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We study the spectral properties of disordered superconducting transition metal dichalcogenide monolayers,
known as Ising superconductors, subjected to in-plane magnetic fields. In addition to the conventional singlet
pairing, we also consider the recently proposed equal-spin triplet pairing, which couples to the singlet at finite
in-plane magnetic fields. While both singlet and triplet order parameters are immune to intravalley scattering,
they are significantly affected by intervalley scattering. In the realistic regime of strong intrinsic Ising spin-orbit
coupling, we find that the properties of the superconductor are well described by a simple formula reminiscent
of the well-known Abrikosov-Gor’kov theory, but with a modified self-consistency condition. Our results enable
straightforward self-consistent calculation of singlet and triplet order parameters and the density of states of
disordered Ising superconductors, which can be particularly useful for interpreting recent tunneling spectroscopy
experiments in these systems. We also investigate the high-energy features in the density of states, the so-called
mirage gaps, and discuss how they are modified by triplet pairing.

DOI: 10.1103/PhysRevB.108.214510

I. INTRODUCTION

The interplay of superconductivity and spin-dependent
fields enables a plethora of exotic phenomena which provide
a basis for the emerging fields of superconducting spintronics
[1] and topologically protected quantum computing [2]. In
the last few years, one of the key platforms for studying
such phenomena has been transitional metal dichalcogenide
monolayers (TMDs) [3–15]. These materials are a family of
atomically thin superconductors which host strong intrinsic
Ising spin-orbit coupling (ISOC) [16–18]. ISOC acts as an
effective out-of-plane Zeeman field with opposite orientations
at the ±K corners of the Brillouin zone (valleys). ISOC
has remarkable repercussions in superconducting TMDs—it
strongly pins the spins of Cooper pairs to out-of-plane ori-
entation, making TMD superconductors exceptionally robust
to in-plane magnetic fields, as experimentally confirmed in
various TMDs [3–5,9,10].

In addition to the conventional singlet pairing, it was re-
cently suggested that TMD superconductors can also support
unconventional equal-spin triplet pairing [19–21]. The dom-
inant singlet order parameter can couple to the triplet order
parameter at finite magnetic fields, which significantly affects
the high-field behavior of the superconductor. In a recent
tunneling spectroscopy experiment [15], finite triplet pairing
was invoked to explain the fact that the superconducting gap
was more robust to high magnetic fields than expected from
the model with singlet pairing only.

Another interesting characteristic of Ising superconductors
is the appearance of the so-called “mirage” gaps [22]—
high-energy features in the density of states (DoS). These
gaps present an experimental signature of unconventional
equal-spin triplet correlations enabled by the interplay of

ISOC and an in-plane Zeeman field. Finite triplet pairing
provides an additional source of such correlations [15], which
can modify the width of the mirage gaps [23].

Disorder plays an important role in the properties of Ising
superconductors [20,24,25]. Both the singlet and equal-spin
triplet order parameter are found to be immune to intravalley
scattering. On the other hand, both are significantly affected
by intervalley scattering. This type of disorder requires a large
momentum transfer (∼K), and therefore it can come from
sharp defects in the crystal lattice or edges of the sample.
Intervalley scattering acts as an effective spin-flip mechanism
which breaks Cooper pairs, namely, electrons scattered from
one valley to the other “feel” opposite orientations of the
Zeeman field. Moreover, since equal-spin triplet pairing is
odd under change of valley, it is fully suppressed by moderate
intervalley disorder.

In this work, using the quasiclassical Eilenberger formal-
ism, we establish a theory of spectral properties of disordered
Ising superconductors with mixed singlet-triplet pairing sub-
ject to in-plane Zeeman fields. For the most part, we will
focus on the realistic regime of strong ISOC �so � �, τ−1

iv ,
where �so is the energy associated with ISOC, � is the
superconducting gap, and τ−1

iv is the intervalley scattering
rate. This regime is relevant for most experimentally available
Ising superconductors: �so � � holds in all superconducting
TMDs, while the value of τ−1

iv is sample dependent, but can
be estimated as τ−1

iv � � in high-quality samples [15]. In
this regime, we show that the quasiclassical description of
Ising superconductors acquires a particularly simple form,
resembling the well-known Abrikosov-Gor’kov (AG) theory
[26] with a modified self-consistency condition. Our theory
provides a straightforward framework for self-consistent cal-
culation of order parameters and the DoS, which can be
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particularly useful in interpretation of recent experiments such
as tunneling spectroscopy measurements [7,15]. We also in-
vestigate the mirage gaps at high energies, where our AG-like
description does not apply. We discuss how the mirage gaps
are modified in the presence of triplet pairing, generalizing the
results of Ref. [23] to the disordered case.

The paper is organized in the following way. In Sec. II we
introduce the model for disordered Ising superconductors with
mixed singlet and triplet pairing. In Sec. III we formulate the
quasiclassical Eilenberger equation for this system. In Sec. IV
we present the main result of our work—the AG-like equa-
tions describing Ising superconductors in the realistic regime
of strong ISOC. We use this result to calculate self-consistent
order parameters, upper critical field, and the DoS at low
energies. Finally, in Sec. V, we investigate the mirage gaps
by calculating the DoS at higher energies.

II. MODEL

The conduction/valence band in the normal state of dis-
ordered atomically thin two-dimensional TMDs is described
by the following Hamiltonian [24,27] (see Appendix A for
derivation):

H =
∑
qq′

a†
q

(
HN

q δqq′ + HD
qq′

)
aq′ . (1)

Here, aq=(aq↑1, aq↓1, aq↑1̄, aq↓1̄ )T are the creation operators
in the conduction/valence band with momentum q, spin s =
↑,↓, and at valley η = ±1. The low-energy band structure of
TMDs is captured by the term

HN
q = ξq + �soηzsz + hsx. (2)

The Hamiltonian (2) is derived starting from a more compli-
cated Dirac-like Hamiltonian [17,18] and projecting it to the
conduction/valence band assuming a large chemical potential
[24,27], as detailed in Appendix A. Here, ξq = ±Eq − μ,

where Eq =
√

q2v2 + E2
g is the Dirac dispersion of TMDs

[17], q is the small deviation of the momentum from Dirac
points ηK, v is the velocity associated with the linearized
kinetic dispersion, Eg is the difference in on-site energy re-
sponsible for opening the band gap, and μ is the chemical
potential. We use units where h̄ = kB = 1. The upper and
lower sign in the expression for ξq correspond to the con-
duction and valence band of TMDs, respectively, which is
relevant for the description of n-doped (MoS2 [3,4], WS2

[9]) and p-doped (NbSe2 [5], TaS2 [10]) TMD superconduc-
tors, respectively. �so is the energy associated with ISOC,
h = gμBB/2 is related to the amplitude of the in-plane mag-
netic field B and the in-plane g-factor (μB is the Bohr
magneton), and si and ηi (i = x, y, z) are Pauli matrices in the
spin and valley space, respectively. Note that we neglect the
contribution of the � point [5,10] and trigonal warping [18] in
our model. Random spin-independent disorder is accounted
for by the term HD

qq′ , which contains both the intravalley scat-
tering (with an associated scattering time τ0) and intervalley
scattering (with a scattering time τiv). In Appendix A we
provide the explicit form of the disorder potential.

We consider local superconducting pairing potentials
driven by a conventional mechanism of electron-phonon

interaction. The Cooper pairs are formed from electrons at
opposite momenta, and they necessarily come from different
valleys. The superconducting order parameter can then be
generally written as

� = � + d · s, (3)

where � is the singlet order parameter, d = (dx, dy, dz ) is
a vector of the triplet order parameters, and s is a vector
of spin Pauli matrices. The general superconducting pairing
Hamiltonian is then

H� =
∑
ηqss′

[isy�]ss′a†
qsηa†

q̄s′η̄ + H.c., (4)

where we adopted the notation q̄ = −q, η̄ = −η. The general
pairing wave function can be written as

|	〉 = �(|↑↓〉 − |↓↑〉) + dz(|↑↓〉 + |↓↑〉)

+ dx(|↓↓〉 − |↑↑〉) + idy(|↓↓〉 + |↑↑〉). (5)

The component dz corresponds to opposite-spin triplets, while
the components dx,y describe equal-spin triplets. Due to the
inversion symmetry breaking, the dz triplet may exist in Ising
superconductors at zero magnetic field, and its coupling to
the singlet is governed by the ratio �so/μ. Since in our
model μ � �so, the dz triplet is essentially decoupled from
the singlet. Moreover, dz is suppressed by small intravalley
scattering. On the other hand, applying the Zeeman field en-
ables equal-spin triplets. As shown in Refs. [19,20], the triplet
component that is perpendicular to both the Zeeman field and
the ISOC field, dy in our notation, can couple to the singlet.
This singlet-triplet coupling is governed by the ratio h/�so,
and therefore the presence of the triplet can significantly al-
ter the properties of the superconductor at sufficiently high
fields. Moreover, this triplet is immune to intravalley scatter-
ing, but since it is odd in the valley index, it is still affected
by intervalley scattering. In the following, we will consider
an Ising superconductor with dominant singlet pairing and a
subdominant dy triplet with a relative phase of −π/2 [19,20],
parametrized as dy = −iηψ . Other triplets, dx and dz, will
not be considered, as they do not significantly contribute to
field-dependent properties of Ising superconductors.

III. QUASICLASSICAL EQUATIONS

If the chemical potential is sufficiently away from the
band gap, so that it is the dominant energy scale, |μ| − Eg �
�,ψ, h,�so, τ

−1
0 , τ−1

iv , the Ising superconductor can be de-
scribed by the quasiclassical Eilenberger equation [20,22,25]

[
(ωn + ihsx )τz + iη�sosz + �τy − ηψsyτx + 1

2τiv
gη̄, gη

]
= 0.

(6)

Detailed derivation of Eq. (6) is provided in Appendix B.
Here, the central object is the quasiclassical Green’s function
gη, which is a matrix in spin and Nambu spaces, and satisfies
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the normalization condition g2
η = 1. Moreover, τi (i = x, y, z)

are Pauli matrices spanning the Nambu space, ωn = 2πT (n +
1
2 ) is the Matsubara frequency, and T is the temperature. The
effect of intervalley disorder is captured by the last term on
the left-hand side of the commutator in Eq. (6). Intravalley

disorder has no effect on superconductivity and does not ap-
pear in the Eilenberger equation.

Using Eq. (6) and the normalization condition, we find that
the quasiclassical Green’s function can be parametrized by
only two parameters, x and y, such that

gη = x

⎡
⎣1 + iyτx − iη

�so
ωny−�

h − ψ

ωn + x
τiv

(
1 − (ωny−�)2

h2

) syτy

⎤
⎦[

τz + i
ωny − �

h
sxτy

]
, (7)

where x and y are determined by solving the coupled nonlinear equations

0 =
[
ωn + x

τiv

(
1 − (ωny − �)2

h2

)]
[(ωny − �)(�y + ωn) + h2y] −

(
�so

ωny − �

h
− ψ

)
[(ωny − �)ψ − h�so], (8)

1 = x2

[
1 + y2 +

(
(ωny − �)(�y + ωn) + h2y

(ωny − �)ψ − h�so

)2
](

1 − (ωny − �)2

h2

)
. (9)

The parameter x describes the normal part of the Green’s
function [component xτz in Eq. (7)], while the parameter
y describes the singlet anomalous part [component xyτy in
Eq. (7)]. All other components of gη can be expressed in terms
of x, y, and other model parameters, as shown in Eq. (7).

Using Eq. (7), we can write the coupled self-consistency
conditions for the singlet and triplet order parameters as

� = πT gs

4

∑
η,ωn>0

Tr[τygη] = 2πT gs

∑
ωn>0

yx,

ψ = πT gt

4

∑
η,ωn>0

Tr[ηsyτxgη]

= 2πT gt

∑
ωn>0

(ωny − �)(�y + ωn) + h2y

h�so − (ωny − �)ψ
x. (10)

Here, gs,t = ν0λs,t , with the normal density of states ν0 and
the coupling constants λs,t in the singlet and triplet channel.
Density of states can be obtained after analytical continuation
iωn → ε + i0+, where ε is the energy:

ν(ε) = ν0

4

∑
η

ReTr[τzgη]iωn→ε+i0+ = ν0Re[x]iωn→ε+i0+ .

(11)

The nonlinear system of Eqs. (8) and (9) yields multiple
solutions, so one needs to select the physical ones. Namely,
when solving in the Matsubara frequency domain, one should
choose real positive solutions (x, y > 0). When solving in the
energy domain, we choose the solutions yielding the positive
DoS: Re[x] � 0. In general, Eqs. (8)–(10) need to be solved
simultaneously numerically, which can present a demanding
computational problem. Fortunately, significant simplifica-
tions are possible in the realistic regime where spin-orbit
coupling is large, which we discuss in detail in Sec. IV. For
completeness, in the Appendices we present other parameter
regimes where simple solutions can be found: in the absence
of intervalley disorder for any ISOC strength in Appendix C,
and for very strong intervalley disorder τ−1

iv � �so � � in
Appendix D.

IV. REGIME OF STRONG ISOC: �so � �, τ−1
iv

In this section we focus on the realistic regime of strong
ISOC. First, in Sec. IV A we present the simplified AG-like
theory for this regime. These results are then used to calculate
the self-consistent order parameters (Sec. IV B), upper critical
field (Sec. IV C), and the DoS (Sec. IV D).

A. AG-like equation and the self-consistency condition

In the limit �so � τ−1
iv ,�, Eqs. (8) and (9) greatly sim-

plify, and reduce to a single equation for the quantity
u = �soρ

−1y−1:

ωn

�̃st
= u

(
1 − α̃

�̃st

1√
1 + u2

)
, (12)

while x = u/
√

1 + u2, and we introduced ρ = √
�2

so + h2.
This is the Abrikosov-Gor’kov equation [26], with the de-
pairing parameter α̃, and a renormalized gap parameter �̃st

accounting for both singlet and triplet pairing:

α̃ = h2

ρ2τiv
, �̃st = �so

ρ
� + h

ρ
ψ. (13)

AG theory was originally derived to describe superconduc-
tors with magnetic impurities, but its validity has since been
extended to many situations where time-reversal symmetry
is broken and a pair-breaking mechanism that mixes time-
reversed states is present [28]. In our case, time-reversal
symmetry is broken by the magnetic field, while interval-
ley scattering provides the pair-breaking mechanism. In most
superconductors described by the AG theory, the depairing
parameter is quadratic or linear in the time-reversal symmetry
breaking field. In Ising superconductors, the dependence is
more complex, and moreover, the renormalized gap parameter
�̃st also depends on the field.

Another difference compared to the standard AG theory is
that the self-consistency condition in Ising superconductors
is more complicated. The coupled self-consistency condi-
tions (10) at temperatures smaller than the triplet critical
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temperature, T < Tct , simplify to

0 =
∑
ωn>0

[
1 + ω2

n
ω2

n+ρ2

(
ρ�

�so�̃st
− 1

)
√

1 + u2
−

ρ�

�so√
ω2

n + �2
0

]
,

0 =
∑
ωn>0

[
1 + ω2

n
ω2

n+ρ2

(
ρψ

h�̃st
− 1

)
√

1 + u2
−

ρψ

h√
ω2

n + ψ2
0

]
. (14)

Here, �0 and ψ0 are the singlet and triplet order param-
eters at h,�so, τ

−1
iv = 0, at the given temperature T , and

we assume �0 > ψ0. We used the fact that the coupling
constants can be expressed as using the self-consistency
condition at h,�so, τ

−1
iv = 0, namely, g−1

s = 2πT
∑

ωn
(ω2

n +
�2

0)−1/2, while at T < Tct we have g−1
t = 2πT

∑
ωn

(ω2
n +

ψ2
0 )−1/2. On the other hand, at temperatures T > Tct , we

need to do a substitution
∑

ωn
1/

√
ω2

n + ψ2
0 → ∑

ωn
1/ωn −

(2πT )−1 ln Tct/T in Eq. (14) [and also in F (ψ0) defined be-
low]. The terms proportional to ω2

n in Eq. (14) must be kept
to ensure convergence at high energies. Combining the two
lines of Eq. (14), we can compactly write a single equation for
�̃st as

F (�0)F (ψ0)

�2
soF (�0) + h2F (ψ0)

=
∑
ωn>0

1√
1 + u2

1

ω2
n + ρ2

, (15)

where we defined the function F as

F (x) =
∑
ωn>0

[
1√

1 + u2
− �̃st√

ω2
n + x2

]
. (16)

If intervalley scattering is strong, τ−1
iv � �0, the triplet

pairing is fully suppressed, and we can do the following sub-
stitutions in Eq. (12):

α̃ → α = h2/(�2
soτiv ), �̃st → �. (17)

Moreover, the self-consistency condition in this regime sim-
plifies to

∑
ωn>0

[
1√

1 + u2
− �√

ω2
n + �2

0

]
= 0, (18)

and at zero temperature and in the gapped regime (α < �)
we have ln �/�0 = −απ/(4�). Therefore, in this regime
the Ising superconductor is described by the standard AG
theory, with the depairing parameter quadratic in field and the
standard self-consistency condition.

Equations (12) and (15) are the main results of this work,
allowing for straightforward self-consistent calculations of
order parameters for Ising superconductors in the realistic
regime of strong ISOC. Using this result, existing AG solvers
can be readily adapted for Ising superconductors with a few
changes. The DoS is also readily found using our theory, as
detailed in Sec. IV D.

B. Self-consistent order parameters

In Fig. 1, we show results of the self-consistent calculation
of the order parameters as a function of magnetic field for
different values of intervalley disorder. First, using Eqs. (12)

FIG. 1. (a) Renormalized order parameter �̃st as a function of
Zeeman field, for different strengths of intervalley disorder. Dashed
and full lines correspond to scenarios without and with triplet pairing
(Tct = 0.05Tcs), respectively. (b) For the scenario with triplet pairing,
we plot separately the singlet and triplet order parameter, represented
by the full and dashed lines, respectively. In all plots �so = 20Tcs and
the temperature is set to T = 0.1Tcs, where Tcs is the singlet critical
temperature.

and (15), we determine the effective order parameter �̃st ,
shown in Fig. 1(a). Then, using the first and second line of
Eq. (14), we can separately extract the singlet and triplet
order parameter, respectively, shown in Fig. 1(b). As seen
from the plots, the presence of weak triplet pairing makes
superconductivity significantly more robust to the effect of
in-plane fields. Moreover, due to the singlet-triplet coupling
by the Zeeman field, the singlet order parameter can survive
far higher fields in the presence of triplets. The presence of
intervalley scattering significantly reduces the upper critical
field (see also Sec. IV C), and suppresses the triplet order
parameter.

At T = 0 and in the gapped phase (α̃ < �̃st ), from Eq. (15)
we can obtain an analytical expression determining the renor-
malized gap as

ρ2
(

ln �̃st
�0

+ πα̃

4�̃st

)(
ln �̃st

ψ0
+ πα̃

4�̃st

)
�2

so

(
ln �̃st

�0
+ πα̃

4�̃st

) + h2
(

ln �̃st
ψ0

+ πα̃

4�̃st

) = ln
�̃st

2ρ
+ πα̃

4�̃st
.

(19)

In the absence of intervalley scattering, this becomes

�̃st = �0 exp

[
−

h2 ln �0
ψ0

ln 2ρ

�0

ρ2 ln 2ρ

�0
+ �2

so ln �0
ψ0

]
. (20)

This equation illustrates that the order parameter cannot be
fully suppressed by applying the Zeeman field in the absence
of intervalley disorder. This means that the upper critical
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field hc2 diverges at zero temperature, as will be discussed in
Sec. IV C.

C. Upper critical field

To calculate the upper critical field hc2, we use the fact
that the phase transition to the normal state is of the second
order [11,24], so that the order parameters vanish at the tran-
sition. Then, we may keep only the terms up to the linear
order in � and ψ in Eqs. (12) and (14). Solving Eq. (12)
yields u = (ω + α̃)/�̃st , so that 1/

√
1 + u2 ≈ �̃st/(ω + α̃).

Substituting this into Eq. (14), and using that the coupling
constants can be expressed in terms of singlet and triplet
critical temperatures, g−1

s = 2πT
∑

ωn
1/ωn − ln Tcs/T and

g−1
t = 2πT

∑
ωn

1/ωn − ln Tct/T , we can write the linearized
gap equation as

det[T̂ + Ŝ] = 0, (21)

where

T̂ =
[

ln T
Tcs

0
0 ln T

Tct

]
, (22)

and

Ŝ = �

(
iρc2

2πT

)
1

ρ2
c2

[
h2

c2 �sohc2

�sohc2 �2
so

]

+ �

(
α̃(hc2)

2πT

)
1

ρ2
c2

[
�2

so −�sohc2

−�sohc2 h2
c2

]
. (23)

Here, �(x) = Re[ψ ( 1
2 ) − ψ ( 1

2 + x)], where ψ (x) is the

digamma function, and we introduced ρc2 =
√

�2
so + h2

c2.
Note that a more general expression for hc2, valid at arbitrary
�so, has been presented in Ref. [20] (see also Appendix E).

In the absence of intervalley disorder, only the first line is
finite in Eq. (23). In that case hc2 logarithmically diverges at
zero temperature [24] in the absence of triplet pairing. The
triplet pairing shifts this divergence to Tct , and the critical
field is infinite at all T < Tct . At finite intervalley disorder,
the depairing term in the second line of Eq. (23) cuts off the
divergence. If the intervalley scattering is strong, τ−1

iv � �0,
the triplets are fully suppressed. Moreover, in this regime
�so � hc2, so only the second line in Eq. (23) is relevant, and
we obtain the standard AG depairing equation for the critical
field

ln
T

Tcs
= �

(
α(hc2)

2πT

)
. (24)

In Fig. 2, we illustrate the behavior of hc2 as a function of
temperature at different values of intervalley scattering. We
see that weak triplet pairing significantly increases the hc2 in
the absence of intervalley disorder. Including such disorder
quickly suppresses the effect of triplets.

D. Density of states

The density of states is given as

ν(ε) = ν0Re

[
u√

1 + u2

]
iωn→ε+i0+

, (25)

FIG. 2. Upper critical field as a function of temperature, for
different values of intervalley scattering. Spin-orbit coupling is set to
�so = 20 Tcs. Dashed and full lines correspond to scenarios without
and with triplet pairing (Tct = 0.05Tcs), respectively.

where u is obtained as a solution of Eq. (12). The gap edge in
the DoS is given by the standard expression [26,28]: E2/3

g =
�̃

2/3
st − α̃2/3. Note that the DoS calculated this way is correct

only at low energies, and the high-energy features of the
spectrum, the “mirage” gaps, are not captured. We discuss
these features in more detail in Sec. V.

In the absence of intervalley scattering, the DoS is given by
sharp BCS peaks at the renormalized gap �̃st ,

ν(ε) = ν0
|ε|√

ε2 − �̃2
st

θ (|ε| − �̃st ). (26)

In contrast to conventional superconductors, which exhibit
spin splitting of the coherence peaks when the Zeeman field is
applied, clean Ising superconductors will have a single coher-
ence peak even at high fields. The only effect of increasing the
field is the reduction of the gap in the quasiparticle spectrum.

Adding intervalley scattering introduces a depairing mech-
anism and the DoS becomes smeared [25]. In Fig. 3, we
plot the DoS for different values of in-plane field, using the
self-consistent order parameters from Fig. 1. As seen from
the plots, the gap in the DoS is significantly more robust
to the fields in the presence of triplets, due to the increased
robustness of the order parameters � and ψ (see Fig. 1).

V. MIRAGE GAPS AT HIGH ENERGIES

Mirage gaps are high-energy half-gap features in the DoS
of Ising superconductors introduced in Ref. [22] (see Fig. 4),
which appear as a consequence of equal-spin triplet correla-
tions of the form ∼|↓↓〉 + |↑↑〉. In pure singlet-pairing Ising
superconductors this type of correlation is enabled by the
combination of ISOC and Zeeman field. The finite equal-spin
triplet additionally contributes as a source of such correlations
[15,23].

Formally, the correlations responsible for the mirage gaps
are captured by the term ∼syτyτz ∼ syτx in the quasiclassical
Green’s function gη [see Eq. (7)]. Since these correlations are
odd in valley index η, they are sensitive to intervalley disorder.
This is illustrated in Fig. 4, where we show how the mirage
gaps are suppressed by weak intervalley scattering.

At large ISOC, the mirage gaps appear at energies ε ≈ ±ρ.
Assuming �so, ε � �0, τ

−1
iv , h, from Eqs. (7) and (8) we find
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FIG. 3. Density of states of an Ising superconductor for different
values of the in-plane field: (a) without triplet pairing and (b) with
triplet pairing (Tct = 0.05Tcs). We set �so = 20 Tcs, T = 0.1Tcs, and
τ−1

iv = Tcs. DoS is plotted using self-consistent order parameters �

and ψ at each value of the Zeeman field (see Fig. 1).

an approximate expression for the DoS as

ν ≈ ν0

2
Re

[
1 + |�̃|√

�̃2 − 4P2

]∣∣∣∣∣
iωn→ε+i0+

, (27)

where �̃ = ωn(ωn + τ−1
iv ) + ρ2 + �2 + ψ2 and P = h� −

�soψ . In the absence of intervalley scattering, the width of
the mirage gaps can be approximated as

W ≈ 2

ρ
(h� − �soψ ). (28)

FIG. 4. Mirage gap of the Ising superconductor with triplet pair-
ing in the absence of disorder (full line) and in the presence of weak
disorder (dashed line, τ−1

iv = 0.5Tcs). The parameters used in the plots
are �so = 5Tcs, h = 3Tcs, T = 0.1Tcs, and Tct = 0.05Tcs.

FIG. 5. (a) Width of the mirage gaps, and (b) their position, as a
function of the in-plane magnetic field in the absence of intervalley
disorder. We consider the scenario with and without triplet pairing
(Tct = 0.05Tcs). The parameters used in the plots are �so = 5Tcs,
T = 0.1Tcs. Vertical dashed lines in (b) indicate the upper critical
fields.

The ratio of the mirage gap and the main gap is then
W/(2�̃st ) ≈ h/�so − ρψ/(�so�̃st ). Therefore, the locking
of the relative phase of singlet and triplet order parameters
(−π/2) is such that it increases the width of the main gap, but
reduces the width of the mirage gap.

In the absence of intervalley disorder, the mirage gaps
can be straightforwardly calculated at arbitrary ISOC using
analytical expressions for the DoS and the self-consistency
condition first presented in Ref. [15] (see also Appendix C
and Ref. [23]). In Fig. 5(a), we plot the width of the mirage
gap as a function of magnetic field with and without triplet
pairing. At low fields, we see that the presence of triplet
pairing reduces the width of mirage gaps. Moreover, in the
presence of triplets the mirage gaps are able to persist up to
much higher fields, due to the increased hc2. These findings
are consistent with the results of Ref. [23]. The position of
mirage gaps εMG, illustrated in Fig. 5(b), is not significantly
influenced by the presence of triplet pairing.

VI. CONCLUSIONS

In this work, we showed that the complex interplay of
ISOC, Zeeman field, disorder, and mixed singlet-triplet pair-
ing in Ising superconductors can be captured by relatively
simple equations resembling the well-known Abrikosov-
Gor’kov theory in the realistic regime of strong ISOC. We use
our results to calculate the bulk properties of the supercon-
ductor such as the upper critical field and the DoS, which can
be directly useful for the recent experiments measuring these
quantities. Moreover, our equations could be useful for future
studies of hybrid structures of Ising superconductors, such as
Josephson junctions or superconductor/ferromagnet hybrids,
which have recently been experimentally realized in van der
Waals heterostructures [14,29,30].
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APPENDIX A: DIRAC-LIKE MODEL FOR TMDS
AND PROJECTION TO THE CONDUCTION

OR VALENCE BAND

In this Appendix, we derive the Hamiltonian (2) starting
from the Dirac-like model for the normal state of TMDs [17]
and projecting it to the conduction/valence band [24,27]. We
also provide the explicit form of the disorder potentials for
intra- and intervalley scattering in the projected basis.

The Hamiltonian describing the normal state of TMD
monolayers in the vicinity of the ±K points in the presence
of a parallel magnetic field is given by [17,18]

HN =
∑

q

c†
qHN

q cq, (A1)

with HN
q = H0 + HSOC + HZ , where

H0 = v(qxσxηz + qyσy) + Egσz,

HISOC = �KMσzηzsz + �V Zηzsz,

HZ = hsx. (A2)

Here, cq=(cq↑1A, cq↓1A, cq↑1̄A, cq↓1̄A, cq↑1B, cq↓1B, cq↑1̄B,
cq↓1̄B)T are the creation operators with momentum q =
(qx, qy) = q(cos θ, sin θ ) measured from ±K, with spin s =
↑,↓, at valley η = ±1. Indices A and B denote dz2 and
1/

√
2 (dx2−y2 + iηdxy) orbitals of the transition metal, re-

spectively, which dominate the states in the conduction and
valence band, respectively. The two Dirac cones are described
by H0. Ising spin-orbit coupling is described by HISOC, which
has two components, �KM and �VZ, known as Kane-Mele and
valley-Zeeman SOC, respectively. Finally, HZ is the in-plane
Zeeman field. We introduced the Pauli matrices σi, which span
the space of transition metal d orbitals.

To proceed, we assume that H0 gives the dominant contri-
bution to the energy of the system. H0 is diagonalized by the
unitary transformation

Uq = e−iηzαq eiβqσyηz eiαqσzηz , (A3)

with tan 2αq = qy/qx, and tan 2βq = v|q|/Eg. It has a sim-

ple spectrum, Eq =
√

q2v2 + E2
g . After projecting UqHN

q U †
q

onto the conduction or valence band, we obtain the effective
Hamiltonian [24,27]

HN
q = ξq + �soszηz + hsx. (A4)

This is Eq. (2) from the main text. Furthermore, we have
introduced the spin-splitting due to ISOC,

�so = ±�KM
Eg

μ
+ �VZ, (A5)

where the upper and lower sign correspond to the pro-
jection to conduction/valence band, respectively. Here, we
assumed that the chemical potential is sufficiently away
from the band gap, so that it is the dominant energy scale:
|μ| − Eg � �so, h,�,ψ, τ−1

0 , τ−1
iv . Finally, the projected

Hamiltonian (A1) can be written as

HN,p =
∑

q

a†
qHN

q aq, (A6)

where aq=(aq↑1, aq↓1, aq↑1̄, aq↓1̄ )T are the projected creation
operators in the conduction/valence band, obtained using
(ac

q, av
q)T = Uqcq. The indices c and v, which denote the

conduction and valence band, are omitted in the rest of the
text for brevity.

The effect of impurities can be modeled by introducing
random disorder

HD =
∑
qq′

c†
qHD

qq′cq′ , (A7)

with

HD
qq′ = V 0

q−q′ +
∑
i=x,y

V i
q−q′ηi. (A8)

The first and second term in Eq. (A8) correspond to intra-
and intervalley disorder. We characterize the disorder poten-
tials by Gaussian correlators and assume that different kinds
of disorder are uncorrelated: 〈V i

qV j
q′ 〉dis = V 2

i δqq̄′δi j . Here, the
brackets 〈...〉dis represent disorder averaging. After rotating
the disorder potential, UqHD

qq′U †
q′ , and projecting it to the

conduction/valence band, we obtain the projected disorder
Hamiltonian as HD,p = ∑

qq′ a†
qHD

qq′aq′ with

HD
qq′ = V 0

q−q′ fθθ ′ +
∑
i=x,y

V i
q−q′ f̃θθ ′ηi. (A9)

Here, the functions fθθ ′ and f̃θθ ′ capture the anisotropy
of the projected disorder potential, which is due to the
momentum dependence of the unitary transformation Uq in-
troduced in Eq. (A3). In particular, 2 fθθ ′ = 1 + e−iηz (θ−θ ′ ) ±
Eg

μ
(1 − e−iηz (θ−θ ′ ) ) and 2 f̃θθ ′ = ±(1 − e−iηz (θ+θ ′ ) ) + Eg

μ
(1 +

e−iηz (θ+θ ′ ) ).

APPENDIX B: DERIVATION
OF THE EILENBERGER EQUATION

In this Appendix we derive the Eilenberger equation (6)
and the self-consistency conditions (10).

Singlet and triplet superconducting pairing potentials are
described by the following Hamiltonian:

HSC =
∑
ηq

∑
i=A,B

[
�c†

q↑ηic
†
q̄↓η̄i + ψη

∑
s

c†
qsηic

†
q̄sη̄i

]
+ H.c..

(B1)

After projecting to the conduction/valence band (see
Appendix A), this becomes

HSC,p =
∑
ηq

[
�a†

q↑ηa†
q̄↓η̄ + ψη

∑
s

a†
qsηa†

q̄sη̄

]
+ H.c.. (B2)

The mean-field singlet and triplet order parameters are deter-
mined from the self-consistency conditions

� = −λs

∑
qη

〈aq̄↓η̄aq↑η〉, ψ = −λt

∑
qηs

η〈aq̄sη̄aqsη〉. (B3)
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Combining the pairing Hamiltonian with the disordered nor-
mal state Hamiltonian in the projected basis we obtain H p =
HN,p + HD,p + HSC,p, which can be rewritten as

H p = 1

2

∑
qq′

�†
qHBdG

qq′ �q′ . (B4)

Here, we introduced the Nambu pseudospinor �q = (aq ã†
q̄)T ,

with ã†
q̄=(a†

q̄↓1̄
, −a†

q̄↑1̄
, a†

q̄↓1, −a†
q̄↑1)T . The Bogoliubov–de

Gennes (BdG) Hamiltonian is

HBdG
qq′ =

(
HN

q δqq′ + HD
qq′ (� − iψηzsy)δqq′

(� + iψηzsy)δqq′ −syηx
[
HN

q̄ δqq′ + HD
q̄′q̄

]T
syηx

)
.

(B5)

The matrix in Eq. (B5) denotes structure in the Nambu space.
Using the explicit form for HN and HD, the BdG Hamiltonian
can be rewritten as HBdG

qq′ = HBdG,0
q δqq′ + HD

qq′τz, with

HBdG,0
q = (ξq + �soszηz )τz + hsx + �τx + ψηzsyτy. (B6)

Next, we introduce the Gor’kov Green’s function satisfy-
ing (iωn − HBdG)G = 1. Then, the disorder-averaged Green’s
function Gq = 〈Gqq′ 〉dis can be expressed as(

iωn − HBdG,0
q − �ηq

)
Gηq = 1, or

Gηq
(
iωn − HBdG,0

q − �ηq
) = 1, (B7)

within the self-consistent Born approximation. Here, we used
the fact that Gq is diagonal in valley space, and �ηq is the
self-energy associated with the disorder potential, given as

�ηq =
∑

q′
τz

[
V 2

0 Fθθ ′Gηq′ + (
V 2

x + V 2
y

)
F̃θθ ′Gη̄q′

]
τz. (B8)

We introduced the functions Fθθ ′ = [ fθθ ′ ]η[ fθ ′θ ]η = cos2

( θ−θ ′
2 ) + E2

g

μ2 sin2( θ−θ ′
2 ), and F̃θθ ′ = [ f̃θθ ′ ]η[ f̃θ ′θ ]η̄ = E2

g

μ2 cos2

( θ+θ ′
2 ) + sin2( θ+θ ′

2 ). The self-consistency condition (B3) can
now be expressed using the Green’s function as

� = −T λs

4

∑
qηωn

Tr[τxGηq],

ψ = T λt

4

∑
qηωn

Tr[ητysyGηq]. (B9)

To proceed, we define the quasiclassical Green’s
function as

gηθ = i

π

∫
dξq τzGηq. (B10)

After multiplying the first (second) line of Eq. (B7) by τz from
the left (right), subtracting the two lines, and integrating over
energies ξq, we obtain the Eilenberger equation

[(ωn + ihsx )τz + iη�sosz + �τy − ηψsyτx + σηθ , gηθ ] = 0,

(B11)

where we have introduced the reduced self-energy

σηθ = πν0

∫
dθ ′

2π

[
V 2

0 Fθθ ′gηθ ′ + (
V 2

x + V 2
y

)
F̃θθ ′gη̄θ ′

]
. (B12)

Here, ν0 = μ/(2πv2
F ) is the normal-state density of states per

valley per spin, and vF = v
√

1 − E2
g /μ2 is the Fermi velocity.

In order to resolve the angular structure of gηθ , we expand
it into harmonics in angle θ

gηθ ≈ gη + gη1 cos θ + gη2 sin θ + · · · . (B13)

Then, we substitute this expansion in Eq. (B11) to obtain a
system of coupled equations for the harmonics. We find that
its solution yields gη �= 0 and gη1, gη2 = 0. Similarly, we can
show that the higher harmonics also vanish. Therefore, the
quasiclassical Green’s function can be taken to be independent
of the angle θ and gηθ = gη. Thus, the reduced self-energy
simplifies to

σηθ = ση = 1

2τ0
gη + 1

2τiv
gη̄. (B14)

Here, the scattering rates are given as τ−1
0 = πν0V 2

0 (1 +
E2

g /μ2) and τ−1
iv = πν0(V 2

x + V 2
y )(1 + E2

g /μ2). The partic-
ularities of scattering close to a Dirac point are not relevant
in superconducting TMDs (where |μ| > Eg > 0), in contrast
to undoped graphene or other gapless Dirac systems (where
Eg, μ → 0) [31,32]. Note that the parameters τ−1

0 , τ−1
iv , ν0,

as well as vF and �so, are all renormalized by changing
the chemical potential, via the terms proportional to Eg/μ.
Placing Eq. (B14) into (B11) we finally obtain Eq. (6). Im-
portantly, the intravalley scattering term 1

2τ0
[gη, gη] vanishes,

and therefore this type of disorder has no effect on supercon-
ductivity (Anderson theorem [33]).

Finally, the self-consistency condition (10) is readily ob-
tained from (B9) after using the definition of the quasiclassical
Green’s function (B10).

APPENDIX C: ANALYTICAL EXPRESSIONS
IN THE ABSENCE OF INTERVALLEY DISORDER

AT ARBITRARY ISOC STRENGTH

In the absence of intervalley scattering, it is possible to
obtain an analytical solution for the quasiclassical Green’s
function from Eqs. (7) and (8), without making additional
assumptions about the magnitude of ISOC (see also the
Supplemental Material of Ref. [15]). From there, we obtain
for the DoS

ν(ε) = 2ν0Re

[
ωn sign(�)

X

(
1 + |�|√

�2 − 4P2

)]
iωn→ε+i0+

,

(C1)

and the coupled self-consistency conditions are

� = 2πT gs

∑
ωn>0

1

X

[
�

(
1 + � − 2h2

√
�2 − 4P2

)
+ ψ

2h�so√
�2 − 4P2

]
,

(C2)

ψ = 2πT gt

∑
ωn>0

1

X

[
ψ

(
1 + � − 2�2

so√
�2 − 4P2

)
+ �

2h�so√
�2 − 4P2

]
.

(C3)
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We introduced the notation � = ω2
n + ρ2 + �2 + ψ2, P =

h� − �soψ, and X = √
2[� − 2ρ2 + sign(�)√

�2 − 4P2]1/2.

APPENDIX D: STRONGLY DISORDERED
LIMIT τ−1

iv � �so � �

In the main text, we focused on the realistic regime of
strong ISOC, �so � τ−1

iv ,�. Here, we will consider the op-
posite regime τ−1

iv � �so � �.
For strong-enough intervalley scattering, τ−1

iv � �, triplet
pairing is suppressed, as shown in the main text. In this
regime, the general equations (8) and (9) reduce to

ωn ± ih

�
= u± + �2

soτiv

2�

u± − u∓√
1 + u2∓

, (D1)

where 2x = ∑
± u±(1 + u2

±)−1/2 and 2y = x−1 ∑
±(1 +

u2
±)−1/2. This is equivalent to the result of Maki and Tsuneto

[34] for two-dimensional superconductors with spin-orbit
impurities. Namely, the effect of ISOC is fully captured by an
effective spin-orbit scattering rate �2

soτiv . Note that a similar
effective scattering rate also appears in the studies of weak
localization of TMD materials in the relevant regime [27].

As in Ref. [34], the DoS is given as

ν(ε) = ν0

2

∑
±

Re

[
u±√

1 + u2±

]
iωn→ε+i0+

, (D2)

the self-consistency condition is

� = πT gs

∑
ωn>0,±

1√
1 + u2±

, (D3)

and the linearized gap equation is

ln
T

Tcs
= 2πT

∑
ωn

[
1

ωn
− ωn + �2

soτiv

h2 + ωn(ωn + �2
soτiv )

]
. (D4)

Note that Eq. (D1) reduces to the Abrikosov-Gor’kov equa-
tion if ISOC is strong enough, �2

soτiv � �0, with a depairing
parameter α = h2/(�2

soτiv ) and the gap parameter �. There-
fore, there is an overlap with the regime �so � τ−1

iv � �0

presented in Eqs. (17) and (18) of the main text.
On the other hand, for weak ISOC, �2

soτiv � �0, we re-
cover the standard equations for the paramagnetically limited
superconductor. Here, the electrons are so frequently scattered

between the valleys that they no longer “feel” the ISOC. In
this regime the DoS is spin split

ν(ε) = ν0

2

∑
±

Re
ε ± h√

(ε ± h)2 − �2
, (D5)

and the linearized gap equation is

ln
Tcs

T
= Re

[
ψ

(
1

2
+ ih

2πT

)
− ψ

(
1

2

)]
. (D6)

APPENDIX E: UPPER CRITICAL FIELD
AT ARBITRARY ISOC STRENGTH

In Sec. IV B we presented an analytical result determining
the upper critical field at strong ISOC �so � �, τ−1

iv . Here,
we will derive a more general expression valid for any ISOC
strength.

In the vicinity of the transition to the normal state, we
linearize Eq. (8) in order parameters and solve it to determine
y by taking x ≈ 1. Then, we can obtain the coupled linear gap
equations from Eq. (10),

� = 2πT gs

∑
ωn>0

[
�

ωn
(
ωn + 1

τiv

) + �2
so

An
+ ψ

�sohc2

An

]
,

ψ = 2πT gt

∑
ωn>0

[
�

�sohc2

An
+ ψ

ω2
n + h2

c2

An

]
. (E1)

Here, we introduced An = (ωn + 1
τiv

)(ω2
n + ρ2

c2) − 1
τiv

�2
so.

Then, the linear gap equation can be written in the form
det[T̂ + Ŝ] = 0, where T̂ was introduced in Eq. (22), and

Ŝ =
[
Ss Sst

Sst St

]
, (E2)

where

Ss = 2πT
∑
ωn>0

[
1

ωn
− ωn

(
ωn + 1

τiv

) + �2
so

An

]
,

St = 2πT
∑
ωn>0

[
1

ωn
− ω2

n + h2
c2

An

]
,

Sst = 2πT
∑
ωn>0

�sohc2

An
. (E3)

Similar expressions were previously reported in Ref. [20]. In
the case of singlet pairing only, the linear gap equation re-
duces to ln(Tcs/T ) = Ss [24]. Taking the limit �so � �, τ−1

iv ,
Eqs. (E2) and (E3) reduce to Eq. (23) from the main text.
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