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A superconductor emerges as a condensate of electron pairs, which bind despite their strong Coulomb
repulsion. Eliashberg’s theory elucidates the mechanisms enabling them to overcome this repulsion and predicts
the transition temperature and pairing correlations. However, a comprehensive understanding of how repulsion
impacts the phenomenology of the resulting superconductor remains elusive. We present a formalism that
addresses this challenge by applying the Hubbard-Stratonovich transformation to an interaction including instan-
taneous repulsion and retarded attraction. We first decompose the interaction into frequency scattering channels
and then integrate out the fermions. The resulting bosonic action is complex and the saddle point corresponding
to Eliashberg’s equations generally extends into the complex plane and away from the physical axis. We
numerically determine this saddle point using the gradient descent method, which is particularly well-suited for
the case of strong repulsion. We then turn to consider fluctuations around this complex saddle point. The matrix
controlling fluctuations about the saddle point is found to be a non-Hermitian symmetric matrix, which generally
suffers from exceptional points that are tuned by different parameters. These exceptional points may influence the
thermodynamics of the superconductor. For example, within the quadratic approximation, the upper critical field
sharply peaks at a critical value of the repulsion strength related to an exceptional point appearing at Tc. Our work
facilitates the mapping between microscopic and phenomenological theories of superconductivity, particularly
in the presence of strong repulsion. It has the potential to enhance the accuracy of theoretical predictions for
experiments in systems where the pairing mechanism is unknown.
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I. INTRODUCTION

The Bardeen-Cooper-Schrifer (BCS) theory [1] gives a
microscopic picture of how metals become unstable towards
a superconducting state. It is based on the assumption that
electronic excitations weakly attract each other when their en-
ergy is lower than the Debye frequency. This relatively simple
assumption then leads to a theory that offers both important
conceptual insight and formidable predictive power. The the-
ory of Gor’kov [2] maps BCS theory to a Ginzburg-Landau
(GL) theory, creating a bridge between the microscopic
pairing picture and the resulting long-wavelength emergent
phenomena, further enhancing the predictive power of BCS
theory.

However, BCS theory does not provide a complete pic-
ture of the microscopic origin of pairing. In particular, the
static interaction between electrons is naively expected to be
repulsive, at least within a classical screening theory. This
naturally leads to the question regarding the quantum origin
of the attraction that is assumed in BCS theory. Morel and
Anderson [3] used Eliashberg’s theory [4–6] to show that a
pairing instability may occur even when the interaction is
repulsive. The key ingredient that enables the pairing is retar-
dation of the phonon attraction compared to the instantaneous
Coulomb repulsion. Their solution is characterized by fre-
quency dependent pair correlations that change sign between
the high and low frequency regimes in a way that exploits the

attraction while avoiding the repulsion. This picture is also
amenable within the renormalization group technique, where
the effectiveness of the instantaneous repulsion is reduced
when dressed with virtual excitations to high energy, while
the retarded part is unaffected, thus reducing the repulsion in
comparison to the attraction [7,8].

Deriving a GL theory that captures the fluctuations around
a solution of the Eliashberg equations with a repulsive interac-
tion is, however, not as straightforward as in the case of BCS
theory. Nonetheless, it is an important goal, especially for
superconductors where Coulomb repulsion is expected to be
strong, such as two-dimensional systems [9–16], low-density
systems [17–22] and possibly even in strongly correlated
materials where Eliashberg theory shows unexpected suc-
cess [23,24].

To better understand the challenge in obtaining the GL
theory we may consider a Hubbard-Stratonovich (HS) trans-
formation [25–27] from the microscopic-fermionic theory to
the bosonic one. This is done in two steps. First, the in-
teraction is replaced by a Gaussian integral over a bosonic
auxiliary field, which is coupled to a fermion bi-linear. Then
the fermions are integrated out to obtain the desired bosonic
theory.

For a simple contact interaction the coupling between the
auxiliary bosonic field and the fermions must be real or
imaginary, depending on whether the coupling is attractive or
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repulsive, respectively. However, a realistic interaction com-
bines instantaneous Coulomb repulsion and retarded phonon
attraction.1 Thus an ambiguity arises when performing the HS
transformation.

We show that the ambiguity with the HS transformation is
signifying a delicate issue regarding the saddle point of the su-
perconducting action when repulsion is present. Namely, this
saddle point may become complex, lying outside the original
field-integration path. To demonstrate this we first breakdown
the interaction matrix into its eigenchannels, which can be in
frequency, momentum and spin-orbital space. We perform the
HS transformation to each eigenchannel separately, such that
the repulsive ones are coupled to the fermions via an imag-
inary coupling, while the attractive ones with a purely real
coupling. The resulting action is thus a complex functional
and, as mentioned above, the saddle point generally lies in the
complex plane.

We then obtain the numerical solution of the saddle-
point equations using the gradient descent method [28].
When repulsion is present, this method converges faster
than the method of iterating the nonlinear Eliashberg equa-
tions [29,30]. Moreover, it is capable of obtaining the solution
in the strong repulsion limit, where the iterative approach
breakdowns altogether. Finally, we derive the Ginzburg-
Landau theory for the fluctuations about this saddle point in
the presence of strong repulsion. Because the saddle point
is not necessarily on the physical integration manifold, the
expansion about the saddle point is a “steepest descent” ap-
proximation of the field integral [31].

For concreteness, we apply our theory to the well known
Morel-Anderson model of an instantaneous repulsion and
retarded attraction [3,32,33]. We first demonstrate the solu-
tion of the saddle-point equations using the gradient descent
method and compare the performance to a straightforward
iteration technique. We then show how to incorporate the
normal-state self-energy corrections [34,35], which are cru-
cial for an accurate description of the superconducting
state.

Next, we discuss the derivation of a GL theory for the fluc-
tuations about the saddle-point solution. Within a quadratic
expansion, the fluctuations of different eigenmodes are gen-
erally coupled through a non-Hermitian symmetric matrix,
which may have complex eigenvalues. In particular, the eigen-
values of the matrix generically incur exceptional points.
These are the points at which the spectrum of the matrix be-
comes degenerate and the matrix itself is defective in a sense
that it is nondiagonalizable [36,37]. They only appear in the
presence of repulsion and can be tuned by different parameters
of the system, such as temperature, undulation wavelength,
and coupling strength. Interestingly, we find that the temper-
ature of the exceptional point in the lowest eigenvalue branch
is always higher than the transition temperature, except for a
critical value of the repulsion strength where the two temper-
atures are equal. At this value of the repulsion strength, the
fluctuation matrix is defective at Tc. The properties of such an
exceptional superconductor remain to be uncovered. Finally,
we use the quadratic approximation to compute upper critical

1Or any other boson that mediates an attractive interaction.

field Hc2 ∝ (1 − T/Tc)/ξ 2
GL close to Tc. The Ginzburg-Landau

coherence length ξGL is found to be strongly diminished near
the critical repulsion strength where the exceptional point
appears at Tc. Away from the critical repulsion strength ξGL

depends monotonically on repulsion in a way that depends on
the details of the interaction and generally deviates from the
Gor’kov-BCS result [2], ξBCS

GL = √
7ζ (3)vF /4π

√
3Tc, where

vF is the Fermi velocity.
Our results are expected to be important for any in-

clusive study of superconductivity from the weak coupling
perspective, especially in low-density and two-dimensional
systems. Furthermore, our theory may also contribute to the
efficiency of numerical solvers of the nonlinear Eliashberg
equation where strong repulsion is included. Finally, we com-
ment that it may also be relevant to the understanding of the
Kohn-Luttinger [38] mechanism of superconductivity, any-
time the system lacks rotational symmetries and repulsive and
attractive channels mix.

The rest of this paper is organized as follows. First we
briefly review some of the properties of Eliashberg theory
essential to our paper. In Sec. II, we describe the eigen-
channel decomposition of the interaction and perform the
Hubbard-Stratonovich transformation. In Sec. III, we nu-
merically obtain the complex saddle point solution of the
Hubbard-Stratonovich action, show its equivalence to the so-
lution of the Eliashberg equation, and discuss its dependence
on repulsion. In Sec. IV, we show how to include the normal
state self-energy corrections and discuss their influence on the
saddle-point solution. Finally, in Sec. V, we derive the long-
wavelength theory for fluctuations around the saddle point and
use it to compute the influence of the repulsion strength on the
upper critical field close to Tc.

A. Brief review of Eliashberg and Morel-Anderson theory

Let us quickly review some of the essential properties
of Eliashberg theory, before describing how to incorpo-
rate it in a field theoretic formalism. We will mainly
focus on a simplified model, where the interaction between
electrons in the s-wave channel includes an instantaneous
Coulomb repulsion and a retarded attraction (see, for example,
Refs. [3,32])

V̂ω,ω′ = λ

NF

[
μ − ω2

D

(ω − ω′)2 + ω2
D

]
, (1)

where ωD is the frequency of an Einstein phonon mode that
mediates the attraction, NF is the fermionic density of states
at the Fermi level, and the dimensionless parameters λ and
μ quantify the total coupling strength and the relative strength
of the repulsion, respectively. The quantity λμ = 〈q2

TF/2(q2 +
q2

TF)〉FS is naively assumed to be the Fermi-surface average
over the screened Coulomb interaction [29], where qTF is the
Thomas-Fermi screening length. In the case μ > 1 the bare
interaction is repulsive at all frequencies. We emphasize that
as long as only classical screening is taken into account we
expect μ will always be larger than unity. Moreover, μ > 1
even within the random-phase approximation (RPA) when
projecting to the s-wave channel.
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For the simplified model (1) Eliashberg’s equations be-
come momentum independent

�(ω) = −πT NF

2

∑
ω′

V̂ω,ω′�(ω′)√
[ω′ + i�(ω′)]2 + |�(ω′)|2

,

�(ω) = πT NF

2

∑
ω′

V̂ω,ω′[iω′ − �(ω′)]√
[ω′ + i�(ω′)]2 + |�(ω′)|2

, (2)

where ω = 2πT (n + 1/2) is a fermionic Matsubara fre-
quency, T is the temperature and NF is the density of states at
the Fermi level. �(ω) is the normal state self-energy, which
is purely imaginary and anti-symmetric �(ω) = −�(−ω).
Although this term is sometimes neglected, it significantly
affects the superconducting properties including the transition
temperature, especially in the presence of Coulomb repul-
sion. The self-consistent equation for the pairing field �(ω),
obeying the symmetry �(ω) = �(−ω) because we implicitly
assumed singlet pairing without any momentum dependence.

In their more general form, Eq. (2) are the foundation of
our most advanced microscopic understanding of supercon-
ductivity. They capture spectral properties that go beyond
BCS theory [39] and are the workhorse of quantitative
calculations for conventional and unconventional supercon-
ductors [29,40]. They are also capable of capturing non-Fermi
liquid behavior in strongly correlated systems and its interplay
with quantum criticality and superconductivity [24,41].

One of the most important hallmarks of these equations is
that they support a nontrivial solution even when the inter-
action in Eq. (1) is positive (repulsive) at all frequencies
(μ > 1). This solution is characterized by a sign-changing gap
function of the form

�(ω) =
{

�0, ω � ωD

−�1, ω � ωD
, (3)

where the ratio �1/�0 is positive. Morel and Anderson [3]
approximated the interaction from Eq. (1) using a step
function and found that �1/�0 = 1/(λ/μ∗ − 1) and Tc ∼
ωD exp[−1/(λ − μ∗)], where μ∗ = μ/(λ−1 + μ ln εF /ωD).

An intuitive understanding of the sign change is obtained
by making an analogy between frequency and momentum
dependence of the gap. In particular, one may consider inter-
actions with multiple angular-momentum scattering channels,
where the strongest interaction is in the repulsive s-wave
channel, in addition to some weaker attractive channel with
higher angular momentum (which is the case in the Kohn-
Luttinger mechanism [38]). Clearly, because the s-wave is
nodeless, the higher angular momentum channel must have
nodes to establish orthogonality. The role of the node in the
frequency-dependent gap function is similar. We can imag-
ine decomposing the frequency-dependent interaction (1) into
scattering channels, where the repulsive part is nodeless and
therefore the attractive channel forming the superconducting
state must have nodes.

However, obtaining an unbiased (and numerically exact)
solution for any value of μ can be challenging. For example,
the performance of an iterative method deteriorates with in-
creasing repulsion strength, μ, which eventually breaks down
at some critical value of μ.

Moreover, an important question regards the microscopic
derivation of a Ginzburg-Landau theory for the fluctua-
tions around this solution. Such a theory is important
when the proposed pairing interaction includes strong repul-
sion [15,18,19,41–45]. For example, the Ginzburg-Landau
theory can be qualitatively different when the pairing inter-
action is long-ranged [46]. Thus developing a formalism to
tackle these problems is important for a wide scope of prob-
lems, which go beyond the specific model in Eq. (1).

II. THE SUPERCONDUCTING ACTION IN THE
PRESENCE OF A REPULSIVE INTERACTION

In this section, we present the methodology for developing
the field theory for a superconducting state stemming from a
pairing interaction with repulsion. To this end, we use the well
known HS transformation [27]. However, before performing
the transformation we need to distinguish between the attrac-
tive and repulsive channels. Therefore we first discuss the
decomposition of the interaction in Eq. (1) into scattering
channels in frequency and momentum space.

A. Frequency and momentum Eigen-channels of the pairing
interaction

To demonstrate the decomposition of the interaction into
channels we consider a generic pairing interaction

SI = T

L3

∑
k,p,Q



†
k (Q)V̂k,p
p(Q), (4)

where k, p are four-vectors, k = {ω, k}, and V̂k,p is a generic
interaction which is independent on the center of mass coordi-
nate Q. The Cooper-pair bilinears 


†
k (Q) and 
p(Q) are given

by


p(Q) = ψ−p,↓ψp+Q,↑,



†
k (Q) = ψ

†
k+Q,↑ψ

†
−k,↓,

Note that here we have explicitly assumed singlet pairing only.
The first step in the HS transformation is to replace the

interaction in Eq. (4) with a Gaussian path integral over
an auxiliary field, which couples linearly to 
p(Q). The
Gaussian integral must be convergent and consequently the
coupling is either purely real or purely imaginary for an
attractive or repulsive interaction, respectively. However, in
the general case the interaction can not be defined as purely
attractive or purely repulsive. For example, the interaction
in Eq. (1) contains both repulsive and attractive components.
This raises the question about the correct method to perform
such a HS transformation.

To answer this question we decompose the interaction into
its eigen channels in k space

V̂k,p =
∑

η

vηU ∗
η,kUη,p, (5)

where η labels different orthogonal channels, vη are the eigen-
values and Uη,p are the eigenvectors, such that

∑
η U ∗

η,kUη,p =
δk,p and

∑
k U ∗

η,kUη′,k = δη,η′ . The eigenvectors Uη,k define the
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scattering channels for which the interaction is diagonal

ϕη(Q) =
√

T

L3

∑
k

Uη,k
k (Q), (6)

The interaction in Eq. (4) then assumes the simple form

SI =
∑
Q,η

vηϕ
†
η (Q)ϕη(Q). (7)

A general interaction will have both positive and nega-
tive eigenvalues. In fact, due to Coulomb repulsion this is
always the case for electrons. Throughout the paper we will
refer to eigenchannels corresponding to positive eigenvalues
as “repulsive” and eigenchannels corresponding to negative
eigenvalues as “attractive,” as follows:

vη > 0 repuslive,

vη < 0 attractive. (8)

We note that a similar mixture of repulsive and attractive
orbital channels was recently considered in Ref. [47] More-
over, we will sometimes need to distinguish these two using
a ± subscript notation η+ and η−, such that vη− < 0 and
vη+ > 0. The interaction can then be divided into “repulsive”
and “attractive” parts:

SI = S+ + S− =
∑
Q,η+

|vη+|ϕ†
η+ (Q)ϕη+ (Q)

−
∑
Q,η−

|vη−|ϕ†
η− (Q)ϕη− (Q). (9)

With Eq. (9) in hand we are in good position to perform the
HS transformation (see Sec. II B). However, let us first briefly
review the properties of the eigensystem for the case of Eq. (1)
and then make some more general remarks. In Fig. 1(a),
we plot the interaction matrix V̂ω,ω′ = V̂ (ω − ω′) for μ = 1,
λ = 1.5, 2πT = 0.25ωD, and cutoff at 10ωD. In panel (b) we
plot the eigenvalues vη versus η. Note that all eigenvalues
are negative (i.e., attractive), except a single one, which is
positive (i.e., repulsive), denoted by vη+ . Lastly, in panel (c),
we plot five eigenvectors Uη,ω with the largest absolute value
eigenvalues as a function of Matsubara frequency, ω. Note
that the eigenvectors have well defined parity with respect to
ω → −ω. These correspond to odd and even frequency chan-
nels. In the case of singlet superconductivity, as considered
here, the odd-frequency channels do not contribute and their
weight in the gap function must be zero.

Before proceeding to perform the HS transformation we
first make a few important remarks. First, we note that the
eigenvalue decomposition in Eq. (5) is well known and used
in different contexts. For example, in scattering theory a
spherically symmetric interaction is decomposed into angular
momentum channels, then η would correspond to the angular
momentum quantum numbers l, m and the eigenvectors U to
the spherical harmonics. When a symmetry is present pairing
channels belonging to different irreducible representations (ir-
reps) of the symmetry group will decouple. The saddle point
for each irrep can then be solved separately. This is the case in
the well known Kohn-Luttinger problem [38], where full rota-
tional symmetry is present and Tc is set by the largest attractive
channel, regardless of how strong the repulsive ones are.
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FIG. 1. Eigenvalue decomposition of the Anderson-Morel inter-
action (1). (a). The interaction in ω − ω′ plane for values of μ = 1
and λ = 1.5. (b). The different eigenvalues vη normlaized by λ and
the number of eigenvalues Nη. Note that all of them are negative (i.e.,
attractive), except for a single positive one, which corresponds to a
repulsive channel vη+ . (c) The eigenvectors Uη,ω for the first four
attractive η− and the single repulsive η+ as a function of ω.

However, in many cases repulsive and attractive channels
do not belong to different irreps and do not decouple at the
saddle point. Such is the case in Eq. (1), where the only
existing symmetry is time-reversal symmetry. This symmetry
decouples the odd-frequency and even-frequency channels.
As we will see, the odd-frequency channels can affect su-
perconductivity in the singlet superconductivity through the
normal state self-energy. Another example, where repulsive
and attractive channels mix would the Kohn-Luttinger mecha-
nism in a system where the full rotational symmetry is broken
(e.g., due to a lattice).

B. The Hubbard-Stratonovich transformation and the resulting
bosonic action

We now turn to perform the HS transformation [27,46]. As
explained, the transformation involves the introduction of a
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Gaussian integral over an auxiliary field that is linearly cou-
pled to the pairing fields. However, in order for the Gaussian
integrals to be convergent the auxiliary fields can not couple

in the same way to the attractive and repulsive channels in
Eq. (9). Namely, the repulsive/attractive channels must be
coupled by purely imaginary/real couplings:

e−S− = exp

⎡
⎣∑

Q,η−

|vη−|ϕ†
η−ϕη−

⎤
⎦ =

∫
D[ f ∗

η− , fη− ] exp

⎡
⎣−

∑
Q,η−

| fη−|2
|vη−| +

∑
Q,η−

( fη−ϕ†
η− + f ∗

η−ϕη− )

⎤
⎦,

e−S+ = exp

⎡
⎣−

∑
Q,η+

|vη+|ϕ†
η+ϕη+

⎤
⎦ =

∫
D[ f ∗

η+, fη+ ] exp

⎡
⎣−

∑
Q,η+

| fη+|2
|vη+| + i

∑
Q,η+

( fη+ϕ†
η+ + f ∗

η+ϕη+ )

⎤
⎦, (10)

where we introduced the HS auxiliary fields fη(Q) and suppressed index Q for brevity. Using the equations above, the interaction
in Eq. (4) becomes

SI →
∑
Q,η

[ | fη(Q)|2
|vη| − ζη fη(Q)ϕ†

η (Q) − ζη f ∗
η (Q)ϕη(Q)

]
=
∑
Q,η

| fη(Q)|2
|vη| −

∑
k,Q

(
†
k (Q)�1,k (Q) + 
k (Q)�∗

2,k (Q)), (11)

where

ζη =
{

1 vη < 0
i vη > 0

and

�1,k (Q) ≡
√

T

L3

∑
η

ζηU ∗
η,k fη(Q),

�∗
2,k (Q) ≡

√
T

L3

∑
η

ζηUη,k f ∗
η (Q). (12)

The last equality on the RHS of Eq. (11) was obtained using
the relation (6). It is important to note that in the presence
of repulsion the HS fields, �1,k and �∗

2,k , are not complex
conjugates.

Using these notations, the full action assumes the form

SHS =
∑
Q,η

| fη(Q)|2
|vη| +

∑
k,Q

�
†
k+Q G−1

k (Q) �k, (13)

where �
†
k = (ψ†

k↑, ψ−k↓) is the Nambu spinor, G0(k) =
(−iω + ξk )−1 is the bare Green’s function and the Gor’kov
Green’s function is defined by

G−1
k (Q) =

(
G−1

0 (k)δQ,0 −�1,k (Q)

−�∗
2,k+Q(−Q) −G−1

0 (−k)δQ,0

)
. (14)

Finally, we perform the last step in the HS transformation,
the integration over the fermionic fields. This yields a fully
bosonic action

SHS =
∑
Q,η

| fη(Q)|2
|vη| − tr ln G−1

k (Q). (15)

In what follows, we will show that when repulsive channels
are present, the saddle point of this action lies outside the in-
tegration region of the fields ( f ∗

η , fη ) introduced by Eqs. (10).
We also note that because �1,k and �∗

2,k , are not complex
conjugates of one another the Green’s function matrix in the
tr ln is not Hermitian.

III. THE SADDLE-POINT SOLUTION

After obtaining the field theory in Eq. (15) we turn to
explore the properties of the saddle point. We will also show
that the solution of this saddle point satisfies Eliashberg’s
pairing equation.

For convenience, we transform the fields ( f ∗
η , fη ) to a real

representation

fη = f ′
η + i f ′′

η , f ∗
η = f ′

η − i f ′′
η . (16)

We note that the integration contour in Eq. (10) implies that
both f ′

η and f ′′
η are real fields covering the whole real space,

RNη ⊗ RNη , where Nη is the number of fields.
To obtain the saddle point, we take the derivatives of the

action in Eq. (15) with respect to f ′
η(0), f ′′

η (0) at Q = 0, which
yields2

2 f ′
η

|vη| = −
√

T

L3
tr

[
Gk(0)

(
0 ζηU ∗

η,k

ζηUη,k 0

)]
,

2 f ′′
η

|vη| = −
√

T

L3
tr

[
Gk(0)

(
0 iζηU ∗

η,k

−iζηUη,k 0

)]
. (17)

For concreteness, let us focus on the case of Eq. (1), where
the interaction is momentum-independent and the eigenvec-
tors are only functions of frequency. Then we can integrate
over momentum and obtain

f ′
η√

L3T
= πNF |vη|ζη

2

∑
ω

�1,ωUη,ω + �̄2,ωU ∗
η,ω√

ω2 + �1,ω�̄2,ω

,

f ′′
η√

L3T
= −i

πNF |vη|ζη

2

∑
ω

�1,ωUη,ω − �̄2,ωU ∗
η,ω√

ω2 + �1,ω�̄2,ω

. (18)

2By taking the derivative with respect to the fields at Q = 0,
we have restricted our search to states that are spatially homo-
geneous. In the general case, especially when the interaction is
momentum-dependent, one must verify that there are no other
saddle-point solutions at finite Q, corresponding to Fulde-Ferrell-
Larkin-Ovchinnikov or density waves states.
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Notice that we have introduced a new field �̄2 instead of �∗
2.

To understand this we recall that when the interaction has
repulsive eigenvalues, �1 is not related to �∗

2 by complex con-
jugation. Consequently, the saddle-point solution of Eqs. (18)
is only obtained with complex f ′

η and f ′′
η . In other words, when

repulsion is present, the saddle point is not located on the
original field-integration manifold but extended into the com-
plex space CNη ⊗ CNη . Therefore we can no longer identify
the fields in Eq. (16) as complex conjugates of one another. To
emphasize this we henceforth distinguish between the asterisk
notation, (.)∗, which denotes complex conjugation, and the
“bar” notation ¯(.), which defines an independent field f̄η, on
pare with fη. In particular, we modify our notation to

f ∗
η → f̄η ≡ f ′

η − i f ′′
η �= f ∗

η ,

�∗
2 → �̄2 ≡

√
T

L3

∑
η

ζηUη,k f̄η �= �∗
2, (19)

while fη and �1 are still defined as they appear in Eqs. (16)
and (12), respectively.

In what follows it will be useful to write the self-
consistency equations (18) in terms of fη and f̄η. To that
end, we take the sum and difference of Eqs. (18) with the
appropriate coefficients to give the complex representation

fη√
L3T

= πNF |vη|ζη

∑
ω

�1,ωUη,ω√
ω2 + �1,ω�̄2,ω

,

f̄η√
L3T

= πNF |vη|ζη

∑
ω

�̄2,ωU ∗
η,ω√

ω2 + �1,ω�̄2,ω

, (20)

where again f̄η = f ′
η − i f ′′

η is now not necessarily the complex
conjugate of fη.

It is important to note that the complex saddle point
represented by these equations still captures the low-energy
physics of the superconductor despite the fact that it is not in
the original integration space. This is justified by deforming
the integration path in Eqs. (10) to go through the saddle
point given by Eqs. (18) and along the direction of “steepest
descent” [31]. In this case, the Gaussian fluctuations along
the path and near the saddle point dominate the low-energy
physics of the superconductor.

A. Equivalence to Eliashberg’s equation

Before demonstrating the usefulness of Eqs. (18) and (20),
we first show that they coincide with Eliashberg’s pairing
equation. We multiply both sides of Eq. (20) by the factor
ζηUη,ω′ , sum over all η and use Eq. (19) to obtain

�1,ω′ = −πT NF

∑
ω

V̂ω′,ω�1,ω√
ω2 + �1,ω�̄2,ω

,

�̄2,ω′ = −πT NF

∑
ω

V̂ω′,ω�̄2,ω√
ω2 + �1,ω�̄2,ω

. (21)

These equations and their solution are identical to Eliash-
berg’s equation, while generalization for the case of
momentum-dependent interaction and/or gap functions is
obvious. However, as we will see in Sec. III B, from the

Im[f'η+]

Re[f'η+]
Physical integration axis

Saddle point solution
*

FIG. 2. The schematic location of the saddle-point solution in
the complex plane of the field f ′

η+ , which is associated with the
repulsive eigenvalue vη+ . Before extending this field into the com-
plex plane, i.e., on the physical integration axis, it took real values
f ′
η+ ∈ (−∞, ∞), as defined in Eq. (16). At the saddle point, however,

Re[ f ′
η+ ] = 0, so f ′

η+ is purely imaginary, and f ′′
η+ = 0.

numerical perspective there is a significant advantage in solv-
ing the equations in the eigenbasis of Eq. (20).

B. Numerical saddle-point solution with strong repulsion

The form of the nonlinear Eliashberg’s equations in Eq. (2)
[or in Eq. (21)] is convenient for numerical solution by the
method of self-consistent iteration [29,30]. However, when
strong repulsion is present, this method may exhibit numer-
ical instability. For example, the solution tends to oscillate
between negative and positive solutions. These instabilities
can be somewhat mitigated by updating the gap locally instead
of globally or by using a cleaver initial ansatz. In this section,
we demonstrate the use of the gradient descent method [28]
on Eqs. (20) to obtain a stable numerical solution at any μ.

To implement the gradient descent method, we evolve the
fields fη and f̄η in small increments along the direction at
which the action changes most rapidly in the complex space
of fields

f i+1
η = f i

η − eη+|vη|∂SHS

∂ f i
η

,

f̄ i+1
η = f̄ i

η − eη|vη|∂SHS

∂ f̄ i
η

, (22)

where SHS is given by Eq. (15), 0 < eη < 1 controls the step
size and we have multiplied the increment of the field by the
absolute value of the eigenvalues |vη| to make eη dimension-
less. It is worth noting that setting eη = 1 in these equations is
equivalent to the standard iteration technique [but for Eq. (17)
rather than Eq. (2)].

In the general case the action in Eq. (15) is complex.
However, the equivalence to Eliashberg’s equations, Eq. (21),
implies that the action is real at the saddle-point solution.
Without loss of generality we can fix the gauge of the fields
such that f ′

η− are purely real, f ′
η+ are purely imaginary, and

f ′′
η = 0 (as shown in Fig. 2), which implies that �1 and �̄2 are

real and equal to each other. This corresponds to the standard
gauge choice which is used in Eliashberg’s theory [29]. It
should be noted, however, that the fields fη and f̄η can deviate
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It

er
at

io
ns

/N
ω

Gradient descent method (ηc=30)
Iterating Eliashberg's equations

Iteration method cease to converge

μ

FIG. 3. The number of iterations, normalized by the number of
Matsubara frequencies, needed for the Eliashberg solution to con-
verge as a function of repulsion strength μ for 2πT/ωD = 0.03 and
λ = 1. The blue and red curves correspond to different solution meth-
ods, eigenvalue decomposition and regular iteration of Eliashberg’s
equation, respectively. Convergence is defined by the deviation of
less than 1% of the last iteration’s solution. The dashed line in the
figure corresponds to the critical value of μ above which the iteration
of Eliashberg’s equation ceases to converge to a solution.

from this gauge choice during the intermediate steps of the
gradient descent method using Eqs. (22).

Let us now demonstrate this procedure on the specific
study case, Eq. (1). In this case the interaction does not depend
on momentum and Eqs. (22) yield

f i+1
η = f i

η − eη|vη|

⎡
⎢⎣ f̄ i

η

|vη| − ζη

∑
ω

π
√

T L3NFU ∗
η,ω�̄i

2√
ω2 + �i

1�̄
i
2

⎤
⎥⎦,

f̄ i+1
η = f̄ i

η − eη|vη|

⎡
⎢⎣ f i

η

|vη| − ζη

∑
ω

π
√

T L3NFUη,ω�i
1√

ω2 + �i
1�̄

i
2

⎤
⎥⎦.

(23)

We find that the gradient descent method is stable and con-
verges quickly for all values of the repulsion μ when the step
size eη is small enough. We demonstrate this in Fig. 3, where
we compare the number of iterations needed to obtain a solu-
tion to an accuracy of 1% for the two methods, the gradient
descent method with eη = 0.1 and a straightforward iteration
of Eliashberg’s equation, as a function of μ for λ = 1. In
both methods the temperature is 2πT/ωD = 0.03 and we use
a sharp ultraviolet cutoff at ωc = 10ωD. We initiate all fη
equal to one another and real. We also truncate the number of
eigenvalues to ηc = 30. The Eliashberg iterative solver is ini-
tiated with �(ω) = const. (See Appendix A for more details.)
Figure 3 shows that when μ becomes greater than a critical
value (in this case, μ ≈ 0.57) the number of iterations needed
to obtain a solution by iteration of the Eliashberg equation di-

verges, while the performance of the gradient descent method
is unaffected. For values of μ greater than the critical value the
iterative solution oscillates between negative and positive val-
ues and never converges. Interestingly, this break down is not
abrupt. As the critical value is approached, the performance
of the iterative technique continuously deteriorates.

Let us now discuss the properties of the saddle point that
we obtain using the gradient descent method. In Fig. 4(a), we
plot the numerical solution of Eqs. (23), which is expressed
as �1(ω)/ωD using Eq. (12), in the space of λ and μ. Here
we use the interaction given by Eq. (1) at temperature 2πT =
0.03ωD. As mentioned above, at the saddle-point solution the
action is real and thus �1 is the complex conjugate of �̄2.
When initiating the search with all fη real and equal we arrive
at such a saddle point where �1 and �̄2 are real and equal,
and

Re[ f ′
η−] �= 0 & Im[ f ′

η−] = 0,

Re[ f ′
η+] = 0 & Im[ f ′

η+] �= 0,

f ′′
η = 0. (24)

As mentioned above, this is equivalent to the gauge choice
in standard Elaishebrg solutions [29]. Additionally, the odd-
frequency modes, Uη,ω = −Uη,−ω, do not contribute to this
solution, so the gap function is symmetric, �i(ω) = �i(−ω).
In Fig. 4(b), we plot the only repulsive channel Im[ f ′

η+] versus
the largest attractive channel Re[ f ′

η−], at the saddle point, as μ

is increased (arrows), for different λ. This figure visualizes
how the location of the saddle point evolves for different μ.

Before concluding this section we comment on the physi-
cal consequences of the result we have obtained. Namely, we
notice that the solution exhibits a surprising behavior at large
λ. Tc remains finite [i.e., higher than the temperature used
to generate Fig. 4(a)] for arbitrarily large repulsion μ → ∞.
This behavior was noticed and discussed by the authors of
Ref. [33] (see Fig. 5 therein). In Sec. IV, we will show that
this behavior is an artifact resulting from the omission of the
normal-state self-energy corrections.

IV. INCLUSION OF THE NORMAL-STATE
SELF-ENERGY CORRECTIONS

The interaction in Eq. (4) is nongeneric because it only
contains scattering in the singlet channel. In order to consider
a more generic situation let us use a standard density-density
interaction, which has the form

Sint = T

2L3

∑
σ,σ ′

∑
k1,k2,
k3,k4

V̂

(
k1 + k4

2
− k2 + k3

2

)

× ψ
†
k1,σ

ψk2,σ ψ
†
k3,σ ′ψk4,σ ′ · δk1+k3,k2+k4 , (25)

where σ, σ ′ =↑,↓ denote electron’s spin. Clearly, there are
contributions to this interaction that do not appear in Eq. (4).
These contributions are detrimental to spin-singlet super-
conductivity and must therefore be taken into account. The
authors of Ref. [34] showed that these terms modify the action
and its saddle-point equations to include the normal-state self-
energy corrections, as in Eq. (2). This is done by performing
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FIG. 4. The solution of the saddle-point equations at zero frequency, �(ω = 0), for different values of μ and λ, obtained by using the
gradient descent procedure described in Sec. III B. The temperature is 2πT = 0.03ωD. [(a) and (c)] The saddle-point solution, |�(ω = 0)|,
computed without and with self-energy corrections, respectively. (b) The values of the only repulsive channel Im[ f ′

η+ ] as a function of the
largest attractive channel Re[ f ′

η− ] at the saddle-point solution for different λ (indicated in the legend) and μ. The arrows indicate the flow
direction with increasing μ, starting from zero. (d) The functions �(ω) (top) and �(ω) (bottom) at the saddle-point solution computed for
λ = 1.3 and μ = 0.5, which is marked by the asterisk in (c).

the HS transformation with the additional decoupling field in
the particle-hole channel.

To see how this works, we divide Eq. (25) into two
contributions, Sint = SI + S ′

I , with σ ′ = −σ and σ ′ = σ , re-
spectively. When time-reversal and inversion symmetries are
present the former contribution assumes the form of Eq. (4),
while the latter is given by

S ′
I = − T

2L3

∑
Q,k,p,σ

ψ
†
k− Q

2 ,σ
ψk+ Q

2 ,σV̂k,pψ
†
p+ Q

2 ,σ
ψp− Q

2 ,σ . (26)

Note that in each one of these contributions we breakdown
the delta-function, implementing momentum conservation in
different manners. Namely, in Eq. (4) we use k1 + k3 = k2 +
k4 = Q, while in Eq. (26) we use k4 − k1 = k3 − k2 = Q. Also
notice the minus sign on the RHS of Eq. (26), which comes
from anticommuting the Grassmann fields.

Analogously to Eq. (4), we rewrite interaction (26) in terms
of fermionic bilinears in the particle-hole channel, �k,σ (Q) =
ψ

†
k+ Q

2 ,σ
ψk− Q

2 ,σ , which gives

Sint = T

L3

⎡
⎣∑

Q,k,p



†
k (Q)V̂k,p
p(Q)

−1

2

∑
σ

∑
Q,k,p

�
†
k,σ

(Q)V̂k,p�p,σ (Q)

⎤
⎦. (27)

Then, we use Eq. (5) to transform to the diagonal basis

Sint =
∑
η,Q

vη

[
ϕ†

η (Q)ϕη(Q) − 1

2

∑
σ

γ †
η,σ (Q)γη,σ (Q)

]
, (28)
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FIG. 5. The absolute values controlling the fluctuations of the
Ginzburg-Landau theory for the case of the toy model Eq. (47) (see
also Appendix C 2). [(a) and (b)] The two absolute values in Eq. (44),
ε1,2(0), at Q = 0 as a function of T/Tc for μ below (μ = 0.1) and
above (μ = 0.6) the critical value μc ≈ 0.3, respectively. Both Tc

(SC transition temperature) and T∗ (exceptional point temperature)
are marked on the plots. The “staircase” structure is unphysical and
appears due to hard frequency cutoff (see Appendix A 3). (c) The
values of Tc and T∗ as a function of μ. Note that μc, the value
of repulsion where Tc = T∗, is marked on the plot. Also note that
for numerical convenience we have used a large coupling strength
λ = 1.6 in these plots.

where ϕη(Q) =
√

T/L3
∑

k 
k (Q)Uη,k as before and γη,σ

(Q) =
√

T/L3
∑

k �k,σ (Q)Uη,k . We also note that when the
eigenvectors of the interaction are real, i.e., U ∗

η,k = Uη,k , then
γ †

η,σ (Q) = γη,σ (−Q), implying that γη,σ is real.
Next, we perform the HS transformation. The transforma-

tion in the particle-particle channel is described in Sec. II B,
where the fields ϕη are coupled to the complex bosonic aux-
iliary fields fη with the coupling ζη. Since the bilinears in
the particle-hole channel γη,σ are real, they are coupled to
the real bosonic field satisfying g∗

η,σ (Q) = gη,σ (−Q), with the
coupling iζη. The resulting action is given by

SHS = S0 +
∑
η,Q

{ | fη(Q)|2
|vη| − ζη[ f ∗

η (Q)ϕη(Q) + fη(Q)ϕ†
η (Q)]

+
∑

σ

|gη,σ (Q)|2
2|vη| + iζηgη,σ (Q)γη,σ (Q)

}
, (29)

where S0 denotes the free-fermionic part. Finally, integrating
out the fermions we obtain the bosonic action

SHS =
∑
η,Q

| fη(Q)|2
|vη| + |gη,↑(Q)|2 + |gη,↓(Q)|2

2|vη|

− tr ln G−1
k (Q), (30)

where the Green’s function in Nambu space is given by

G−1
k (Q) =

(
G−1

↑ (k, Q) −�1,k (Q)

−�̄2,k+Q(−Q) −G−1
↓ (−k − Q, Q)

)
. (31)

Here we defined G−1
σ (k, Q) = G−1

0 (k)δQ,0 + �σ,k (Q), with

�σ,k (Q) = i

√
T

L3

∑
η

ζηUη,k+ Q
2
gη,σ (Q). (32)

Let us now explore the Q = 0 saddle point of the ac-
tion with respect to the fields gη,σ , which in this case
become purely real due to the identity gη,σ (0) = g∗

η,σ (0).
As an example, taking the derivative with respect to gη,↑
gives

∂SHS

∂gη,↑
= gη,↑

|vη| −
√

T

L3
tr

[
Gk (0)

(
iζηUη,k 0

0 0

)]
= 0. (33)
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Therefore the saddle point equations for gη,σ are given by

∂SHS

∂gη,↑
= gη,↑

|vη| + iζη

√
T

L3

∑
k

(−iω + �k )Uη,k − (ξk + χk )Uη,k

(ξk + χk )2 − (−iω + �k )2 + �1,k�̄2,k
= 0,

∂SHS

∂gη,↓
= gη,↓

|vη| + iζη

√
T

L3

∑
k

(iω − �k )Uη,−k − (ξk + χk )Uη,−k

(ξk + χk )2 − (−iω + �k )2 + �1,k�̄2,k
= 0, (34)

where we used the definitions

�k ≡ �↑,k (0) − �↓,−k (0)

2
; χk ≡ �↑,k (0) + �↓,−k (0)

2
.

These notations coincide with the ones commonly used in
standard Eliashberg theory [6]. Then, using these equations,
we can derive Eliashberg’s equations for the normal (diago-
nal) part of the self-energy, analogously to how it was done in
Sec. III A

�p = T

L3

∑
k

Vp,k (iω − �k )

(ξk + χk )2 − (−iω + �k )2 + �1,k�̄2,k
,

χp = T

L3

∑
k

Vp,k (ξk + χk )

(ξk + χk )2 − (−iω + �k )2 + �1,k�̄2,k
. (35)

Now let us focus on the specific example of Eq. (1).
Following standard approximations used in Eliashberg the-
ory [29], we neglect the dispersion renormalization χk , which
is typically justified in the limit where the Fermi energy is
much larger than the Debye frequency. Moreover, in the case
of the momentum-independent interaction as in Eq. (1), �k

and �i,k become functions of frequency only, so one can
integrate over momentum explicitly to obtain:

gη,↑√
L3T

= −iπNF |vη|ζη

∑
ω

(−iω + �ω )Uη,ω√
�1,ω�̄2,ω − (−iω + �ω )2

,

gη,↓√
L3T

= iπNF |vη|ζη

∑
ω

(−iω + �ω )Uη,−ω√
�1,ω�̄2,ω − (−iω + �ω )2

.

(36)

Time-reversal symmetry, which is assumed to be present
in our system, implies further that gη,↑ = gη,↓, so only odd-
frequency modes, Uη,ω = −Uη,−ω, contribute to gη,σ . It is
equivalent to the statement that the normal part of the self-
energy is odd under frequency, �ω = −�−ω.

The derivatives with respect to fη and f̄η give the same
equations as before, Eqs. (17), with the standard modifications
to the Green’s function, iω → iω − �k and ξk → ξk + χk .
Once again, under the assumptions made above, we integrate
over momenta and obtain

fη√
L3T

= πNF |vη|ζη

∑
ω

�1,ωUη,ω√
�1,ω�̄2,ω − (−iω + �ω )2

,

f̄η√
L3T

= πNF |vη|ζη

∑
ω

�̄2,ωU ∗
η,ω√

�1,ω�̄2,ω − (−iω + �ω )2
.

(37)

Together these equations define the saddle point of the action
including the normal self-energy corrections.

The numerical solution of the saddle-point equations (36)
and (37) is obtained using the gradient descent method de-
scribed in Sec. III B. The result is presented in Fig. 4(c) and
(d). In panel (c), we plot the order parameter �1(0), defined
in Eq. (12), as a function of λ and μ from Eq. (1). Compar-
ing with panel (a), we find that the inclusion of self-energy
corrections is crucial, especially in the limit of large λ. In
particular, it seems to cure the unphysical behavior in this
regime by diminishing Tc to zero at a sufficiently large μ for
all λ. In panel (d), we plot the solution for the order parameters
�(ω) (top panel) and �1(ω) (bottom panel) for λ = 1.3 and
μ = 0.5 [marked by the black asterisk in panel (c)].

V. FLUCTUATIONS AROUND THE SADDLE POINT AND
DERIVATION OF A GL THEORY

We now consider the fluctuations around the saddle point
described in the previous sections, following the line of
Ref. [34]. To capture their contribution one must parametrize
the field’s fluctuation to be along the direction of steepest
descent in the complex plane [31]. Below Tc, the saddle point
is generally located somewhere in the complex plane, which
requires additional care. However, in this work we will mostly
consider the case where T is close to, but higher than Tc. The
saddle-point solution is then trivially zero and is located on
the real axis. Nonetheless, the direction of steepest descent
may still extend into the complex plane.

In the most generic situation, we expand the fields fη rel-
ative to their saddle-point solution given by Eq. (20),3 which
we denote henceforth as f (0)

η :

fη(Q) = f (0)
η + aη(Q) + ibη(Q). (38)

Here aη and bη are complex fluctuations of the fields f ′
η and f ′′

η

in Eqs. (16) and (19), respectively. The corresponding order
parameters in momentum-frequency space, �1 and �̄2, are
also written relative to their saddle-point values

�1,k (Q) − �
(0)
1,k = δ1,k (Q)

=
√

T

L3

∑
η

ζηU ∗
η,k[aη(Q) + ibη(Q)],

�̄2,k (Q) − �̄
(0)
2,k = δ̄2,k (Q)

=
√

T

L3

∑
η

ζηUη,k[aη(Q) − ibη(Q)]. (39)

3We neglect the normal-state self-energy corrections in this section.
However, such corrections can most definitely become important. We
leave their inclusion to future work.
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To obtain the GL theory above Tc, we set f (0)
η = 0 in

Eq. (38). We then expand the action (15) to quadratic order
in fluctuations aη and bη, which yields

S (2)
GL =

∑
Q,η,η′

αT
η (Q)M̂η,η′ (Q)αη′ (Q), (40)

where

M̂η,η′ (Q) = V̂ −1
η,η′ − Ŝη,η′ (Q) (41)

is the fluctuation matrix and αT
η (Q) = [aη(Q), bη(Q)] is the

vector of fluctuation fields. The two matrices composing the
fluctuation matrix in Eq. (41) are given by

V̂ −1
η,η′ = |vη|−1δη,η′

(
1 0
0 1

)
and

Ŝηη′ (Q) = Bη,η′ (Q)

(
1 −i
i 1

)
, (42)

where

Bη,η′ (Q) = ζηζη′
T

L3

∑
k

U ∗
η,kG0(k)G0(−k − Q)Uη′,k,

while G0(k) is defined below Eq. (13). The resulting fluctu-
ation matrix M̂(Q) is a 2Nη × 2Nη matrix, which becomes
non-Hermitian in the presence of repulsion, and Nη is the
number of eigenchannels in Eq. (7). However, only the sym-
metric part of this matrix contributes to the action, as can
be seen from Eq. (40) (for more details see Appendix C).
Thus we can replace the matrix M̂ with its symmetric part
M̂s = (M̂ + M̂T )/2. Consequently, Eq. (40) assumes the form

S (2)
GL =

∑
Q

αT (Q)M̂s(Q)α(Q). (43)

The Autonne-Takagi (AT) factorization [48,49] ensures
that when the fluctuation matrix can be diagonalized, it can
be done using a unitary matrix W , such that the diagonal
elements are real non-negative numbers. Namely, because
the matrix is symmetric, it is diagonalized by an orthogonal
matrix W , M̂s = W T ε̂ W , where

ε̂ = diag(ε1eiφ1 , ε2eiφ2 , . . . , ε2Nη
eiφ2Nη ) (44)

is the diagonal eigenvalue matrix and X = W α is the vector of
fluctuation eigenmodes. We can then multiply this vector by a
diagonal matrix of phases P that counters the phases φ j of the
eigenvalues,

X = P−1X̃ → Xj = e− i
2 φ j X̃ j,

such that W = PW is the AT unitary transformation, while the
diagonalized fluctuation matrix consists of the real absolute
values ε j � 0. Generic values of the phases φ j merely define
the steepest descent direction for the corresponding fields in
the complex plane and should not be associated with mode
dissipation.

However, because the matrix M̂s is non-Hermitian, there
might be points in the parameter space where it becomes
defective in the sense that it cannot be diagonalized. These
points are known as exceptional points [36,37]. In what
follows, we will see that such exceptional points appear

in the field theoretic description of superconductivity when
repulsion is present. These points can be tuned by differ-
ent parameters such as temperature or the center of mass
momentum Q.

Finally, we note that the eigenvalues of the matrix M̂s are
doubly degenerate, which is important to ensure a gauge in-
variant bosonic theory. Let us focus on the eigenvalue with the
smallest absolute value εm and the two corresponding eigen-
modes X̃1 and X̃2. This pair will form the real and imaginary
parts of the Ginzburg-Landau order parameter. Namely,

�(Q) = X̃1(Q) + iX̃2(Q),

where �(Q) is proportional to the conventional Ginzburg-
Landau field. Neglecting quantum fluctuations, we then
perform a spatial gradient expansion and obtain the GL theory

S (2)
GL =

∫
dx
[
εm(0)|�|2 + ε′′

m(0)

2
|(∇ − 2ieA)�|2 + . . .

]
.

(45)

As mentioned above, the values ε j are positive by construc-
tion. The superconducting transition point, which coincides
with Eliashberg’s theory, is obtained when εm(0) = 0. Below
this temperature the analysis we have performed here is no
longer valid and an expansion around the new saddle point
with f (0)

η �= 0 is required.
Equation (45) describes the long wavelength properties

of the superconductor above Tc, and in particular how they
depend on the microscopic parameters of the pairing inter-
action, Eq. (1). To demonstrate this with the implication to
experimental observables, we will focus specifically on the
upper critical field Hc2 (close to Tc)4, which is given by [50]

Hc2 = �0

2πξ 2
GL

(1 − T/Tc), (46)

where �0 = h/2e is the flux quantum and asymptotic behav-
ior of the ratio

ξ 2
GL = ε′′

m(0)

2εm(0)
(1 − T/Tc), T → Tc

is the GL coherence length.
Indeed, within our quadratic approximations, the inclusion

of repulsion in the pairing interaction leads to distinctive
features in the upper critical field, Hc2. In particular, the
eigenvalue controlling the superconducting transition, εm in
Eq. (45), exhibits an exceptional point that is tuned by the
repulsion strength and causes Hc2 to peak at a critical value. In

4In the standard analysis of the Ginzburg-Landau theory the value
of Hc2 close to Tc is obtained by taking the mass term [εm(0) in our
case] to be infinitesimally small and negative. The GL equation then
become equivalent to that of a quantum harmonic oscillator where
−εm(0) plays the role of the positive ground state energy. However,
here εm(0) is positive by construction, since the system is above Tc.
Thus, to extract Hc2 we make the assumption that the slope of the
approach of the eigenvalue εm(0) = r(1 − Tc/T ) is the same on both
sides of the transition and therefore the slope above Tc can indicate
the asymptotic behavior below Tc. Whether this is true remains to be
verified in a future publication where we will derive the GL theory
on the superconducting side of the transition.
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FIG. 6. The ratio between Eq. (46) and Eq. (48) as a function of μ for (a) the toy model, Eq. (47), and (b) Anderson-Morel interaction,
Eq. (1). This quantity is essentially ratio between the linear slope of Hc2 close to Tc relative to the expectation from BCS theory. Note that for
each value of μ Eq. (48) is taken at Tc(μ), which is a monotonically decreasing function of μ. The curvature (i.e., T 2

c
d2Hc2
dT 2 |Tc

) is plotted in the
inset. The Hc2 in these plots has been calculated for λ = 1.6 and ωc = 30ωD. The large value of λ is used to minimize cutoff effects resulting
from the discrete Matsubara sum. We have verified that the results do not change qualitatively for smaller coupling. We note that at λ = 1.6
the gap and Tc depend very weakly on μ when the normal-state self-energy corrections are not taken into account, as shown in Fig. 4. This is
the reason why Hc2 saturates to a finite value at large μ.

what follows, we will demonstrate this feature on two types of
pairing interactions and over a wide parameter range showing
that it is a robust feature of pairing interactions with repulsion.

A. Results for a simplified toy model with two eigenvalues

We first demonstrate the Hc2 calculation from the GL the-
ory given by Eq. (45) on the simple example of a toy model
interaction:

V̂ω,ω′ = λ

NF

[
μ − 1

1 + (ω/ωD)2

1

1 + (ω′/ωD)2

]
. (47)

This interaction is designed to be similar to Eq. (1), and has
the advantage of having only two nonvanishing eigenvalues
vη, one repulsive and one attractive. However, it is clearly not
time-translationally invariant.

The interaction in Eq. (47) does not depend on momentum.
Furthermore, we will only be interested in the static GL free
energy. As a consequence we can compute the fluctuation
matrix analytically (see Appendix C 1).

In Figs. 5(a) and 5(b), we plot the two absolute values
ε j (0) extracted after diagonalization of the fluctuation ma-
trix M̂s(Q), as a function of temperature for two different
values of the repulsion, μ = 0.1 and μ = 0.6, respectively
and λ = 1.6.5 The spectrum is at least doubly degenerate due
to gauge invariance, so the two smaller absolute values are
labeled ε1 and the two larger ones are labeled by ε2. The
former corresponds to the values that vanish at T = Tc, i.e.,
εm in Eq. (45). We also note that there is a temperature T∗,

5This relatively large value of the coupling was chosen to minimize
cutoff effects. The results presented in this section appear also in the
weak coupling limit.

where an exceptional point occurs. This point is manifested by
the coalescence of the eigenvalues (also marked by a dashed
line).6 In Fig. 5(c), we plot Tc and T∗ as a function of the
repulsion strength μ. Note that T∗ � Tc for all μ. Interestingly
however, there is a critical value of the repulsion μc ≈ 0.3
where the two temperatures touch. At this critical value the
matrix is defective at Tc.

In Fig. 6(a), we plot the upper critical field, Eq. (46),
normalized by Gor’kov’s expression for a BCS superconduc-
tor [2]

HBCS
c2 ≈ 24πT 2

c �2
0

7ζ (3)v2
F

(
1 − T

Tc

)
, T → Tc. (48)

Note that Tc appearing here is a function of μ, as shown in
Fig. 5(c). As can be seen, Hc2 is approaching is Gor’kov’s
prediction in the limit of small μ.7 However, upon increasing
μ, Hc2 shows a nonmonotonic behavior, peaking around the
critical value μc before diminishing significantly compared to
the expectation from BCS theory, Eq. (48). The origin of the
peak is the rapid variation of the numbers ε j (Q) with temper-
ature near the exceptional point. That is, they depend strongly
on temperature close to the transition when Tc and T∗ are
close. Interestingly, we find that both the mass term εm(0) and
the second derivative ε′′

m(0) develop singular behavior near μc

6The jumps in the curve are a numerical artifact stemming from the
cutoff ωc. We have smoothed this effect by taking a large cutoff and
by softening the cutoff (see Appendix A 3).

7However, we do not expect the result to become exactly identical
in the limit μ → 0. This is because the result in Eq. (48) is obtained
with a contact interaction with just one eigenvector Uη,k = const with
nonzero eigenvalue, while both models considered in this paper have
nontrivial frequency dependence.
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(i.e., they are nonanalytic in the variable 1 − T/Tc). However,
the ratio in Eq. (46) remains linear, leading to a finite ratio
of Eq. (46) with Eq. (48) in the limit T → Tc. The inset of
Fig. 6(a) displays the curvature of Hc2 as it approaches zero
near Tc. Here it should be noted that we simply compute the
second derivative of ξ−2

GL with respect to temperature. Whether
this gives the correct asymptotic series on the ordered side
of the transition remains to be checked. We find that μc also
marks a transition between positive and negative curvature of
the asymptotic curve.

Above we predicted that Hc2 will sharply peak at a critical
value of the repulsion (assuming this parameter can be tuned
experimentally). However, it should be noted that the approx-
imations used to obtain Hc2 can breakdown in the vicinity
of μc due to a number of reasons. The singular temperature
dependence of both the homogeneous mass term and the
second derivative implies that higher order terms may also
become singular (e.g., the quartic term in the fields or higher
derivatives in the expansion). These higher order terms need to
be carefully compared with the second order terms. Moreover,
the two absolute values controlling the fluctuation matrix ε1,2

correspond to two distinct modes in the GL theory. These are
degenerate at Tc when μ = μc. Thus a multi-mode GL theory
must be employed. However, it should also be noted that at μc

the fluctuation matrix is defective, raising a question regarding
the nature of such modes. We conclude that the inclusion
of these effects in our theory may modify the result for the
upper critical field compared to the quadratic approximation
presented in Fig. 6. For example, they may remove the sharp
peak at μc. We leave such an extensive investigation to a
future publication.

B. Results for the Morel-Anderson interaction

After gaining intuition for the influence of repulsion on the
upper critical field Hc2 using the toy model, Eq. (47), we now
go back to the full Morel-Anderson interaction in Eq. (1). In
Fig. 6(b), we plot the ratio between the asymptotic expressions
in Eqs. (46) and (48) as a function of μ for λ = 1.6 and
neglecting normal-state self-energy corrections. As for the toy
model, the value of Hc2 converges to Eq. (48) in the limit
μ → 0. However, we find that the enhancement of Hc2 near μc

is much more prominent and occurs at a similar value of the
repulsion (but not the same). Moreover, in this model Hc2 does
not decrease in the limit μ → ∞, but seems to saturate at a
value that is roughly twice the prediction of a BCS theory. The
inset shows that the curvature of the asymptotic expression for
Hc2 near Tc also changes sign at μ = μc.

As mentioned, here we have used a large coupling λ = 1.6
to minimize cutoff effects. In this limit, however, the gap
and Tc depend very weakly on μ as long as the normal-state
self-energy corrections are not taken into account, as shown
in Fig. 4(a). This is the reason that Hc2 saturates to a finite
value at large μ. To explore a larger range of the coupling
λ, in Fig. 7, we plot the ratio Hc2/HBCS

c2 on a color map as a
function of both λ and μ. The existence of a critical μc seems
to be a universal feature for all λ.

Thus the behavior in the case of Eq. (1) is quantitatively
different from what we found for Eq. (47), but qualitatively
similar. Namely, in both cases, there exists a temperature

μ

λ

Hc2/HBCS
c2

FIG. 7. The ratio between Eqs. (46) and (48) as a function of μ

and λ for Anderson-Morel interaction, Eq. (1). The enhancement of
Hc2 near μc is robust and remains for a wide range of the value of
λ. The “noisy” feature in the heat map is a numerical artifact and the
consequence of the frequency cutoff (as explained in Appendix A 3).

T∗ where the eigenvalues with smallest absolute value incur
an exceptional point, which bounds Tc from above, T∗ � Tc.
Moreover, in both models there is a critical value μc, where
the two temperatures touch but do not cross, leading to a
peak in Hc2. These results suggest that the existence of a
critical repulsion strength μc is possibly a universal feature
of superconductors with repulsion.

VI. CONCLUSIONS AND DISCUSSION

We developed a field theoretic description for super-
conductors which include repulsive interactions using the
Hubbard-Stratonovich transformation. We first decomposed
the interaction into eigenchannels. Then we performed the
Hubbard-Stratonovich transformation such that repulsive
channels were coupled via an imaginary coupling and attrac-
tive ones via a real coupling. The resulting action was found
to have a saddle point that can be shifted outside the original
field-integration line into the complex plane. The saddle point
was shown to coincide with Eliashberg’s theory and captures
the physics of fluctuations around this solution.

To numerically obtain the saddle-point solution we used
the gradient descent method, which allows us to update the
gap in small increments in the complex plane. This method
outperforms a straightforward iteration of Eliashberg’s equa-
tions when strong repulsion is present. We also incorporated
the normal-state self-energy corrections, which hold a crucial
role in this limit. After obtaining the saddle-point solution
and understanding its properties, we proceeded to discuss
fluctuations of the order parameter around this solution. We
demonstrated how to derive a theory capturing such fluctu-
ations for the temperature range above and close to Tc (the
Ginzburg-Landau theory). The matrix controlling the Gaus-
sian fluctuations about the saddle point was found to be
non-Hermitian due to the presence of repulsive interaction,
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and the directions of fluctuations in the complex plane were
chosen according to the steepest descent method. We applied
this theory to calculate the dependence of the upper critical
field on the repulsion strength close to Tc for two types of
pairing interactions.

The first type was a toy model interaction that has only
two nonzero eigenvalues, one repulsive and one attractive. The
second example was the Morel-Anderson interaction given by
Eq. (1). In both cases, we found that the fluctuation matrix
has a temperature T∗, where it has an exceptional point and
hence cannot be diagonalized. This temperature is found to be
always greater or equal to Tc. Interestingly, in both models
there exists a critical value of the repulsion μc such that
these two temperatures coalesce. The linear slope of Hc2 as
a function of temperature close to Tc was computed in both
cases. Within the quadratic approximation, Hc2 was found to
peak at the critical value of repulsion μc due to the existence
of the exceptional point. However, we have also cautioned
that our approximations can breakdown near μc due to a
number of reasons. Consequently, analysis that goes beyond
Gaussian approximation is required to understand if the peak
is a real physical effect. Such analysis is beyond the scope of
the current paper.

Our results are important for a number of reasons. For
example, they may play a role in obtaining a more accurate
and efficient numerical solution of Eliashberg’s equations in
the presence of strong Coulomb repulsion. Thus it will be
interesting to explore whether it can bring any advantage to
ab initio techniques applied to Eliashberg theory [29,51,52].

Regarding the physical implications of our theory, we have
made concrete experimental predictions for the dependence of
Hc2 on the repulsion strength. In particular, we predicted that
when the Coulomb repulsion strength is tuned, an exceptional
point in the fluctuation matrix can be manipulated to cause
the slope of Hc2 near Tc to strongly peak. Such a prediction
can be tested in experiments by looking at the thickness de-
pendence of the upper critical field in thin films [53] or by
directly controlling the screening of Coulomb repulsion in
two-dimensional superconductors using screening gates [54].

Our theory also applies to pairing interactions which com-
pose of both attractive and repulsive channels in momentum
space. Examples include the Kohn-Luttinger mechanism [38]
or systems with momentum-dependent orbital hybridiza-
tion [43,55]. In particular, when space group symmetries are
broken, different channels mix, thus coupling repulsive and
attractive channels. Such symmetry breaking can come from
the underlying lattice or from the expansion in momentum
when considering collective modes. Moreover, the nonlinear
form of the saddle-point equations implies that the effect of
repulsive channels cannot be neglected even when symmetries
are conserved. Namely, the repulsive channels feed into the
attractive ones, and vice versa, at nonlinear order. We thus
conclude that the existence of repulsive channels, which divert
the saddle point into the complex plane, is a generic feature for
both temporal and spatial decomposition of a realistic pairing
interaction.

The eigenchannel decomposition picture also raises ques-
tions regarding the instability of a Fermi surfaces at zero
temperature. According to Kohn-Luttinger theory all Fermi
surfaces are unstable to superconductivity at a sufficiently low

temperature when time-reversal symmetry is present. How-
ever, in the case of the Morel-Anderson interaction, Eq. (1),
we find that repulsion can prevent an s-wave superconduct-
ing instability at zero temperature if the repulsion is strong
enough. The reason for the absence of an instability is that
the repulsive and attractive (frequency) channels are coupled
[as shown by Eq. (20)]. This raises the question whether the
Kohn-Luttinger effect can be prevented, even at zero tem-
perature, if all spatial symmetries except for translations are
broken such that repulsive and attractive (momentum) chan-
nels are mixed.

Finally, we conclude with a note. In a recent study,
the authors of Ref. [56] have shown that by extending
the path integral of a frustrated spin ladder into a gen-
eralized complex plane they can significantly improve the
convergence of determinant quantum Monte Carlo (DQMC)
simulations with a sign problem. We find an interesting con-
nection between this approach and ours, which may open a
path to exact numerical simulation of superconductors with
repulsion.
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APPENDIX A: DETAILS OF THE NUMERICAL
CALCULATIONS

In this section, we elaborate on the numerical calculations
performed in this manuscript. The parameters used in the
numerical calculations are summarized in Table I.

1. Saddle-point solution using the gradient descent method

To obtain the saddle point within the “gradient descent”
method we employ Eqs. (23), where we descend the action
with respect to fη. The solution is obtained by guessing an
initial ansatz, and then consequently updating it at each step
according to Eqs. (23). We choose a uniform ansatz fη = f̄η =
0.2ωD. The procedure depends on the step size eη. The most
straightforward method would be to choose a fixed step size,
e.g., eη = 0.1. However, a more efficient method is to choose

TABLE I. List of parameters used in different calculations

Saddle-point solution (GL) Meaning

ωD 1(1) Debye frequency
ωc 10ωD(30ωD ) Cutoff frequency
ηc 30(30) Cutoff η

eη 0.1 Step size for gradient descent
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the step size dynamically based on the second derivative using
the Barzilai-Borwein method [57].

The algorithm’s stopping criterion was defined according
to the mean difference between successive steps. Namely, we
defined convergence to be the point where the sum

∑
ω

∣∣∣∣�i+1(ω) − �i(ω)

�i(ω)

∣∣∣∣ < 0.001, (A1)

i.e., dropped below 0.1%.
Additionally, we truncate the number of eigenchannels

used in the minimization procedure, η < ηc. As seen in Fig. 1,
the weight of the eigenvlaues for the interaction in Eq. (1)
decays exponentially with η, allowing us to obtain accurate
results with only ηc = 30 channels.

2. Solution of Eliashberg’s gap equation using
the iterative method

The most straightforward way to solve the nonlinear
Eliashberg equation is by the method of iteration [29]. Using
Eqs. (21), we can write a self-consistency equation of the form
�(ω) = F [�(ω′)], where F is the nonlinear Eliashberg oper-
ator. The iteration method is used by employing the relation

�i+1(ω) = F [�i(ω)] (A2)

iteratively starting from a uniform ansatz �(ω) = 0.2ωD. By
iterating the equation we typically obtain convergence quickly
for small μ, where convergence is determined by Eq. (A1).

3. The frequency cutoff

The Matsubara sums performed in this paper were im-
plemented in one of two manners. The first one is a “hard”
high-frequency cutoff, i.e., N = �ωC/2πT − 1/2�. This cut-
off introduces a numerical complication that happens as we
tune the temperature. Namely, as temperature is such that
ωc/2πT − 1/2 is an integer, the number of frequencies in
the sum changes abruptly. This is the origin of the “staircase”
artifact seen, for example, in Fig. 5(a) and 5(b). In order to
mitigate this effect in the calculations of Figs. 6 and 7, we
used a “soft” cutoff, which smoothly reduces the weight of
frequency tail. The weight of each frequency is then deter-
mined by

n(ω) = nFD(ω − ωc), (A3)

where nFD(x) = (exp[x/Teff ] + 1)−1 is the Fermi-Dirac distri-
bution, and Teff is the effective width taken to be Teff = 10πTc.

APPENDIX B: ON THE ACCURACY OF GAP
CALCULATIONS WITH A TRUNCATED INTERACTION

The eigenvalue decomposition of the interaction introduces
a natural scheme for a controlled approximate method that
speeds up numerical calculations. Namely, by truncating the
number of eigen channels we keep in the calculation we can
control the size of the matrices and the number of fields that
need to be determined:

{ fη}Nη

η=1 → { fη}ηc
η=1,

where Nη denotes the full number of eigenvalues before trun-
cation. In this section we will explore the influence of such a
truncation. To this end, we consider the interaction in Eq. (1)
in the limit where there is no repulsion (μ = 0):

V̂ (ω − ω′) = − λ

NF

ω2
D

(ω − ω′)2 + ω2
D

. (B1)

Because there are no repulsive eigenchannels in the inter-
action, one may write f̄η = f ∗

η , and it is sufficient to solve the
self-consistent equation for just one of the two fields:

fη√
T

= −πvη

∑
ω

�ωUω,η√
ω2 + |�ω|2

, (B2)

where

�ω ≡
√

T
ηc∑

η=1

fηU ∗
η,ω,

and we have limited the number of fields to ηc.
The solution at ω = 0 as a function of temperature for

different cutoff values ηc with λ = 0.67 is shown in Fig. 8(a).
These plots are compared with a straightforward solution of
the Eliashberg equation. We find that the solution of Eq. (B2)
continuously converges to the Eliashberg solution as ηc is
increased.

In Fig. 8(b), we plot the relative error between these two
solutions as a function of ηc. The error decays exponentially
and falls below 5% at ηc ≈ 20. We can understand this be-
havior by noting that the eigenvalues of the interaction vη

decay exponentially at the same typical scale (see for example
Fig. 1). Thus we conclude that when the eigenvalues decay
exponentially with η we can use the truncation method to
accelerate calculations.

APPENDIX C: COMPUTATION OF THE FLUCTUATION
MATRIX

Here we elaborate on the expansion of the action in
Eq. (15) in fluctuations about the saddle point (Sec. V):

fη(Q) = f (0)
η + aη(Q) + ibη(Q),

where aη and bη parametrize the fluctuations and, in general,
can be complex themselves. In this paper we consider the
expansion above Tc, so we set f (0)

η = 0. The quadratic term
of the action (15) gives

f̄η(Q) fη(Q)

|vη| =a2
η(Q) + b2

η(Q)

|vη| ,

while the tr ln part is expanded as follows:

tr ln G−1
k (Q) ≈ tr ln Ĝ

−1
k − 1

2 tr Ĝk�̂k (Q)Ĝk+Q�̂k+Q(−Q)

= S0 + G0(−k − Q)G0(k)�1,k (Q)�̄2,k (Q),
(C1)

where we defined

Ĝk =
(

G0(k) 0

0 −G0(−k)

)
(C2)
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Iterating Eliashberg

2πT/ωD

(a)

ηc

(b)

Δ
(0
)/
ω
D

FIG. 8. Eigenfunction method for a purely attractive BCS interaction V (ω − ω′) = −V0ω
2
D/[(ω − ω′)2 + ω2

D]. (a) The saddle-point solu-
tion, �(0), as a function of temperature, for different values of the eigenvalues cutoff ηc. Comparison between eigenvalue method and iterating
Eliashberg solution. (b) The relative error as a function of ηc.

and

�̂k (Q) =
(

0 �1,k (Q)

�̄2,k+Q(−Q) 0

)
, (C3)

such that G−1
k (Q) = Ĝ

−1
k δQ,0 − �̂k (Q). The relation between

�i,k (Q) and fields aη(Q), bη(Q) is given by Eq. (39) with
�

(0)
i,k = 0, and summation over frequencies/momenta k and

Q in Eq. (C1) is implied. Note that normal-state self-energy
corrections discussed in Sec. IV can be straightforwardly in-
corporated by adding them to the bare Green’s functions G0.

The resulting action to second order in the fluctuations then
assumes the form

S (2)
GL =

∑
Q

αT (Q)M̂(Q)α(Q), (C4)

where

M̂(Q) = V̂ −1 − Ŝ(Q) (C5)

is the fluctuation matrix and αT (Q) = [aη(Q), bη(Q)] is a
vector with dimension 2Nη, where Nη is the number of eigen-
channels in Eq. (9). The matrices

[V̂ −1]η,η′ = |vη|−1δη,η′

(
1 0
0 1

)

and

Ŝηη′ (Q) = Bη,η′ (Q)

(
1 −i
i 1

)
(C6)

are 2Nη × 2Nη matrices, where

Bη,η′ (Q) = ζηζη′
T

L3

∑
k

U ∗
η,kG0(k)G0(−k − Q)Uη′,k . (C7)

Finally, we note that the quadratic form in Eq. (C4) is
symmetric, consequently, only the symmetric part of M̂(Q)
contributes:

αT (Q)M̂(Q)α(Q) = αT (Q)M̂s(Q)α(Q),

where (assuming that U ∗
η,k = Uη,k)

M̂s(Q) = M̂(Q) + M̂T (Q)

2

=
(

δη,η′

|vη| − Bη,η′ (Q)

)(
1 0
0 1

)
. (C8)

1. Analytic calculation of pairing susceptibility

Here we compute the matrix elements Bη,η′ (|Q|) defined
in Eq. (C7). We only consider the dependence of the matrix
elements on momentum |Q| because we focus on the time-
independent (i.e., zero-frequency) Ginzburg-Landau theory in
Eq. (45). In this case the superconducting susceptibility is
given by

χω(|Q|) = 1

L3

∑
k

G0(k)G0(−k − Q) =
∫

d3k

(2π )3

1

−iω + ξk

1

iω + ξ−k−Q
, (C9)

where we used that Q = {0, Q}. Assuming that ξ−k = ξk and |Q| � |k| ≈ kF , where kF is the Fermi momentum, we can expand
ξk+Q ≈ ξk + vF |Q| cos θ, where vF is the Fermi velocity and θ is the angle between vectors k and Q. Then, changing integration
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variable from k to ξk and θ , we obtain

χω(|Q|) ≈ NF

2

∫ 1

−1
dx
∫ ∞

−∞
dξ

1

−iω + ξ
· 1

iω + ξ + vF |Q|x = iNF π sign(ω)

vF |Q|
∫ 1

−1

dx

x + 2iω
vF |Q|

= iNF π sign(ω)

vF |Q| ln
2iω + vF |Q|
2iω − vF |Q| = 2πNF

vF |Q| arctan

(
vF |Q|
2|ω|

)
, (C10)

where NF is the density of states per spin at the Fermi level, and we introduced a new integration variable x = cos θ . Since our
interaction depends on frequency only and we are interested in the static limit, this expression can further be used in Eq. (C7):

Bη,η′ (|Q|) = ζηζη′T
∑

ω

U ∗
η,ωUη′,ωχω(|Q|). (C11)

2. Toy model

In the main text, we made use of a simplified model with
the interaction

V̂ω,ω′ = λ

NF

[
μ − 1

1 + (ω/ωD)2

1

1 + (ω′/ωD)2

]
. (C12)

The advantage of this interaction is that it has only two
nonzero eigenvalues, one of which is positive and one is
negative. Moreover, the interaction can be diagonalized an-
alytically for any value of the cutoff. To demonstrate how
the decomposition works, we can write the interaction in the
following basis:

V̂ = λ

NF
(μ|1〉〈1| − |�〉〈�|), (C13)

where |1〉 is a vector with all its components equal to 1
and |�〉 is a Lorentzian vector in ω space, i.e., 〈ω|�〉 =
1/(1 + ω2/ω2

D).8 To construct an orthonormal basis we em-
ploy the Gram-Schmidt process:

|ψ1〉 = 1√
Nω

|1〉,

|ψ2〉 = 1√
A

(|�〉 − |ψ1〉〈ψ1|�〉), (C14)

where Nω = ωc/πT is the number of Matsubara frequencies
bellow the cutoff, and A = 〈�|�〉 − |〈�|ψ1〉|2 is a factor that
ensures proper normalization of |ψ2〉, 〈ψ2|ψ2〉 = 1. Addition-
ally, we define the projection

〈ψ1|�〉 = 1√
Nω

ωc∑
ω=−ωc

1

1 + (ω/ωD)2
≡
√

N�. (C15)

In the limit T � ωD � ωc that we consider in this paper,
the sum can be replaced by an integral, and we find

〈ψ1|�〉 ≈ 1

2πT
√

Nω

∫ ∞

−∞

dω

1 + ω2/ω2
D

= ωD

2T
√

Nω

,

〈�|�〉 ≈ 1

2πT

∫ ∞

−∞

dω(
1 + ω2/ω2

D

)2 = ωD

4T
, (C16)

such that A ≈ (ωD/4T )(1 − 2/
√

Nω ) ≈ (ωD/4T ).

8Here {|ω〉}ωc
ω=−ωc

denotes an orthonormal set of states which are
local in Matsubara space, such that 〈ω′|ω〉 = δω,ω′ .

In the general case, we can write the interaction in the basis
of |ψ1〉 and |ψ2〉:

V̂ = λ

NF

(
Nωμ − N� −√

AN�

−√
AN� −A

)
. (C17)

Diagonalizing the matrix in Eq. (C17), we obtain the eigen-
values

v± = λ

NF

[
Nωμ − N� − A

2
±
√

(Nωμ − N� + A)2

4
+ N�A

]

(C18)

and eigenvectors

U+ =
(

cos θ/2

sin θ/2

)
, U− =

(
− sin θ/2

cos θ/2

)
, (C19)

where we define

cos θ = Nωμ − N� + A√
(Nωμ − N� + A)2 + 4N�A

,

sin θ = − 2
√

N�A√
(Nωμ − N� + A)2 + 4N�A

. (C20)

The eigenvectors U± are plotted in Fig. 9.
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FIG. 9. The toy model interaction’s eigenvectors, Eqs. (C19)
and (C20), for λ = 1, μ = 1, and ωc = 30ωD.
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Now we turn to derive the GL theory for this model (as
described in Sec. V). The symmetrized fluctuation matrix
assumes the form

M̂s =

⎛
⎜⎜⎜⎜⎝

m− 0 im± 0

0 m− 0 im±
im± 0 m+ 0

0 im± 0 m+

⎞
⎟⎟⎟⎟⎠, (C21)

where the diagonal terms are

m−(|Q|) = |v−|−1 − T
∑

ω

U ∗
−,ωU−,ωχω(|Q|),

m+(|Q|) = |v+|−1 + T
∑

ω

U ∗
+,ωU+,ωχω(|Q|),

and the off-diagonal elements are

m±(|Q|) = −T
∑

ω

U ∗
−,ωU+,ωχω(|Q|).

Diagonalizing this matrix analytically results in two distinct
doubly degenerate eigenvalues:

ε̂1,2 = m− + m+
2

±
√

(m− − m+)2 − 4m2±
2

. (C22)

The exceptional points are given by the condition
(m− − m+)2 = 4m2

±, where the two eigenvalues coalesce and
the square root changes its value from purely real to purely
imaginary. As a result, the matrix becomes nondiagonalizable
at these points. In the region (m− − m+)2 < 4m2

±, the two
eigenvalues are complex conjugates of each other, ε̂1 = ε̂∗

2 ,
so their absolute values are equal, ε1 = |ε̂1| = |ε̂2| = ε2, as is
shown in Fig. 5.
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