(
db+

Iα↑db+
Iα↓db

Iβ↑db
Iβ↓ + da+

Iα↑da+
Iα↓da

Iβ↑da
Iβ↓

)
, (B2)

and the bonding-antibonding mixing interaction is

Hb-a
int = U

2

∑
α

(
na

Iα↑nb
Iα↓ + nb

Iα↑na
Iα↓

) + U ′

4

∑
α �=β,σ �=σ ′

(
na

Iασ nb
Iβσ ′ + nb

Iασ na
Iβσ ′

) + U ′ − J

2

∑
α>β,σ

(
na

Iασ nb
Iβσ + nb

Iασ na
Iβσ

)

+ U

2

∑
α

(
db+

Iα↑da
Iα↑db+

Iα↓da
Iα↓ + db+

Iα↑da
Iα↑da+

Iα↓db
Iα↓ + da+

Iα↑db
Iα↑db+

Iα↓da
Iα↓ + da+

Iα↑db
Iα↑da+

Iα↓db
Iα↓

)

+ U ′

4

∑
α �=β,σ �=σ ′

(
db+

Iασ da
Iασ db+

Iβσ ′da
Iβσ ′ + db+

Iασ da
Iασ da+

Iβσ ′db
Iβσ ′ + da+

Iασ db
Iασ db+

Iβσ ′da
Iβσ ′ + da+

Iασ db
Iασ da+

Iβσ ′db
Iβσ ′

)

+ U ′ − J

2

∑
α>β,σ

(
db+

Iασ da
Iασ db+

Iβσ da
Iβσ + db+

Iασ da
Iασ da+

Iβσ db
Iβσ + da+

Iασ db
Iασ db+

Iβσ da
Iβσ + da+

Iασ db
Iασ da+

Iβσ db
Iβσ

)

− J

2

∑
α �=β

(
da+

Iα↑da+
Iβ↓db

Iβ↑db
Iα↓ + db+

Iα↑db+
Iβ↓da

Iβ↑da
Iα↓ + db+

Iα↑da+
Iβ↓db

Iβ↑da
Iα↓

+ db+
Iα↑da+

Iβ↓da
Iβ↑db

Iα↓ + da+
Iα↑db+

Iβ↓da
Iβ↑db

Iα↓ + da+
Iα↑db+

Iβ↓db
Iβ↑da

Iα↓
)

− J

2

∑
α �=β

(
da+

Iα↑da+
Iα↓db

Iβ↑db
Iβ↓ + db+

Iα↑db+
Iα↓da

Iβ↑da
Iβ↓ + db+

Iα↑da+
Iα↓db

Iβ↑da
Iβ↓

+ db+
Iα↑da+

Iα↓da
Iβ↑db

Iβ↓ + da+
Iα↑db+

Iα↓da
Iβ↑db

Iβ↓ + da+
Iα↑db+

Iα↓db
Iβ↑da

Iβ↓
)
. (B3)

Diagonalizing the interaction Hamiltonian along with the
on-site potential term in the tight-binding Hamiltonian written
in the MO basis, we obtain two ground states in the atomic
limit: an S = 1/2 low-spin state and an S = 3/2 high-spin
state. These two ground states are illustrated in Fig. 7. Each
state is fourfold degenerate. In the S = 1/2 low-spin state, the
additional degeneracy is associated with the two degenerate
x2 − y2 orbitals. As one sees, the low-spin configuration is
dominated by the Fock state in which the bonding z2 orbital is
doubly occupied while the x2 − y2 orbitals are quarter filled.
We can then define an orbital isospin operator τ, with the
Ising variable τ z denoting the electron density difference in
the x2 − y2 orbitals between the top and bottom layers. The
four degenerate low-spin configurations can be obtained from
the one shown in Fig. 7 by applying total spin and orbital
isospin reversal symmetry, respectively. On the other hand,
the degenerate high-spin configurations can be labeled by the
quantum number Sz of the total spin. In the atomic limit, there
is a transition from the low-spin to high-spin ground state by
increasing JH, shown as the red line in the phase diagram of
Fig. 1(b). Taking into account the kinetic energy will turn the
transition to a crossover.

APPENDIX C: DETAILS ON THE DERIVATION
OF THE EFFECTIVE MODEL

To construct the effective model, we start from the bilayer
two-orbital Hubbard model in the MO basis, and rewrite the
toal Hamiltonian in two parts, H = H0 + H1. We take the
Hamiltonian in the atomic limit (including the interaction
and on-site potential terms) as the unperturbed Hamiltonian
H0, and treat the hopping terms as perturbations (H1). The
effective low-energy model can be obtained via a canonical
transformation,

Heff = eiSHe−iS

= H0 + [iS, H0] + H1 + [iS, H1]

+ 1
2 [iS, [iS, H0]] + · · · . (C1)

The unitary operator S can be determined by requiring the
first-order contribution in H1 to be 0, and the effective Hamil-
tonian is derived from the second-order perturbation,

Heff ≈ 1
2 [iS, H1]. (C2)
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(a) (b)

FIG. 7. (a) High-spin S = 3/2 ground-state configurations. (b) Low-spin S = 1/2 ground-state configurations. Each ground state is
fourfold degenerate, and the other degenerate configurations can be obtained by reversing the spin direction (Sz → −Sz) from those presented
here.

We should then project the effective Hamiltonian onto the
low-energy subspace, which is the high-spin S = 3/2 state in
the strong-coupling limit U/t → ∞. In this way, the effective
model takes the form of an S = 3/2 Heisenberg model,

Heff =
∑

i j

Ji j �Si · �S j, (C3)

where �Si is the S = 3/2 spin operator at the ith unit cell. While
this model should be well applied in the limit U/t → ∞,
calculations suggest the La3Ni2O7 is close to the low-spin to
high-spin crossover, where the effects of low-lying low-spin
excitations are non-negligible. In practice, it would be difficult
to project the effective Hamiltonian to a sector including both
the high- and low-spin configurations given the incompat-
ible quantum numbers of these two states. Here we adopt
an alternative way. We consider a model with three-orbital
Heisenberg couplings,

Heff =
∑
i j,αβ

Jαβ
i j

�Siα · �S jβ − J̃H

∑
iαβ

�Siα · �Siβ, (C4)

where �Siα is an S = 1/2 spin operator in orbital α, and α

runs over the two x2 − y2 and the bonding z2 orbitals. J̃H is
an effective Hund’s coupling trying to align spin directions in
all orbitals. The model in Eq. (C4) goes back to the one in
Eq. (C3) in the limit J̃H → ∞. By reducing the value of J̃H,

the effects from more low-spin configurations are taken into
account.

To precisely determine the values of the model parameters
J̃H and Jαβ

i j in Eq. (C4) requires accurate knowledge of U
and JH in the original multiorbital Hubbard model. We note
that the purpose of the present work is to capture the key
features of superconductivity over a wide physical regime of
model parameters. As such, we further simplify the model in
Eq. (C4) by taking J̃H = 0. This makes the spin of each orbital
independent, and maximally includes effects from low-spin
states. In this way, we can project the effective Hamiltonian
to each orbital subspace independently and determine the or-
bital dependent effective exchange couplings. For the in-plane
nearest neighbor pair of sites, we find Jxx

1 = 158.6 meV, Jzz
1 =

45.8 meV, and Jzx
1 = −1.1 meV for U = 6 eV and JH/U =

0.25. The exchange couplings for a pair of sites along other
directions are less than 1 meV in magnitude and are hence
neglected. Note that for nearest neighbor pairs the intraorbital
exchange couplings are both antiferromagnetic, whereas the
interorbital one is very weakly ferromagnetic. This implies
a strong competition between antiferromagnetic and ferro-
magnetic interorbital processes. Varying U and JH/U can
significantly modify the effective exchange couplings. In the
calculation for superconductivity, we take Jzz

1 ≈ 0.025W0 and
leave Jxx

1 as a free parameter. Here W0 ∼ 4 eV is the bare
bandwidth at U = 0.
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