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Extended superconducting fluctuation region and 6e and 4e flux quantization
in a kagome compound with a normal state of 3Q order
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The superconducting state with the usual 2e flux quantization formed from a normal state with 3Q charge
density or loop-current order is a linear combination of 3 different paired states with an overall gauge-invariant
phase and two internal phases such that the phases in equilibrium are at 2π/3 with respect to each other.
In the fluctuation regime of such a 3-component superconductor, internal phase fluctuations are of the same
class as for frustrated classical XY spins on a triangular lattice. The fluctuation region is known therefore to be
abnormally extended below the mean-field or the Kosterlitz-Thouless transition temperature. A 6e flux and a
4e flux quantized state can be constructed which are also eigenstates of the BCS Hamiltonian and stationary
points of the Ginzburg-Landau free energy with a transition temperature above that of the renormalized 2e flux
quantized state. Such states have no internal phases and so no frustrating internal phase fluctuations. These states
however cannot acquire long-range order because their free energy is higher than the co-existing fluctuating
state of 2e flux quantization. 6e as well as 4e flux quantized Little-Parks oscillations however occur in which
the resistivity increases periodically with field above that of the 2e fluctuating state in its extended fluctuation
regime, as is observed, followed at low temperatures to a condensation of the time-reversal odd 2e quantized
state.

DOI: 10.1103/PhysRevB.108.214516

I. INTRODUCTION

The quasi-two-dimensional kagome lattice compounds
AV3Sb5 [1,2], where A = K, Rb, Cs are various alkalis, has at-
tracted much attention recently for its normal state [3–35] and
for its superconductivity [36–47] and the fluctuation regime
above its superconductivity. It also has been the subject of
many theoretical investigations [48–61]. The normal state has
a transition to a 3Q structure at about 100 K with possibly
other transitions at lower temperature. The superconducting
transition Tc is between about 1 K to about 2.0 K depending
on the samples. Experiments as well as theories [51,52,57–61]
have raised the possibility that the transition at 100 K breaks
time-reversal and chirality but preserves inversion and occurs
to a state with loop-current order [62]. This is however not a
completely settled matter. However as we will show, whether
or not time-reversal is broken in the normal state is not crucial
to the problem considered here. We are concerned here with
the recent flux quantization experiments [46] near and above
the superconducting transition in the compound CsV3Sb5

which are very surprising. Little-Parks type experiments in a
ring geometry attached to leads have been performed. Starting
at about 4 K, the resistivity begins to drop as temperature is
decreased much faster than above about 4 K. In this region,

*Emeritus.

which is an abnormally extended region of superconducting
fluctuations, flux quantization begins to be cleanly observed
but the flux quantum corresponds to charge 6e. As temperature
is decreased but still above Tc, the quantization gets a little
muddier with 6e, 4e, as well as the usual 2e discernible. Very
close to Tc and below only 2e quantization is observed.

These are extraordinary results. There are four aspects to
them to be understood: First, why is the fluctuation region so
extended? Second, why is flux quantization observed so far
above Tc and why does it correspond to 6e flux quantization?
Third, despite the second, why is the ultimate superconducting
state of the usual 2e flux quantization? Fourth, why do the
fluctuations in resistivity occur without the resistivity going to
zero, as in the usual Little-Parks oscillations?

The organization of this paper and the principal results are
as follows. In Sec. II, we summarize what is known in exper-
iments and in theory about the normal state of AV3Sb5 below
the transition at about 100 K. We take the simplest model
which in the normal state has 6 small elliptical Fermi-surface
pockets, as schematically illustrated in Fig. 1. In Sec. III, we
consider the superconductive state with 2e flux quantization
with a BCS reduced Hamiltonian and emphasize that it is a
linear combination with complex coefficients of the three zero
center-of-mass momentum states made of the three pair states
of fermions from inversion-related elliptical pockets. We also
consider in this section possible 6e flux quantized states with
the BCS reduced Hamiltonian. The next section considers
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FIG. 1. Simple model illustrating the 6 elliptical Fermi-surface
pockets below the charge density or loop-current order transition pro-
posed for AV3Sb5. (a) The band structure of the simplest one-orbital
tight-binding model with nearest neighbor hopping on the kagome
lattice. The Fermi level is placed just above the van Hove singu-
larity at the M points, corresponding to the Fermi surface marked
by the black line in (b). The van Hove points are connected by
the three wave vectors Qi, i = 1, 2, 3 (red arrowed lines), along the
three hexagonal directions. Qi = 1

2 Gi and Gi are the reciprocal lat-
tice vectors, which are responsible for the propensity toward 2 × 2
bond ordered 3Q CDW. In (b), the larger hexagon (solid cyan line)
is the 1 × 1 Brillouin zone, while the smaller hexagon (dashed cyan
line) marks the reduced Brillouin zone in the enlarged 2 × 2 unit cell.
(c) The reconstructed Fermi surface pockets plotted in the reduced
Brillouin zone due to the 2 × 2 CDW order. The superconducting
states are constructed from the three possible Cooper pair states
of the fermions in a given ellipse and its inversion related ellipse
(μ = ±1, ±2, ±3), giving rise to a three-component superconductor.

the fluctuations of the 2e states using the Ginzburg-Landau
type free energy and shows that the fluctuations in this state
are quite unusual because the internal phase fluctuations be-
tween the three Cooper-pair states are mapped to a model
of frustrated classical spins on a triangular lattice. Using the
work done on the latter long ago [63–69], we argue that this
introduces a very large temperature region of chirality and
phase fluctuations in which the resistivity decreases rapidly
with temperature.

The abnormally large fluctuations reduce the condensation
temperature to such a state drastically in relation to the mean-
field BCS transition temperature. A 6e quantized state and a 4e
quantized state can be constructed which are also eigenstates
of the BCS reduced Hamiltonian and which are unfrustrated.
However the free energy of such a state is actually higher
than the fluctuating 2e states, which are mutually orthogo-
nal to the 6e and 4e states. Therefore a product state of the
three must form. Such a state is shown to have Little-Parks
oscillation with 6e quantization and 4e quantization on top of
the background of the sharply changing resistive state of the
fluctuating 2e states. Long-range order occurs in the 2e state

FIG. 2. The figure sketches the various characteristic tempera-
tures which are of importance in the results and discussions in this
paper. T c

2e is the actual transition temperature to a 2e flux quan-
tized time-reversal breaking superconducting state. T m f

2e,(1̂,2̂)
are the

mean-field transition temperature of the two degenerate time-reversal
breaking 2π/3 phase difference states with 2e flux quantization,
while T m f

2e,3̂
is the mean-field transition temperature of the real state

with the same quantization. The region between T m f
2e,(1̂,2̂)

and T c
2e,

marked in red, is the extended region of chirality and phase fluc-
tuations. From Monte Carlo calculations of [63], T c

2e ≈ 0.502J ,
where J is the Josephson coupling energy of the pairs of phases
of the three components from pockets (μ, −μ), μ = 1, 2, 3, of the
superconducting state shown in Fig. 1. T c

6̂e
and T c

4̂e
are the transi-

tion temperatures to the 6e and 4e flux quantized states described
in the text. The parameters through which the actual values of
these temperatures are determined are not known. Arguments are
given in the text for their approximate relative placements. The 4e
and the 6e states never lead to zero resistive states because the
fluctuating region of the 2e flux quantized states have a lower free
energy and co-exist with them. However, resistivity fluctuations with
6e and 4e flux quantization in a magnetic field through the ring occur
on top of the resistivity of the 2e fluctuating states.

at a lower temperature below which the other states disappear.
For convenient reference to the rest of the paper, the various
important temperatures are sketched in Fig. 2.

II. 3Q CHARGE OR LOOP-CURRENT
ORDERED STATE IN AV3Sb5

We consider the minimal single-orbital model with nearest
neighbor hopping. The band structure is shown in Fig. 1(a)
in the Brillouin zone plotted in Fig. 1(b). The van Hove
singularities at the M points are connected by the three
vectors Qi = 1

2 Gi, where Gi, i = 1, 2, 3, are the reciprocal
lattice vectors as shown in Fig. 1(b). As a result, this band
structure is well nested at van Hove filling. On this band struc-
ture the projected one-particle states have zero on-site inter-
actions and finite values for nearest and next-nearest neighbor
interactions [60,70–73]. This is especially propitious for 3Q
ordered states, with or without time-reversal breaking, which
have a 2 × 2 enlarged unit cell and a folded Brillouin zone
with the area reduced by a factor of four as shown in Fig. 1(b).

The Fermi level of AV3Sb5 is away but close to the van
Hove singularities. The case where the Fermi level is just
above the van Hove filling is shown in Fig. 1(a) with the
corresponding Fermi surface plotted in Fig. 1(b). The favored
2 × 2 loop current or real 3Q charge density wave (CDW)
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states give rise to 6 reconstructed small elliptical pockets cen-
tered at the M points in the reduced zone [57,60] as shown in
Fig. 1(c). Let ck denote the annihilation operators for the band
near the chemical potential in the high-temperature phase. The
quasiparticle annihilation operator ak,μ on the three elliptical
pockets and their time-reversed and inversion-related states
are given by

ak,μ =
∑

i=1,2,3

|uk,μ,Qi |eiθk,μ,Qi ck+Qi . (1)

μ = ±(1, 2, 3) are the indices for the three ellipses (plus
sign) and their inversion-related partners (minus sign). We
will ignore the spin indices throughout; the pairing will be
understood to be in the spin-singlet channel in whichever
even angular momentum is favored. Our results do not de-
pend on the details of the pairing symmetry. The difference
in the phase factors θ at different Q is responsible for the
time-reversal breaking and chirality. We can safely ignore
the k dependence of the phase factor because Qi are much
larger than the size of the elliptical pockets. Also preserving
inversion is equivalent to

θμi,Qi = θ−μi,−Qi ≡ θi. (2)

If the loop-current order is chiral, the three θμi,Qi are unequal.
If time-reversal symmetry is indeed broken in the normal

state, it is important to consider the energy of spatial variation
of the two internal fluctuating phases θ12 ≡ (θ1 − θ2) and of
θ13 ≡ (θ1 − θ3). This energy is determined by the effective
interactions of fluxes in adjacent cells. The energy of similar
modes has been calculated in other contexts [74,75]). The
excitation energy for such modes for long-wavelength fluc-
tuations may be written as

�(q) = �0 + Jq2, (3)

where both �0 and J are on the scale of the transition tem-
perature of the loop-current order. This is about two orders
of magnitude larger than the superconducting transition tem-
perature so that the equilibrium values of θ12 and θ13 may be
considered fixed to the normal state value in the vicinity of
the superconducting state. As worked out in detail below,
these phases are inherited by the internal phases between pairs
made from different Fermi-surface pockets in Fig. 1(c). The
large energy for variation as in Eq. (3) makes such phase
variations in the superconducting state very stiff. For this rea-
son, the dynamics of the loop-current order is not an essential
aspect in the considerations below.

III. SUPERCONDUCTIVE STATES

A. 2e quantized flux superconducting states

The superconducting states can be constructed from
single-particle states given by the operators in (1), i.e., by
forming Cooper pairs on inversion-related elliptical pock-
ets (μi,−μi ), i = 1, 2, 3. We do not consider paired states
formed on pockets labeled by different μ, which carry fi-
nite center-of-mass momentum �Qi j = Qi − Q j and cost the
large additional kinetic energy ∼(�Qi j )2. Although a weak
spatial modulation of the superconducting state at wave vec-
tor �Qi j has been detected by STM in CsV3Sb5 [36], we

consider it a secondary effect brought about by coupling of
the amplitude of pairing between ellipses centered at different
Q and irrelevant to our mechanism for the 6e and 4e flux
quantization, which originates entirely by considering only
the possible uniform superconducting states.

Consider the BCS reduced Hamiltonian

H = H0 + H ′, (4)

where H0 describes the zero center-of-mass momentum pair-
ing between states in μ and in −μ,

H0 =
∑

μ=1,2,3

H (μ,−μ),

H (μ,−μ) =
∑

k

(εk,μ + ε−k,−μ − 2ζ0)a+
k,μak,μ

+U
∑
k,k′

a+
−k,−μa+

k,μak′,μa−k′,−μ, (5)

and ζ0 is the chemical potential. The Cooper-pair annihilation
operator is then

bk,μ ≡ akμa−k−μ

= e2iθμ

∑
i=1,2,3

|uk,μ,Qi ||u−k,−μ,−Qi
|ck+Qi c−k−Qi . (6)

Here we have used the relations (2) to define 2θμ. H ′ describes
the scattering between the Cooper pairs formed on ±μ and
±μ′ pockets,

H ′(μ,−μ; μ′,−μ′) =
∑
μ �=μ′

∑
k,k′

Vμ,μ′e2i(θμ−θμ′ )b+
k,μbk′,μ′+H.c.

(7)

The phase factor in (7) is intrinsic and any gauge transfor-
mation must preserve it. For the hexagonal symmetry of the
states on the kagome lattice, we consider Vμ �=μ′ ≡ V . The
pairing with flux quantization 2e will in general be in a linear
combination of the bk,μ operators

b̂k,μ̂ =
∑

μ=1,2,3

Aμ̂,μbk,μ, μ̂ = 1, 2, 3, (8)

with orthonormal Aμ̂,μ,∑
μ

A∗
μ̂,μAμ,μ̂′ = δμ̂,μ̂′ . (9)

Aμ̂,μ includes the effects of the intrinsic phases 2θμ as well as
the Josephson phases.

B. Microscopics

The energy of the three μ̂ states, each of them with 2e flux
quantization, will in general be different. Let us denote the
three BCS states constructed from them as 	μ̂,

	μ̂ = 
k(cos θk,μ̂ + sin θk,μ̂b̂+
k,μ̂)|FS〉. (10)

Recall that b̂+
k,μ̂ is a sum of three terms as given in Eq. (8) with

three different phases. It is important to note that after taking
out an overall phase factor in Aμ̂,μ, which gives the usual
phase factor in 	μ̂ responsible for the 2e flux quantization,
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there remain two internal relative phase factors in b̂+
k,μ̂

. They
come from the fixed relative phases of the normal state basis
wave functions between states at different Qi. They cannot be
removed. If we represent the wave function by spin operators
as in the basis used by Anderson, these would specify the two
relative orientations of the spin-operator representations of the
pairing operator. As has been realized [63–69], the relative
phase factors in 2e quantized flux states act as (resolvable)
frustrations. Let us denote the three possible ground state
energies by E0

μ̂.
The magnitude of the gaps as a function of temperature and

the relative phase of the gap function as well as Tc, i.e., θk,μ̂ as
well as Aμ̂,μ, are given by a slight generalization of the BCS
equation to a 3 × 3 matrix,

	μ̂ =
∑
μ̂′

V̂μ̂,μ̂′Nμ′ζμ′	μ̂′ , (11)

ζμ =
∫ ωc

0
dεμ tanh

Eμ̂

2kBT
. (12)

Here, N (μ) are the density of states of the μth Fermi surface,
which are all equal in our problem. The diagonals give the
usual BCS equation for each of the three components in the
uncoupled limit where 	μ̂ = 	μ. As will be discussed in
the next section, in the symmetry of the present problem,
there are two degenerate time-reversal odd superconducting
states and a nondegenerate time-reversal even superconduct-
ing state. Which of the two has a higher mean-field transition
temperature depends on the sign of V . The sum of the three
BCS transition temperatures is independent of V .

IV. GINZBURG-LANDAU ANALYSIS FOR THE
SUPERCONDUCTING FLUCTUATIONS

For discussing flux quantization and especially the Little-
Parks effect in the vicinity of the phase transition and in the
fluctuation regime above it, it is more convenient to adapt the
Ginzburg-Landau (GL) formalism for the problem. We adopt
the convention that a basis state in the GL free energy denoted
by �μ transforms to the state 	μ in an ordered state which
is described by BCS theory. In a two-dimensional situation
above the transition, the phase fluctuations determine the cor-
relation functions. In that regime, i.e., below the mean-field
transition temperature, the amplitudes may be given a fixed
value |�μ| since their fluctuations are unimportant. The lead-
ing GL free energy for the phase fluctuations φμ(r) for the
case of the 6 elliptical pockets at π/3 with respect to each
other in momentum space and pairing in μ states with (μ,μ′)
coupling as discussed above are

F =
∑

μ

αμ|�μ|2 +
∑
μ �=μ′

αμ,μ′[�∗
μ(r)�μ′ (r) + H.c.]

+ γ 2
∣∣∣(−i∇ − e

c
A

)
�μ(r)

∣∣∣2
, (13)

�μ = |�μ|eiφμ(r), (14)

αμ = α ≡ α0
T − T m f

0

T m f
0

, αμ,μ′ ≡ α′e2i(θμ−θμ′ ). (15)

The first term in (13) is the diagonal free energy for the three
μ and the second term is their mutual Josephson coupling

energy. The equality of the three αμ is due to the symmetry
in the problem and α′ being the magnitude of the Josephson
coupling is real.

The multiband free energy (13) has been analyzed ex-
tensively by Tanaka and Yanagisawa for its properties [76],
including the collective modes in the superconducting states
[69]. The �’s and their spatial variations are given by mini-
mizing Eq. (13). The result for zero external potential A is⎛

⎝ α α12 α13

α∗
12 α α23

α∗
13 α∗

23 α

⎞
⎠

⎛
⎝�1

�2

�3

⎞
⎠ = (

γ 2∇2 Î
)⎛⎝�1

�2

�3

⎞
⎠. (16)

The mean-field transition temperatures are given by setting
the right side to 0 and equating the eigenvalues of the left side
to 0. There is a doubly degenerate eigenvalue, E1,2 = α − α′,
and one nondegenerate eigenvalue, E3 = α + 2α′. The eigen-
values do not depend on whether αi j’s are real as for the case
that the normal state is a real charge density wave state, or
whether the normal state has loop-current order so that the
α’s are complex. The mean-field transition temperatures are
changed from T 0

m f when α′ = 0 to

T m f
2e,1̂,2̂

= T m f
0

(
1 + α′

α0

)
, doubly degenerate, (17)

T m f
2e,3̂

= T m f
0

(
1 − 2

α′

α0

)
, nondegenerate. (18)

Which state wins for the mean-field transition temperature
depends on the sign of Josephson coupling. These tempera-
tures are sketched in Fig. 2 for the case that the time-reversal
breaking states have a higher transition temperature. The flux
quantization of all three is in units of 2e. The eigenstates in
the ordered state for the doubly degenerate solution, denoted
by �1̂ and �2̂, are time-reversal odd with �∗

1̂
= �2̂. They are

given in the basis (�1,�2,�3) by

�1̂,2̂ = 1√
3

eiφ (1, e±2iπ/3, e∓2iπ/3). (19)

The nondegenerate state �3̂ is real with the relative phases of
the three superconducting components locked,

�3̂ = 1√
3

eiφ (1, 1, 1). (20)

We have taken out a gauge-invariant phase which couples to
the externally applied magnetic field. We will not have to deal
with it till we discuss the flux quantization.

For the case of the loop-current ordered normal state,
eigenvectors are

E3 = (α + 2α′), � = 1√
3

eiφ
(
e−2iθ1 , e−2iθ2 , e−2iθ3

)
,

(21)

E1,2 = (α − α′),

� = 1√
3

eiφ
(
e−2iθ1 , e−2iθ2±2iπ/3, e−2iθ3∓2iπ/3

)
. (22)

For the chiral case, θ1 �= θ2 �= θ3, all three states break time-
reversal invariance in the superconducting state. For the
nonchiral case, θ1 = θ2 = θ3, we can take the θ ’s out and add
to the gauge-invariant phase. Actually the superconducting
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fluctuations for this state are similar to that for the real 3Q
CDW, given the stiffness of the loop-current fluctuations. We
shall therefore henceforth only discuss �1̂,2̂ and �3̂.

A. Fluctuations of the 2e states

It is appropriate to consider the fluctuations to the super-
conducting state in CsV3Sb5 to be two-dimensional. In that
case, the important fluctuations are in the phase variable with
the amplitude varying slowly with temperature so that we can
take it to be fixed. There are three phases φi(r), defined by

�î(r) = |�î|eiφi (r). (23)

One can take out an overall phase for the wave functions, say
the sum of the three, to which the external field couples and
which we have denoted as φ above. That leaves two internal
phase variables for the fluctuations. The equation for the fluc-
tuations of the superconducting state �î in zero external field
obtained from Eq. (16) is then

J∇2φi(r) = α′ ∑
j �=i

cos(φi − φ j )(r), (24)

where, in terms of parameters introduced above, J = γ 2 is
the stiffness and α′ is the Josephson coupling. As has been
discussed [63–69], this model maps to a model of classical
spins on a triangular lattice. The multiband free energy (13)
has been analyzed extensively by Tanaka and Yanagisawa
for its properties [76], including the collective modes in the
superconducting states [69].

We borrow in the next section some results for the fluctua-
tion regime above the superconducting transition temperature
which are important for us, on a related model studied by
Miyashita and Shiba [63]. Miyashita and Shiba [63] do the
calculations on a discrete triangular lattice, which may be
identified with the three distinct sites on a triangular lattice
associated with the pair of bands (μ,−μ). In that case we may
define the problem as a problem of XY model on a triangular
lattice with an effective Hamiltonian

H = J
∑

i �= j=1,2,3

cos[φi(r) − φ j (r)]. (25)

The model has been investigated in detail by Miyashita and
Shiba [63] by Monte Carlo methods. In the continuum ap-
proximation, minimization with respect to the phases of (25)
leads to Eq. (24). Let us clearly restate the sense in which the
equation (24) derived from the GL Hamiltonian maps to the
model solved in Monte Carlo calculations of the XY model
on a triangular lattice [63]. The latter is a discrete lattice
model in which at each lattice site a vector of fixed length
lies in an arbitrary direction in the disordered state well above
the fluctuation regime. Just below the mean-field transition
temperature where short-range order develops, the vectors on
a nearest neighbor triangle lie at 2π/3 with respect to each
other but the triad’s direction in nearby triangles is disor-
dered. The fluctuation regime consists of ordering of these
triads as temperature decreases. Equation (24) is a continuum
equation in which a coarse graining of the triangular lattice
has been performed; it is valid only in the above fluctuation
regime. At each point r in the continuum, three vectors φi(r)
exist which lie at 2π/3 with respect to each other. The nabla

operator refers to variations on spatial scale much larger than
the triangular lattice constant. The eventual ordering is the
relative ordering of the triads at arbitrarily long length scale,
which is the same in the discrete as well as the continuum
model.

The model with ferromagnetic α′ or J is unfrustrated.
We are concerned only with the more interesting antiferro-
magnetic α′ which introduces frustration. At equilibrium, the
three phases are at 2π/3 with respect to each other. There
are two ways to realize that, with opposite chiralities. So
besides fluctuations characteristic of the XY model, there are
also fluctuations of chirality which are of the Ising class
[63–69]. An Ising model on a triangular lattice is frustrated
and so there is a much larger region in temperature of fluc-
tuations than in an XY model alone. In general there are two
phase transitions, separated by a temperature unmeasurable
in the Monte Carlo calculations. Unlike the phase transition
of the XY model which shows essentially no specific heat
singularity, the specific heat for the model shows a loga-
rithmic singularity characteristic of the Ising model in two
dimensions. Above the phase transition to a phase with 2π/3
differences in the three (φi − φ j ) with a chosen chirality,
thermal entropy favors a temperature region in which one of
the three phases fluctuates about 0 so that the frustration is
removed for the other two phases as they can be at π with
respect to each other [69].

For our purposes, it is important to deduce, from the ref-
erences given above, the extent of the fluctuation regime and
the decrease of the temperature of the transition they cause
from mean-field BCS transition or the transition tempera-
ture of the unfrustrated Kosterlitz-Thouless (KT) transition,
in which at every point r only one vector lies and not a
triad. Miyashita and Shiba [63] estimate that the transition
temperature in the frustrated model is about 0.502J , while the
Kosterlitz-Thouless transition temperature of the unfrustrated
model is about 0.95J [77]. In Fig. 2, the former is denoted
by T c

2e. The latter itself is always lower than the BCS transi-
tion temperature; the ratio of the two depends on details of
the interactions and are typically about 1/2. So we expect a
fluctuation regime in CsV3Sb5 which is two to four times the
actual transition temperature. The fluctuation region shown by
the redline in the same figure extends from T m f

2e,(1̂,2̂)
. The latter

for an XY model on a triangular lattice is 1.5J [63]. This is
in qualitative accord with the fact that the resistivity begins
to drop in thin film samples of CsV3Sb5 at about 4 K and
the transition temperature to the zero-resistance 2e supercon-
ducting state occurs at about 2 K in the best samples. The
transition temperature is lower in ring geometry samples with
the lowest at about 1 K and the fluctuation resistivity starting
in all samples at about 4 K. No Little-Parks oscillations are
possible with 2e flux quantization in the fluctuation regime
because the amplitude of such oscillations is proportional to
ξ (T )2/R2 [78], where ξ (T ) is the superconducting correlation
length and R is the radius of the ring.

B. 6e and 4e flux quantized states

A state with charge-6e flux quantization is simply the
product of the three orthogonal 2e flux states which we have
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considered above,

�6̂ = 
μ̂=1,2,3�μ̂ = |�1̂|2�3̂ = |�2̂|2�3̂. (26)

The second two equalities follow from the fact that �∗
1̂

= �2̂.
It is also straightforward to write a BCS state with 6e flux

in terms of the notation introduced in Eq. (6),

	6̂ = 
μ̂=1,2,3
k(cos βk,μ̂ + sin βk,μ̂b+
k,μ̂)|FS〉. (27)

Its BCS transition temperature T m f
6̂

is a third of the sum of the
transition temperatures of the three 2e flux states and so given
simply by α = 0, i.e., below the mean-field transition temper-
ature T m f

2e,2̂,3̂
of the time-reversal breaking states by a factor

(1 − 2α′/α). However, we have a large regime of parameters
in which T m f

6̂e
is larger than the KT transition temperatures T c

2̂,3̂
of the states �2̂,3̂.

From Eqs. (26), we gather that �6̂ is purely real, except
for an overall multiplicative factor eiφ6(r) which couples to an
external field. Since it has no internal phase fluctuations, its
fluctuation regime is just that for an ordinary two-dimensional
superconductor and not an extended fluctuation regime as for
the chiral �1̂,2̂ states. �6̂ is quantized by charge-6e flux quan-
tum. But this state cannot exist by itself because its free energy
below T c

6̂e
is larger than that of the states obtained from �1̂,2̂

which, including their fluctuations, reduce the free energy by
−T S(T ), where S(T ) is the entropy of the fluctuations.

Similarly a uniform 4e flux state can be obtained by a
product of the two time-reversal breaking 2e states:

�4̂ = 
μ̂=1,2�μ̂ = |�1̂|2 = |�2̂|2. (28)

This is an eigenstate of the BCS Hamiltonian and an ex-
tremum of the Ginzburg-Landau free energy. Being a pure
real state in its internal coordinates, it has only the usual
Kosterlitz-Thouless fluctuations of the overall phase variable.
The BCS transition temperature of such a state is the same
as the BCS transition of the 2e state. The ratio of the KT
transition temperatures for the 4e and 6e states, which is more
relevant, is discussed in the next section.

V. LITTLE-PARKS OSCILLATIONS WITH CHARGE-6e
FLUX QUANTIZATION

We now come to the experiments [46] which motivated
these investigations. Let us denote the state in the ex-
tended phase fluctuation temperature region by �2e− f l (T ).
〈�2e− f l (T )〉 = 0, but 〈�2e− f l (r)�2e− f l (r′)〉(T ) has alge-
braically decaying fluctuations in (r − r′) below T m f

2e,2̂,3̂
up

to the transition temperature of the 2e state denoted by T c
2e;

the fluctuating region may be as large as 3 T c
2e, as can be

inferred from the Monte Carlo calculations [63]. Below T c
6̂e

,
the state 	6̂ co-exists with it. It is important to note that 	6̂ and
�2e− f l (T ) are orthogonal. So the actual state may be written
as a product of the two. A property such as conductance G is
therefore carried in two parallel channels and therefore

G−1 = G−1
fluc−2e + G−1

6̂
, (29)

and therefore the resistance

R = Rfluc−2e + R6̂. (30)

Therefore in a bulk or ring geometry without a field
R(T ) = Rfluc−2e(T ), and is finite and varying in temperature
till T � T c

2e.
Let us now consider the ring geometry with a flux through

it. On formation of a vortex in the two arms of the ring when
the flux through the ring is 6e flux quantum, the state 	6̂)
acquires the phase dependence of a vortex on going around
the ring, so that R6̂ acquires a finite value. This happens
periodically as the flux is increased to form larger number
of vortices. Accordingly through Eq. (30), the resistivity rises
periodically over the resistivity given by Rfluc−2e(T ). Note that
this is precisely what happens in the experiment—resistivity
increases periodically over a temperature-dependent value; it
never goes to zero. This is different from the usual Little-
Parks oscillations in two ways. The usual oscillations oscillate
between zero and a finite value and are confined to a small
temperature region near the transition temperature because the
transition temperature moves periodically as a vortex (with a
flux quantum) is formed in the geometry.

In the experiments [46], 4e oscillations with smaller am-
plitude occur at a temperature below where the 6e oscillations
begin to be observed. They also terminate when true long-
range order occurs in the 2e oscillating state. Based on
the estimate of the mean-field transition temperature, we
would expect the 4e oscillations to start at a higher transi-
tion temperature in a BCS theory. But we are dealing with
Kosterlitz-Thouless (KT) transitions. The KT transition tem-
perature for a state with quantized circulation |κ| is given
by equating the characteristic energy of interaction of a
pair of oppositely charged vortices of density ρ, which is
κ2ρ ln ρ with the free-energy contribution due to their en-
tropy T S which depends on their density, but not their κ ,
S(ρ) = ρ ln10 ρ. This gives

TKT (κ ) ∝ κ2, (31)

above which vortices of quantization κ freely proliferate in
the disordered state. The ratio of κ for 6e states is 3/2 times
that for the 4e state. So in the simplest consideration, the
Kosterlitz-Thouless transition temperature for the 6e state, T c

6̂e
,

is 9/4 times larger than that for the 4e state, i.e., T c
6̂e

. The actual
estimate may vary in better calculations. All of this is sketched
in Fig. 2.

The experiments [46] show three rounded steps in the
resistivity. This is in consonance with the theory here and
the schematic temperatures given in Fig. 2, with the first step
at T m f

2e,1̂,2̂
, where the resistivity sharply diminishes due to the

superconducting fluctuations of the frustrated 2e state, the
second at T c

6̂
, and the third at T c

4̂
, where the transitions to

the 6e and the 4e states occur in the fluctuating regime of
the 2e state. The 2e state itself appears to condense without
a sharp resistivity drop. We suspect that the details of how
the 6e and 4e states disappear as the 2e state condenses and
the temperature dependence of transport and thermodynamic
properties near T c

2e pose an interesting theoretical problem (not
tackled here) as well as an interesting experimental challenge
to decipher.

Recently, evidence has been presented [80] that the low-
temperature superconducting state is time-reversal breaking
as well as chiral. The time-reversal breaking is consistent with
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our prediction. The chirality is consistent if the normal state
has loop-current order.

VI. SUMMARY AND CONCLUDING REMARKS

The kagome superconductors have a complex multiband
electronic structure with multiple Fermi surfaces. In this work,
we considered the simplest, minimal single-orbital model on
the kagome lattice. The model captures the most essential fea-
ture of the electronic structure: a kagome band derived from
hybrid d-electron orbitals with its p-type van Hove singularity
located close to the Fermi level [57]. Despite the simplifica-
tion, the model has been shown to produce 3Q CDW states
driven by extended Coulomb interactions, including both the
real CDW with an inverse Star-of-David bond configuration
and the complex CDW with loop-current order that breaks
time-reversal symmetry [57,60]. The theory predicts the six
reconstructed Fermi surface pockets in both cases in the 2 × 2
ordered state as shown in Fig. 1(c), which have been observed
recently by ARPES and STM experiments [35].

We studied such a model of six Fermi pockets for the
phase fluctuations above its charge-2e chiral superconducting
state and mapped the problem to a frustrated antiferromag-
netic XY model on a triangular lattice. This model has not
been amenable to analytical calculations, as far as we know.
We have used Monte Carlo results obtained many years ago
[63,68] to argue for an extended region of fluctuations of the
2e state due to frustration. In contrast, there is no frustration
for the charge 6e and 4e flux quantized states that we have
introduced since they have no internal phases. The relative
transition temperature of the 6e and the 4e states is estimated
using the simplest idea proposed by KT for the transition
temperature. Their relation to the actual 2e transition is also
estimated. There can be no transition to the 6e or 4e states,
because, as shown, their free-energy below their KT transition
temperatures is higher than the co-existing orthogonal fluctu-
ating frustrated 2e state. The state of the system is written
as the product of such orthogonal states. The resistivity in
this situation is the sum of the resistivity of the co-existing
orthogonal states. In the geometry of the ring, the free en-
ergy of the 6e and 4e states oscillates and therefore their

transition temperature oscillates at their characteristic quan-
tization period as the flux through the ring changes. Therefore
over a gradually decreasing resistivity due to the onset of the
2e superconducting fluctuations, there are oscillations with the
6e and the 4e periods. These findings agree with recent exper-
iments probing the superconducting properties of CsV3Sb5

[46,47,80] for the fluctuation region, the flux quantizations,
and their order as the temperature decreases. While a full
account of these experimental discoveries may require taking
into account the complex band structure, our findings based on
the simplified model provide a plausible physical mechanism
with which we hope to stimulate further experimental and
theoretical investigations.

The general considerations here should apply to any three-
band or three-component superconductor in which three
different paired states are weakly coupled; this is really a phe-
nomena having to do with the critical fluctuations which turn
into multiple fluctuating Leggett modes in the superconduct-
ing state. It is noteworthy that the Fe-based superconductor
Ba1−xKxFe2As2 [67,68,79], which is expected from its band
structure to be a three-band superconductor, shows in its resis-
tivity and specific heat a very extended region of fluctuations
just as in CsV3Sb5. We suggest Little-Parks experiments for
it also to see if in the fluctuation regime 6e and 4e flux
quantization can be observed.

A question which is easy to answer is what happens
to two-band superconductors which have only one internal
phase and one Leggett mode. In that case, in equilibrium
the internal phase acquires the value 0 so that the usual
Ginzburg-Landau equations are obtained. However, three or
more band/component superconductivity with weak coupling
among different pairing states will in general have unusual
fluctuations.
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