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Design of Josephson diode based on magnetic impurity
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We theoretically propose a mechanism to realize the superconducting diode effect (SDE): The current can
generate a magnetic field, affecting the magnetic moment of magnetic impurity. When the connection region
of the Josephson junction is coupled with the magnetic impurity, the supercurrents in positive and negative
directions have different influences on the magnetic moment. This results in a phenomenon that the critical
supercurrents in these opposite directions are unequal, which is called SDE. We model the Josephson connection
region by a quantum dot. Then the critical supercurrents are investigated by the nonequilibrium Green’s function
method, and we carry out a detailed symmetry analysis on the supercurrent relations. The calculation results
confirm that the SDE does exist in this system. In addition, the SDE is significant in a wide parameter space
and can be effectively adjusted in various ways. Our design only demands a magnetic impurity and conventional
superconductors. The unconventional finite-momentum Cooper pair and spin-orbit coupling are not required, and
there is also no need for the existence of chirality or an external magnetic field. Our work provides a universal
device structure for the development of superconducting electronics.
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I. INTRODUCTION

As one of the most commonly used components in modern
electronic technologies, semiconductor diodes play a signifi-
cant role in the fields of computation and electronic devices.
This is due to their characteristics of having high resistance
in one direction and low resistance in the opposite direc-
tion. However, heat generation and energy dissipation are
inevitable in the traditional semiconductor diode due to the
presence of nonzero resistance. To fabricate faster and more
energy-efficient devices, scientists have proposed the research
goal of achieving the superconducting diode effect (SDE)
[1–32], which have unidirectional nondissipative transport
and zero resistance in a single direction. In addition, SDEs
also lead the development of direction-selective quantum sen-
sors and superconducting quantum computing qubits [9,19].

Currently, the realization of the bulk SDE usually relies
on unconventional superconducting properties. By utiliz-
ing the so-called magnetochiral anisotropy effect [33–37],
the SDE can be achieved by applying a magnetic field to
superconductors with spin-orbit coupling [1,2,11–16]. Theo-
retically, the combination of spin-orbit coupling and magnetic
field can cause a finite Cooper pair momentum, which is
regarded as the origin of the bulk SDE [4–6,11–17]. In ad-
dition to bulk superconductors, SDEs can also be achieved
in Josephson junctions [5–10,18–32], which are also called
Josephson diodes. Theoretical works have calculated anoma-
lous current-superconducting phase relationships when the
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spin-orbit coupling and magnetism both exist in the con-
nection region of the Josephson junction, from which the
phenomenon of unequal critical currents in opposite di-
rections can be seen. Here, the connection region can be
quantum dots [20,21], nanowires [22], metals [23], topolog-
ical insulators [24], and two-dimensional electron gases [25].
Furthermore, the Josephson diode effect can also be realized
by constructing asymmetric superconducting quantum inter-
ference devices (SQUIDs) [28,29], using chiral material as
the connection region [30], or utilizing the valley polarization
[31]. In addition, the Josephson diode effects have also been
successfully implemented in experiments [5–10].

At present, the main scheme for realizing the SDE almost
depends on the finite Cooper pair momentum, strong spin-
orbit coupling, magnetic field, chirality, and so on. However,
these special requirements will limit the practical application
range of the superconducting diodes. Therefore, researchers
are still looking for more applicable superconducting diodes,
e.g., the field-free superconducting diodes [3,4,7,9]. Very re-
cently, it was found that the SDE can even be induced by a
magnetic atom: Trahms et al. experimentally observed both
the direction-dependent critical current and retrapping current
in a Josephson junction connected by a magnetic atom [10].
They focus on the nonreciprocal retrapping current, which
was understood by the asymmetric quasiparticle tunneling
spectra of Yu-Shiba-Rusinov states [10,32]. However, the crit-
ical current, corresponding to the current-phase relation, is
rather vague in the mechanism. How do magnetic atoms cause
Josephson diodes? The principle behind it should be able to
universally guide the future studies on Josephson diode.

In this paper, we theoretically propose a concise and gen-
eral Josephson diode device based on magnetic atoms: a
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Josephson junction with its connection region coupled to a
magnetic impurity. When a supercurrent flows through the
Josephson junction, a magnetic field is generated, which, in
turn, affects the magnetic moment of magnetic impurity. Be-
cause the currents in opposite directions have different effects
on the magnetic moment, the critical currents in these opposite
directions are unequal, and the SDE can be achieved. Using
the nonequilibrium Green’s function method, we calculate the
Josephson current of the system and confirm the existence
of SDE. We systematically study the influence of system’s
parameters on the superconducting diode efficiency, such as
magnetic moment, coupling strength, and energy level. We
also carry out a detailed symmetry analysis on the current
relations. The results show that the SDE does exist and is
significant in a wide range of parameters, where the efficiency
can reach 0.5. The SDE can be regulated by controlling gate
voltage, coupling strength, and so on. Although our proposal
is more for fundamental physical content than mature indus-
trial applications, the idea and mechanism is different with
the following advantages. First, the finite-momentum Cooper
pairs in unconventional superconductors are not required and
the SDE can just be realized by conventional s-wave super-
conductors. Second, the spin-orbit coupling, as a key factor
of numerous researches on SDE, is not required in our de-
sign. Third, there is no need for an external magnetic field
or chirality. Therefore, our proposal has high practicability
and gives an alternative perspective on the construction of
superconducting circuits, especially for the urgent nanoscale
three-terminal superconducting devices that can directly re-
duce thermal dissipation in logic circuits [38].

The rest of this paper is organized as follows. In Sec. II, we
present the model Hamiltonian of our Josephson diode device
and show the method to calculate the Josephson current. In
Sec. III, we confirm the SDE by calculation and explain its
underlying mechanism. In Sec. IV, we systematically study
the regulation of various parameters on the SDE. Finally,
discussion and a conclusion are given in Sec. V.

II. MODEL AND FORMULA

The proposed Josephson diode device consists of two su-
perconductor leads with their connection region coupled to
a magnetic impurity, as shown in Fig. 1(a). For simplicity,
we use a single-level quantum dot (QD) to represent the
connection region between the two superconductor leads. The
general Hamiltonian can be written as [39–41]

H =
∑

β=L,R

Hβ + Hmid + Ht , (1)

where Hβ (β = L, R) is the Hamiltonian of the left or right
superconductor lead, Hmid describes the central QD and the
magnetic impurity, Ht describes the coupling between QD
and superconductors, as well as the coupling between QD
and the magnetic impurity. Hβ , Hmid, and Ht are expressed,
respectively, as

Hβ =
∑
kσ

εkC
†
β,kσ

Cβ,kσ

+
∑

k

(�eiφβC†
β,−k↑C†

β,k↓ + H.c.), (2)

FIG. 1. (a) The schematic diagram of the Josephson diode model,
which consists of two superconductor leads and a connection region
(modelled by a QD) coupling to the magnetic impurity. The magnetic
fields generated by the positive and negative supercurrents I and
−I have different effects on the magnetic moment of the magnetic
impurity, resulting in the SDE. (b) The blue and red curves are the
plots of the supercurrent I-effective magnetic moment M̃z relations
under the superconducting phase difference φ and −φ, respectively.
The yellow line represents I = (M̃z − Mz )/α from the relation M̃z =
Mz + αI . The intersections of the yellow line with the blue curve
and the red curve are the self-consistently calculated currents under
the phase difference φ and −φ, respectively. The combined effect
of Mz and α leads to the result that I (−φ) �= −I (φ). (c, d) The
energy distribution diagram of the integrand i(ε) of the supercurrent
with M̃z = 0.1, 0.5, respectively. The dashed lines mark the source
of the currents corresponding to (b) with φ and −φ. Parameters:
(b)–(d) εD = εM = 0, tc = 1. (b) φ = 0.5π .

Hmid =
∑

σ

εDd†
σ dσ +

∑
σ

(a†
↑a†

↓)(εM + M̃ · �σ )

(
a↑
a↓

)
, (3)

Ht =
⎛⎝∑

k,σ

tsC
†
L,kσ

dσ + tsC
†
R,kσ

dσ + H.c.

⎞⎠
+

∑
σ

tc(d†
σ aσ + H.c.). (4)

Here C†
β,kσ

, d†
σ , and a†

σ (Cβ,kσ , dσ , and aσ ) are the creation
(annihilation) operators of electrons in the superconductors,
QD, and magnetic impurity, respectively. σ =↑, ↓ represents
the spin, �σ = (σx, σy, σz ) is the Pauli matrices in spin space,
� is the superconducting gap, and φβ is the superconducting
phase of the β side. We set φL = 0, φR = φ with a phase
difference φ. εD, and εM are the energy levels of QD and
magnetic impurity, respectively. ts and tc are the coupling
strength between QD and superconductors, and the coupling
strength between QD and the magnetic impurity, respectively.

214519-2



DESIGN OF JOSEPHSON DIODE BASED ON MAGNETIC … PHYSICAL REVIEW B 108, 214519 (2023)

M̃ represents the Zeeman splitting from the magnetic mo-
ment of magnetic impurity. Because all the other terms in
the Hamiltonian are independent of the choice of spin quan-
tization axis, we can set M̃ = (0, 0, M̃z ) being along the z
direction. When the Josephson current I flows along the x
direction, a magnetic field in the z direction is induced around
the magnetic impurity, which will affect the magnetic moment
M̃z. We assume the magnetic moment M̃z = Mz + αI , where
Mz is the intrinsic magnetic moment of the magnetic impurity
at zero current and the term αI is the extra magnetic moment
from the Josephson supercurrent I . Here the extra magnetic
moment is proportional to the current with the coefficient α,
of which the value will be discussed in Sec. IV. The current
I can be calculated via the Hamiltonian. Since I , in turn,
influences the Hamiltonian, the value of I should be calculated
self-consistently.

The Josephson supercurrent can be calculated from the
evolution of the particle number operator of the electrons in
the left superconductor [42]

I = −e

〈
d

dt

∑
kσ

C†
L,kσ

CL,kσ

〉

= 2e

h̄
{Re[ tsG

<
DL,11(t, t )] + Re[ tsG

<
DL,22(t, t )]}, (5)

where G<
DL,11(t, t ) and G<

DL,22(t, t ) are the (1,1) and (2,2)
elements of the lesser Green’s function G<

DL. This is defined
in the Bogoliubov–de Gennes (BdG) representation as [40]

G<
DL(t, t ) = i

∑
k

〈〈⎛⎜⎜⎜⎝
C†

k↑(t )
C†

k↓(t )
C−k↑(t )
C−k↓(t )

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣(d↑(t )d↓(t )d†

↑(t )d†
↓(t ))

〉〉
.

(6)

The Green’s function can be transformed into the energy space
via a Fourier transformation: G<

DL(t, t ) = ∫
dε
2π

G<
DL(ε), and

the Josephson current is written as an integral equation

I =
∫

dε i(ε), (7)

in which i(ε) is the integrand of the current in the energy space
with

i(ε) = e

π h̄
{Re[ tsG

<
DL,11(ε)] + Re[ tsG

<
DL,22(ε)]}. (8)

G<
DL(ε) is an element of the total Green’s function G<(ε).

Due to the Josephson junction being in the equilibrium with
zero bias, the Green’s function G<(ε) can be obtained by the
fluctuation-dissipation theorem

G<(ε) = − f (ε)[Gr (ε) − Ga(ε)], (9)

with f (ε) the Fermi distribution. Gr (ε) and Ga(ε) are the re-
tarded and advanced Green’s functions and Ga(ε) = [Gr (ε)]†.
In addition, Gr is defined in the space spanned by four regions:
the left superconductor (L), the right superconductor (R), the
central QD (D), and the magnetic impurity (M)

Gr =

⎛⎜⎜⎝
Gr

LL Gr
LR Gr

LD Gr
LM

Gr
RL Gr

RR Gr
RD Gr

RM
Gr

DL Gr
DR Gr

DD Gr
DM

Gr
ML Gr

MR Gr
MD Gr

MM

⎞⎟⎟⎠, (10)

where each element is a 4 × 4 matrix in the spin space and
particle-hole space under the BdG representation, similar to
Eq. (6). The retarded Green’s function Gr can be solved by
the Dyson equation

Gr = gr + gr
rGr, (11)

in which the self-energy 
r is given by


r =

⎛⎜⎜⎝
0 0 VL 0
0 0 VR 0

V †
L V †

R 0 V †
M

0 0 VM 0

⎞⎟⎟⎠. (12)

Here VL, VR, and VM represent the coupling matrices of QD
with left superconductor, right superconductor, and magnetic
impurity, respectively. They are written as

VL(R) = diag(ts, ts,−ts,−ts),VM = diag(tc, tc,−tc,−tc),
(13)

where ts and tc are the coupling strength in the Hamiltonian in
Eq. (4). gr in Eq. (11) is the retarded Green’s function of the
system without coupling between the superconductors, QD,
and magnetic impurity [42]

gr = diag
(
gr

LL, gr
RR, gr

DD, gr
MM

)
. (14)

The Green’s functions of the isolated superconductors are
expressed as

gr
LL(RR) = −iπργ (ε)

×

⎛⎜⎜⎝
1 0 0 �

ε
eiφL(R)

0 1 −�
ε

eiφL(R) 0
0 −�

ε
e−iφL(R) 1 0

�
ε

e−iφL(R) 0 0 1

⎞⎟⎟⎠,

(15)

where ρ is the normal density of states of the superconductors
and it is a constant by using a wide-band approximation. γ (ε)
can be obtained as [41,43]

γ (ε) = |ε|√
ε2 − �2

, |ε| > �,

γ (ε) = −iε√
�2 − ε2

, |ε| < �.
(16)

For the isolated QD and magnetic impurity, the Green’s
functions are solved as

gr
DD = diag

(
1

ε − εD + iδ
,

1

ε − εD + iδ
,

1

ε + εD + iδ
,

1

ε + εD + iδ

)
, (17)
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gr
MM =

⎛⎜⎜⎜⎝
1

ε−εM−(Mz+αI )+iδ 0 0 0
0 1

ε−εM+(Mz+αI )+iδ 0 0
0 0 1

ε+εM+(Mz+αI )+iδ 0
0 0 0 1

ε+εM−(Mz+αI )+iδ

⎞⎟⎟⎟⎠, (18)

where δ is a small quantity that prevents the divergence of the
Green’s function. With gr and �r given, Gr (ε) is obtained and
G<

DL(ε) can be solved through Eqs. (9) and (11). Then they are
substituted into Eq. (8) to obtain the integrand of current. By
the integration in Eq. (7), the current is calculated.

Outside the superconducting gap, the integrand i(ε) of
Josephson current is continuously distributed and the current
is called continuous current. Inside the energy gap, i(ε) is
discretely distributed around the energy of the Andreev bound
states and it is called the discrete current [44–47]. The magni-
tude of the discrete current is approximately [49] proportional
to the derivative of the energy Ei of the Andreev bound state
with respect to the phase: Idis ∝ ∑

i f (Ei )
∂Ei
∂φ

[45–47]. The
total current consists of discrete and continuous currents, but
is mainly contributed to by the discrete current [45–47]. We
use the linewidth function � = 2πρt2

s to describe the coupling
strength between the central QD and the superconductors.

In this paper, we set � = e = h̄ = 1, � = 5, and at zero
temperature, thus the units of energy and current are chosen
as � and e�/h̄. The transition temperature for many con-
ventional superconductors are several Kelvins, for example,
Tc = 7K for Pb [48], which corresponds to a superconducting
gap � = 1 meV. Then the unit of current e�/h̄ is calculated
to be approximately 240 nA. All the current calculated in
this paper need to be multiplied by this unit. In our calcu-
lation results, the critical current is in the order of 0.5e�/h̄,
corresponding to 120 nA. Although the current is not large,

FIG. 2. (a) The Josephson current I-superconducting phase dif-
ference φ relations for various parameters are represented by the
solid lines. The dashed horizontal lines are I = −Ic+, with Ic+ the
maxima of the current I . (b)–(d) The energy distribution of the
integrand i(ε) of the current under the corresponding parameters in
(a). Other parameters are set as εD = 0, tc = 1, α = 0.2.

the present experimental techniques can sufficiently measure
and distinguish it [6,10]. The imaginary part of the energy is
mostly taken as δ = 0.02. The only exception is that when
showing the distribution i(ε), we choose δ = 0.05 to make the
plot of Andreev bound states clearer [see Figs. 1(c), 1(d), 2(b)
to 2(d)].

III. APPEARANCE OF SDE

As one can see, the Josephson supercurrent I is derived
from the Hamiltonian, meanwhile in Eq. (3) the current I leads
to an effective Zeeman term M̃z = Mz + αI to the Hamil-
tonian. The magnetic moment of the magnetic impurity is
Mz + αI0 for the positive current I = I0, while the magnetic
moment is Mz − αI0 for the negative current I = −I0. We can
qualitatively notice that the positive and negative Josephson
supercurrents have different effects on the magnetic moment
and Hamiltonian, resulting in the difference of the current val-
ues in the positive and negative directions after self-consistent
calculation.

Based on Ginsburg-Landau theory, the nonreciprocal cur-
rent can be illustrated in a clearer way: In a Josephson
junction, the superconducting order parameter can enter from
both sides of superconductors to the connecting region,
where their coupling provides the possibility of the Cooper
pair tunneling. The coupling between magnetic impurity and
connecting region introduces a new scattering pathway for
superconducting order parameter. Thus, the amplitude and
phase of order parameter, and the effective coupling between
two superconductors are regulated by the effective magnetic
moment M̃z = Mz + αI . Because a positive current and a
negative current lead to different values of M̃z, in turn, the
regulation effect from magnetic moment on superconducting
coupling is different for opposite currents. Thus, the supercur-
rent is nonreciprocal with Ic+ �= |Ic−|.

Next, we give a quantitative explanation. For a given phase
difference φ, although the relation of the Josephson super-
current I with respect to Mz is not intuitive, the relation of
I with respect to M̃z is definite, see the blue curve in Fig. 1(b).
By combining the curve I − M̃z with the line M̃z = Mz + αI
[equivalent to I = (M̃z − Mz )/α], the current I (φ) under the
given phase difference φ can be self-consistently solved. In
fact, the intersection of the curve and the line is the self-
consistent result. For a small coefficient α, the gradient of the
line I = (M̃z − Mz )/α is quite large, so there will only be one
intersection with the curve I − M̃z. This means that there will
not be multiple results when calculating the current.

To explain the origin of the nonreciprocity of the Josephson
supercurrent, we compare the self-consistent results under
phase differences φ and −φ. For a fixed M̃z, the currents
under phase difference φ and −φ can be related through
some symmetry transformation operators [50,51]. Here, we
consider the joint transformation operator: S = RU1(−φ

2 ).

214519-4



DESIGN OF JOSEPHSON DIODE BASED ON MAGNETIC … PHYSICAL REVIEW B 108, 214519 (2023)

U1(−φ

2 ) is the U1 gauge transformation with the phase −φ

2 . R
is the mirror reflection operator along the x direction, which
exchanges the left and right superconductors. We can notice
that the Hamiltonian satisfies SH (φ)S† = H (−φ), mean-
while the current is reversed by R. As a result, I (−φ, M̃z ) =
−I (φ, M̃z ) is satisfied, as shown in Fig. 1(b). In addition,
by using the time-reversal operator T = iσyK with K be-
ing the complex conjugation operator, we can derive the
relation T H (φ, M̃z )T † = H (−φ,−M̃z ), and the Josephson
current is reversed by T . As a result, the relation I (φ, M̃z ) =
−I (−φ,−M̃z ) is also satisfied, as shown in Fig. 1(b). On one
hand, we can see that when Mz = 0, the line I = M̃z/α passes
through the axis origin, and the ordinates of its intersections
with the curve I (−φ) − M̃z and the curve I (φ) − M̃z must be
opposite, that is, the two self-consistently calculated currents
satisfy I (−φ) = −I (φ). On the other hand, when α → 0,
the line I = (M̃z − Mz )/α is parallel to the y axis, and the
two self-consistently calculated currents are still opposite.
Only when both Mz and α are nonzero, the symmetric rela-
tion I (−φ) = −I (φ) in conventional Josephson junctions is
broken and I (−φ) �= −I (φ) can be obtained [see Fig. 1(b)],
leading to the emergence of the SDE.

In Fig. 1(b), we select the curve I − M̃z under the phase
difference φ = π

2 as the schematic diagram and we can see
that this curve exhibits an abrupt shift at |M̃z| ≈ 0.3. To ex-
plore the reason, we can plot the distribution of Andreev
bound states from the discrete current i(ε), before and after
the abrupt shift. As shown in Figs. 1(c) and 1(d), the red color
represents i(ε) > 0, which corresponds to a positive gradient
of the Andreev bound states versus the phase φ. The blue
color represents i(ε) < 0, corresponding to the negative gra-
dient. When M̃z = 0.1, the Andreev bound states have a slight
splitting due to the Zeeman effect. At this point, although the
total Josephson supercurrent is positive under φ = π

2 , there
are two curves with positive currents and two curves with
negative currents in the distribution diagram of the Andreev
bound states. The total current is mostly canceled out and
has a small value. On the other hand, as shown in Fig. 1(d),
when M̃z = 0.5, the splitting of Andreev bound states be-
comes stronger. At this point, one of the Andreev bound states
contributing to the negative supercurrent under φ = π

2 is lifted
above zero energy. According to the particle-hole symmetry,
a bound state with opposite energy and opposite gradient ap-
pears and contributes to the positive supercurrent. This results
in a significant increase in the current compared to M̃z = 0.1.
The gradient reverses at |M̃z| ≈ 0.3, which corresponds to the
abrupt shift in Fig. 1(b). The situation at φ = −π

2 (or 3π
2 ) is

similar to that at φ = π
2 , except for the opposite sign of the

current.
Next, we demonstrate the self-consistently calculated

Josephson current I − φ relation in Fig. 2(a). The positive and
negative critical currents of the Josephson junction correspond
to the maximum and minimum values of the curve I (φ) and
are indicated as Ic+ and Ic−, respectively. The phenomenon of
the unequal critical currents in opposite directions Ic+ �= |Ic−|
is called the SDE. In Fig. 2(a), we extract the maximum
value Ic+ of each curve and plot the dashed horizontal lines
to illustrate I = −Ic+. When Mz = 0, the horizontal line I =
−Ic+ is exactly tangent to the curve I (φ), that is, Ic+ = |Ic−|.

Also, the curve I (φ) satisfies the relation I (−φ) = −I (φ) at
Mz = 0, as the above discussion in Fig. 1(b). On the contrary,
when Mz �= 0, the symmetry of the current, I (−φ) = −I (φ),
is broken, leading to the relation Ic+ �= |Ic−|, and the SDE
emerges. In addition, the current satisfies I = 0 at φ = 0,
π . This is because the relations I (−φ, M̃z ) = −I (φ, M̃z ) and
I (φ, M̃z ) = I (φ + 2π, M̃z ) ensure I (M̃z ) = 0 at φ = 0, π , and
the self-consistently solved current must be zero. This indi-
cates that our proposal is a conventional Josephson junction,
instead of a φ0 junction [7,8,17,20–26,28,29,31,50–55]. It is
quite different from previous studies, where the SDE usu-
ally demands a φ0 junction with I (φ = 0) �= 0 [7,8,17,20–
26,28,29,31].

In Figs. 2(b) to 2(d), we plot the distribution of the
integrand i(ε) of the supercurrent under the three sets of
parameters in Fig. 2(a) to illustrate the corresponding Andreev
bound states. In Fig. 2(b), the distribution of Andreev bound
states with Mz = 0 is symmetric about φ = π , which indicates
the relation I (−φ) = −I (φ) [45]. In Figs. 2(c) and 2(d), due
to the different effects of the positive and negative currents
on the magnetic moment with Mz �= 0, the distribution of An-
dreev bound states become asymmetric, corresponding to the
relation I (−φ) �= −I (φ). By adjusting the energy level of the
magnetic impurity, the Andreev bound state can cross zero en-
ergy and appear in the positive-energy region [see Fig. 2(d)].
Due to the particle-hole symmetry, a bound state with opposite
gradient will appear in the negative-energy region, leading to
the result that the current carried by the state changes its sign
and the total current shifts abruptly, as shown by the green line
in Fig. 2(a). The current shifts abruptly at φ ≈ 0.75π , 1.3π ,
and the shift phases are also asymmetric about φ = π . This
makes the difference of positive and negative critical currents
more remarkable.

IV. REGULATION ON SDE

To study the SDE in detail, here we introduce η to represent
the superconducting diode efficiency, which is defined as

η = Ic+ − |Ic−|
(Ic+ + |Ic−|)/2

. (19)

In Figs. 3(a) to 3(c), we demonstrate the positive and nega-
tive critical currents Ic+ and |Ic−| versus the intrinsic magnetic
moment Mz with different parameters εM = 0, 0.4, 0.8. These
two curves have similar shapes and are symmetric about Mz =
0. Meanwhile, the diode efficiency η versus Mz with different
parameters εM is shown in Fig. 3(d). The diode efficiency η

is an odd function with respect to Mz and its value can reach
the maximum and shows a peak under specific Mz. When εM

increases from 0, the extremum of the curve η − Mz decreases
and the corresponding value of |Mz| at the extremum becomes
larger. Moreover, the curves η − Mz at the energy levels εM

and −εM completely coincide. In the following, we explain
the origin of these results.

By the spin rotation operator Us = ei π
2 σx , the Hamilto-

nian is transformed as UsH (Mz, I )U †
s = H (−Mz,−I ). This

means that, when the current and magnetic moment are si-
multaneously reversed, the corresponding Hamiltonians are
equivalent. Therefore, the relation between the positive and
negative critical currents satisfies Ic+(Mz ) = |Ic−(−Mz )|. As a
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FIG. 3. (a)–(c) Positive and negative critical currents Ic+ (red)
and |Ic−| (blue) versus intrinsic magnetic moment Mz for various
εM . (d) Superconducting diode efficiency η versus Mz. Parameters:
εD = 0, tc = 1, α = 0.2.

result, the efficiency η is an odd function of Mz in Fig. 3(d)

η(−Mz ) = −η(Mz ). (20)

The effect of current and intrinsic magnetic moment on
our calculated results is directly reflected in the value of
M̃z = Mz + αI . So, the curve of the positive critical current
Ic+ − Mz can be approximately regarded as the result of left
translation of the curve I − M̃z in Fig. 1(b). The shapes of
curves in Figs. 3(a) and 1(b) seem different because the ranges
of the vertical coordinate are different. Similarly, the curve
|Ic−| − Mz can be regarded as the result of the right transla-
tion of the curve I − M̃z in Fig. 1(b). The dislocation of the
two curves will lead to the result that Ic+(Mz ) �= |Ic−(Mz )|
and the SDE occurs. A larger gradient of the curve I − M̃z

corresponds to a greater difference between Ic+ and |Ic−| at
the corresponding magnetic moment Mz. As shown by the
analysis in Sec. III, the curve I − M̃z has an abrupt shift
with a large gradient at specific magnetic moments due to
the evolution of the Andreev bound states. So, at such value
of magnetic moment, the difference between the positive and
negative critical currents is the most significant, and the effi-
ciency will achieve the maximum, which corresponds to the
peak in Fig. 3(d). When the energy level εM increases from
zero, the shift amplitude of I − M̃z becomes smaller, and the
extremum of efficiency η decreases.

Next, we consider a joint symmetry operator W =
RT PU1( π+φ

2 ), where R is the mirror reflection operator
along the x direction, T = iσyK is the time-reversal oper-
ator, P = τxK is the particle-hole symmetry operator, and
U1( π+φ

2 ) is the U1 gauge transformation with the phase π+φ

2 ,
with τx the Pauli matrix in the particle-hole space. Under
the operations of these transformations, the current remains
unchanged, the Hamiltonians of the left and right supercon-
ductors remain unchanged, and magnetic moment Mz also
remains unchanged, only the energy level term of QD and
magnetic impurity reverses the sign. That is, the Hamiltonian
satisfies WH (εD, εM )W† = H (−εD,−εM ). As a result, the

FIG. 4. (a) The efficiency η versus the coupling strength tc with
various intrinsic magnetic moment Mz and proportional coefficient
α. (b) The efficiency η versus the magnetic moment Mz with various
tc at α = 0.2. Other parameters: εD = εM = 0.

current satisfies Ic+(−)(εD, εM ) = Ic+(−)(−εD,−εM ), and the
efficiency satisfies

η(εD, εM ) = η(−εD,−εM ). (21)

So, we can see that when εD = 0, the curves η(εM ) − Mz and
η(−εM ) − Mz completely coincide in Fig. 3(d).

In Fig. 4(a), we plot the superconducting diode efficiency
η versus the coupling strength between QD and magnetic im-
purity tc at Mz = 0.1, 0.3, 0.5 in green, red, and blue curves.
In addition, for each Mz, we distinguish the cases at α =
0.2, 0.1, 0.05 by using the solid line, dash-dotted line, and
dashed line. When the magnetic moment Mz is fixed, the larger
α corresponds to the greater effect of the current on the mag-
netic moment, and the obtained efficiency are higher. We can
see that the efficiency η increases from zero as the coupling
strength tc increases from 0. That is because the SDE results
from the impacts of the magnetic impurity on the Josephson
junction. Only when there is a coupling between the magnetic
impurity and the connection region in the Josephson junction
(tc �= 0), the SDE can emerge. However, when tc is too large,
the effect of scattering caused by the magnetic impurity plays
a key role in the system and the current will decrease. At this
point, the modulation on the magnetic moment by the current
is severely weakened, causing a decrease in η.

In Fig. 4(b), we show the superconducting diode efficiency
η versus the magnetic moment Mz with different tc, and
these curves still satisfy the properties of the odd function in
Eq. (20). Simultaneously, similar to Fig. 3(d), the efficiency η

will achieve the extremum value at a specific Mz as a result
of the evolution of the Andreev bound states. Here, tc will
slightly affect the distribution of the Andreev bound states,
making a slight impact on Mz that corresponds to the peak
of η.

To comprehensively study the modulation on SDE by vari-
ous parameters, we illustrate the plots of the efficiency η in
the (εD, εM ) space under different coupling strength tc and
magnetic moment Mz in Fig. 5. As for a single plot [e.g.,
Fig. 5(c)], when adjusting the energy levels of the central
QD εD and the magnetic impurity εM , the efficiency will be
sightly impacted by εD, but greatly impacted by εM . That is
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FIG. 5. The superconducting diode efficiency η versus εD and
εM with α = 0.2. (a)–(c) Mz = 0.3 for different tc. (c)–(f) tc = 1
for different Mz. The black dotted curve in (c) demonstrates the
hyperbola εDεM = t2

c .

because the emergence of the SDE derives from the magnetic
moment Mz, which directly acts and regulates the effective
energy level of magnetic impurity εM , making the impact of
εM more significant than that of εD. When εM is adjusted, there
will be an abrupt shift in η, changing its sign from positive
(red) to negative (blue).

In Figs. 5(a) to 5(c), when Mz is fixed at 0.3, the maximum
of the efficiency η can still reach about 0.1 even under the
weak coupling strength tc = 0.2. As tc increases, the overall
SDE will become more significant: the efficiency η can even
exceed 0.5 at tc = 1. As Mz increases from Figs. 5(c) to 5(f),
|εM | corresponding to the abruptly shifted η increases as well,
and the parameter space with positive values of η becomes
wider. In addition, the symmetry relation Eq. (21) derived by
the joint symmetry operator W is intuitively apparent in all
the pictures in Fig. 5.

In Fig. 5(c), the value of efficiency η goes through a sudden
drop when the parameters approximately satisfy εDεM = t2

c ,
and η is very small at εDεM > t2

c , which is reflected in the
form of hyperbola in the picture [see the black dotted curves
in Fig. 5(c)]. In this regard, Ref. [41] investigated the Joseph-
son junction at Mz = 0 and α = 0: It was found that, when
εDεM > t2

c , the current obviously reduces due to the evolution
of the Andreev bound states. Since in Fig. 5(c) the value of α

is small and Mz is much smaller than tc, the results in Ref. [41]
are approximately obeyed in our system. Due to the reduction
in current, the impact on the magnetic moment is weakened
and the efficiency decreases.

At last, we estimate the magnitude of the coefficient α.
We suppose that there are some magnetic atoms forming
an impurity cluster with R = 1 nm away from the connec-
tion region of the Josephson junction. The Zeeman energy is
1
2 gμBB, where g is the Landé factor, μB is the Bohr magneton,
and B = μ0(1 + χ )H is the induced magnetic field with the
vacuum permeability μ0 and the magnetic susceptibility χ .

According to the Ampère circuital theorem, one can obtain
H = I/2πR. As a result, the Zeeman energy caused by the
current can be expressed as αI = gμBμ0I (1 + χ )/4πR and
α = gμBμ0(1 + χ )/4πR. Note that the units of energy and
current are � and e�/h̄, hence the unit of α is h̄/e. Due to the
exchange interactions, the magnetic moment in ferromagnetic
systems can go through a significant change by merely vary-
ing a very small order of magnitude of H [56–58], indicating
that the magnetic susceptibility χ has a considerable value.
In fact, the susceptibility χ of the ferromagnetic materials
can even reach 106 orders of magnitude [59]. Here we just
set χ = 20 000, and when g = 2, we can obtain α = 0.06.
Meanwhile, if the impurity can have a higher Landé factor,
the coefficient α can be larger. In summary, it is reasonable
for us to set the magnitude of α at 10−2 and 10−1 and this
magnitude of α can already achieve significant SDEs in the
wide parameter space [see Fig. 4(a)]: Even at α = 0.05, the
diode efficiency η can reach 0.3; at α = 0.2, the efficiency η

can even reach 0.5.

V. DISCUSSION AND CONCLUSION

Besides the current-phase relation I (φ), a Josephson junc-
tion also has the resistance R and capacitance C and can be
described by the resistively and capacitively shunted junc-
tion (RCSJ) model [60]. Under a voltage bias V between
the junction, we have IC = CdV/dt and IR = V/R. Due to
V = h̄

2e
dφ

dt , the total current through the Josephson junction
is It = I (φ) + IC + IR, and the total current-phase relation can
be expressed as

Ch̄

2e

d2φ

dt2
+ h̄

2eR

dφ

dt
+ I (φ) − It = 0. (22)

By a substitution φ → coordinate x, one can find that the
phase evolution in Eq. (22) is equivalent to a mechanical
equation: It describes the motion of item with mass Ch̄

2e under a
potential U (φ) and viscous drag force h̄

2eR
dφ

dt . The potential is
called “washboard potential” satisfying dU (φ)/dφ = I (φ) −
It . Under a total current It , when the item keeps stationary
with dx/dt = 0 (corresponding to dφ/dt = 0), the voltage is
V = h̄

2e
dφ

dt = 0. This means that the current is a supercurrent
instead of a dissipative current. In our Josephson junction,
the magnetic impurity causes the peculiar I (φ) relation with
unequal critical currents in opposite directions Ic+ �= |Ic−|.
When It = 0, the schematic plot of the corresponding wash-
board potential U (φ) is shown as the gray curve in Fig. 6.
Because the relation I (−φ) = −I (φ) is broken, U (φ) be-
comes asymmetric about φ = nπ (n is integer). Also, note
that when It = 0, dU/dφ = I (φ), thus the relation Ic+ �= |Ic−|
results in (dU/dφ)max �= |(dU/dφ)min|. When under a large
total current |It |, it can sharply tilt the washboard potential
U (φ), so that the stable points disappear and the current
becomes dissipative. Because of the asymmetry of the gra-
dient of U (φ), the critical It that destroys stability is It,c+
in the positive direction and It,c− in the negative direction,
with different absolute values. Figure 6 shows a case that
It,c+ > |It,c−|, (dU/dφ)max > |(dU/dφ)min|. For the positive
It with |It,c−| < It < It,c+, the stable points exist in the wash-
board potential U (φ) (see the blue curve in Fig. 6), but for
the negative −It , there is no stable point in U (φ) (see the
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FIG. 6. Schematic plots for washboard potential U (φ) of Joseph-
son junction coupled to magnetic impurity. The gray, red, and blue
curves correspond, respectively, to zero, negative, and positive total
current It .

red curve in Fig. 6). So the nonreciprocal critical current with
It,c+ �= |It,c−| can still exist even if the Josephson junction has
the resistance R and capacitance C.

In addition, our Josephson diodes based on magnetic
impurities can be applied to construct superconducting
interferometers. For example, let us consider that a supercon-
ducting interferometer consists of two Josephson junctions
(one is our Josephson junction and one is a conventional
Josephson junction) connected in parallel and threaded by a
magnetic flux. The absolute values of the critical current of
this superconducting interferometer in positive and negative
directions are still unequal.

A very recent experiment [10] fabricated a Josephson junc-
tion by a magnetic atom connected with two superconductors
and observed the result of the unequal critical currents in
positive and negative directions. In fact, the experimental
results can be explained by the mechanism in our model. In
the experiment, it is quite hard to make the magnetic atom
accurately located at the center of Josephson junction, and

the current will unavoidably deviate from the center of the
magnetic atom. As a result, a magnetic field should be induced
and affect the magnetic moment of the atom. Therefore, our
theory is applicable to this experiment. Although there is
only a single magnetic atom with a relatively low magnetic
susceptibility χ , the distance R is much smaller than 1 nm,
thus the coefficient α is not quite small.

In summary, we propose a simplified and universal Joseph-
son diode device: a Josephson junction with its connection
region coupled with a magnetic impurity. In this device, the
SDE is induced by the different impacts of positive and neg-
ative supercurrents on magnetic impurity. What’s more, the
symmetry relations of supercurrents are derived and the effect
of the system’s parameters on diode efficiency is investigated.
We find the remarkable SDE in the wide parameter space.
The SDE efficiency can be regulated by controlling the gate
voltage (to change the energy level) and moving the magnetic
impurity closer to the connection region (to change tc). In
particular, our mechanism can be applied to any kind of super-
conductor, including conventional s-wave superconductors,
and it does not rely on the unconventional finite-momentum
Cooper pair property. In addition, our proposal only demands
a magnetic impurity, while the spin-orbit coupling, chirality,
and the external magnetic field are not required. This universal
proposal provides an alternative theoretical perspective for the
further development of dissipationless electronic devices.
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