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Enhancement of superconductivity in a dirty marginal Fermi liquid
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We study superconductivity in a two-dimensional, disordered marginal Fermi liquid. At the semiclassical level,
the transition temperature Tc is strongly suppressed because marginal Fermi liquid effects destroy well-defined
quasiparticles. However, we show that interference between quantum-critical collective modes must be included
and these enhance Tc, violating Anderson’s theorem. Our results suggest that phase coherence in a disordered,
quantum-critical system can survive and manifest in the form of collective excitations, despite the absence of
coherent quasiparticles.
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I. INTRODUCTION

Strange-metal behavior has been a persistent mystery for
over 30 years [1] and by now has been observed in a wide
range of quantum materials including the cuprates [2] and
twisted bilayer graphene [3]. Recent theoretical results sug-
gest that both quantum-critical interactions and quenched
disorder are key ingredients for strange metallicity [4–7].
In particular, Refs. [8,9] have proposed microscopic mod-
els based on the interplay between a critical mode and
impurity scattering that addresses aspects of the disordered
marginal Fermi liquid (MFL) phenomenology. The next chal-
lenge is to understand the interplay of critical interactions
and disorder on superconductivity [10–20]. In this paper we
address a fundamental paradox: why does superconductivity,
a macroscopic, coherent many-body quantum state, arise at
anomalously high temperatures from a collision-dominated,
seemingly incoherent and dirty strange metal?

We extend Ref. [9] to include pairing due to an attrac-
tive interaction W . The phenomenological parameter W can
originate from phonons or from integrating out short-scale
fluctuations of the critical mode. Despite the absence of well-
defined quasiparticles due to Planckian dissipation, we predict
a strong tendency towards superconductivity in a disordered
MFL, with a transition temperature

Tc ∼
{

g2(ν0Weff) C/σdc, Tc � T∗,

g2(ν0Weff)2/σdc, Tc � T∗.
(1)

In Eq. (1), g is the Yukawa coupling between fermions and
quantum-relaxational (critical) bosons, σdc is the total dc con-
ductivity of the nonsuperconducting MFL state in units of
e2/h̄, ν0 is the density of states (DOS) per channel, and Weff is
the effective BCS attractive interaction strength renormalized
by MFL effects. The dimensionless constant C is nonuniver-
sal, depending upon the model parameters. While Ref. [9]
focused on the regime where the bosons are characterized by
a thermal mass, Eq. (1) also includes the low-T limit T < T∗,

where T∗ marks the crossover to the regime dominated by
dynamical screening [19].

Equation (1) gives a non-BCS prediction for Tc, pro-
portional to a power of the interaction coupling Weff. The
mechanism leading to this result is a quantum interference
(Maekawa-Fukuyama [21]) process, mediated by the critical
boson mode. This process is of the same nature as that re-
sponsible for Anderson localization and implies that a dirtier
normal state (smaller σdc) yields a larger Tc. Equation (1)
should be compared to an artificial semiclassical limit that
neglects interference, wherein we find a strongly suppressed
transition temperature,

T S
c � � exp

[
− 1

ḡ2

(
eḡ2/ν0W − 1

)]
. (2)

Here � is a UV cutoff and ḡ2 ∼ g2/γel (dimensionless), where
γel is the semiclassical elastic impurity scattering rate. In the
limit of vanishing fermion-boson coupling ḡ → 0, Eq. (2)
reduces to the BCS result T BCS

c ∝ e−1/(ν0W ). Finite ḡ exponen-
tially suppresses the transition due to the lack of well-defined
quasiparticles in the MFL. For small ν0W ∼ ν0Weff � 1 and
order one ḡ and σdc, we can have T S

c � T BCS
c � Tc. This

indicates the crucial role played by quantum interference. To
put our results in context, we next briefly review analogous
physics in conventional disordered superconductors [19,21–
59]; see also Secs. III and IV.

Anderson’s theorem dictates that s-wave superconductivity
is immune to nonmagnetic disorder as long as the normal
state is a good metal [22,23]. However, a seminal work by
Maekawa and Fukuyama revealed that Coulomb interactions
can suppress superconductivity at the quantum level, due to
Anderson localization [21]. The latter serves as a precursor to
the superconductor-insulator transition [26,41].

Interestingly, recent developments suggest a new twist of
this theme: short-ranged (e.g., externally screened Coulomb)
interactions and random or structural inhomogeneity can
enhance superconductivity near the Anderson metal-insulator
transition [19,32–38,40,41,58,59]. Owing to quantum
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interference, single-particle wave functions exhibit
multifractality and strong state-to-state overlaps [60],
resulting in larger interaction matrix elements that promote
the pairing amplitude [32,33]. The detailed mechanism
[32–35,38] involves mixing between the Cooper and
other interaction channels and is in fact identical to the
Maekawa-Fukuyama process [21,26] that suppresses Tc

when Coulomb interactions are included. (See Sec. IV for a
review of why Coulomb interactions suppress Tc instead of
enhancing it.)

We note that the superconducting transition temperature
is determined by the minimum of the pairing amplitude and
the superfluid stiffness [61,62]; multifractality can enhance
the amplitude, while the stiffness is typically monotoni-
cally suppressed by increasing inhomogeneity. Close (but
not too close) to the single-particle localization transition,
the inhomogeneous amplitude itself spans a finite portion
of the sample and is not fractal [33]. This regime is far
from the superconducting-island scenario [30] and the stiff-
ness exceeds the average fractality-enhanced amplitude. The
transition temperature should then be determined by the
latter [59].

Quantum effects like multifractality might be expected to
play no role in a strongly correlated non-Fermi liquid lacking
long-lived quasiparticles. An intensively studied paradigm for
such systems consists of two-dimensional (2D) fermions at
finite density coupled to quantum-critical bosons [7,63–65].
Due to the large decay rate, the Landau quasiparticle paradigm
breaks down in these theories.

In a dirty quantum-critical system, impurities can dramati-
cally modify the self-energies of the bosons and fermions, due
to disorder smearing. At finite temperature T and at the quan-
tum critical point, the (retarded) bosonic propagator acquires
a quantum relaxational form [4,8,9,64]

DR
b (ω, k) = − 1

2

[
k2 − iα ω + m2

b(T )
]−1

. (3)

Here, ω and k are frequency and momentum, α is a constant,
and m2

b = αmT is the thermal mass. The latter generically
arises due to symmetry-allowed quartic bosonic interactions
[4,8,9,66]. With disorder, the bosons behave diffusively, in
contrast with the clean self-energy ∼ω/k. Consequently,
the fermionic self-energy acquires a MFL form for T > T∗
[1,4,8,9]:

�R
f (ω) = −iγel + �R

MFL(ω),

�R
MFL(ω) = −ḡ2

(
ω ln

ωc

x
+ i

π

2
x
)
, (4)

in contrast with its clean counterpart that scales as ∼|ω|2/3.
Here, x = max(|ω|, J T ), where J is a slowly varying dimen-
sionless function of α/αm [9] that we take to be a constant and
ωc is a cutoff. The MFL self-energy indicates that the concept
of quasiparticles is ill defined due to the strong quantum-
critical interaction. Equations (3) and (4) are obtained in a
particular large-N limit [8,9], but the setting of fermions with
strong dissipation and quantum-relaxational bosons in dirty
strange metals is quite general.

In this paper we calculate the pairing susceptibility at finite
temperature to determine the stability of the dirty MFL to su-
perconductivity. Evaluating the usual Cooper ladder diagram

[25,67] gives the strongly suppressed transition temperature
in Eq. (2), due to the MFL self-energy in Eq. (4). This is
however only the semiclassical approximation to the pairing
susceptibility. We also compute the Maekawa-Fukuyama di-
agrams [21,26] that describe quantum interference-mediated
mixing of different interaction channels [32–35,38]. We will
show that the quantum correction to the semiclassical result
predicts robust superconductivity of non-BCS form, Eq. (1).

The model that we study here without W was found
to show a conductivity that diverges at low T [9]. If
W is generated from ultraviolet fluctuations in the boson
mode, our results suggest that the low-temperature state
of this model should be a superconductor that owes its
existence to the interplay between a critical mode and
disorder. Similar results were very recently obtained in
Ref. [19] for superconductivity near a ferromagnetic quantum
critical point.

The outline of this paper is as follows. In Sec. II we de-
scribe the model for a dirty superconducting marginal Fermi
liquid and we present the main results for the pairing suscep-
tibility. In Sec. III, we review the multifractal enhancement of
superconductivity near a metal-insulator transition from the
perspective of the pairing of exact eigenstates. In Sec. IV, we
review the mixing of interaction channels and enhancement
or suppression of pairing in dirty normal metals via the sigma
model. We precisely define the sigma model employed in this
work in Sec. V. Details of the calculations leading to our main
results appear in Sec. VI and we conclude in Sec. VII.

II. MAIN RESULTS

A. Model

We consider a system with N flavors of fermions cou-
pled to SU(N ) matrix bosons tuned to the quantum critical
point [9,68,69]. In the presence of disorder, the bosons be-
come quantum relaxational and the fermions behave as in
a dirty MFL [6,8,9]. We employ the sigma-model formula-
tion of the system that governs its diffusive hydrodynamic
modes [67,70–73]. The theory is transcribed in the Keldysh
framework for the MFL with spin-rotational and time-reversal
symmetries (orthogonal class [74,75]). The sigma model can
be derived by following the standard procedures of disorder
averaging, q̂-matrix decoupling, and gradient expansion by
assuming vF k, ω � γel (vF is the Fermi velocity). The corre-
sponding partition function and action are given respectively
by [9,72]

Z =
∫

Dq̂Dφ̂ D|�|2 e−S, (5)

S = Sq + Sφ + Sqφ + S� + Sq�, (6)

where

Sq = πν0D

8

∫
x

Tr [∇q̂ · ∇q̂]

+ iπν0

2

∫
x

Tr [q̂ σ̂ 3(ω̂ − �̂)], (7)

Sφ = − i

2

∫
ω,k

Tr
{
φ̂T

−ω,−k[D̂b(ω, k)]−1φ̂ω,k
}
, (8)
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Sqφ = − iπν0
g√
N

∫
x

Tr [�̂(x) q̂(x)], (9)

S� = − i
2N

W

∫
t,x

(�̄q�cl + �q�̄cl), (10)

Sq� = iπν0

2

∫
x

Tr [D̂(x) q̂(x)]. (11)

We adopted the shorthand notation
∫

t,x = ∫
dt
∫

d2x
and

∫
ω,k = ∫

dω d2k/(2π )3. The matrix field q̂ →
q̂a,b

σ,σ ′;α,β;i, j;ω,ω′ (x) incorporates both particle-hole (diffuson)
and particle-particle (Cooperon) modes of the fermions and
carries particle-hole {σ, σ ′}, spin-1/2 {α, β}, SU(N) flavor
{i, j}, and Keldysh {a, b} indices as well as frequency labels
{ω,ω′}. It obeys the constraints Tr [q̂] = 0, q̂2 = 1, and
ŝ2σ̂ 1τ̂ 1�̂1q̂T ŝ2σ̂ 1τ̂ 1�̂1 = q̂. Pauli matrices σ̂ , ŝ, τ̂ , and �̂ act
respectively in the particle-hole, spin, Keldysh, and frequency
spaces [72]. D = v2

F /4γel is the fermion diffusion constant.
The quantum-relaxational boson is denoted φ̂; this is a matrix
in flavor but a local field in space and time. Superconductivity
arises via condensation of the local spin-singlet pairing fields
{�̄,�}; W denotes the BCS coupling.

The q̂-matrix action differs from the Fermi-liquid case in
the second line of Eq. (7), where it incorporates the MFL self-
energy �̂ ≡ diag{�R

MFL, �
A
MFL}τ [Eq. (4)]. This results in an

anomalous diffusion propagator [9]. The Yukawa and pairing
interactions between q̂, φ̂, and � appear in Sqφ and Sq�. The
fields �̂ ∼ φ̂ and D̂ ∼ � + �̄ incorporate appropriate matrix
factors and Keldysh labels cl, q, omitted here for brevity (see
Sec. V for details).

Technically we consider flavor “triplet” pairing, wherein
the pairing field [76]

�α,β;i, j = �0 ŝ2
αβ δi j . (12)

SU(N > 2) does not permit condensation of flavor-singlet
fermion pairs. A natural generalization of our work allowing
genuine flavor-singlet pairs would incorporate SO(N) antifer-
romagnetic bosons, but this requires the further incorporation
of (e.g., weakly broken) particle-hole symmetry [77,78].

Our goal is to evaluate the retarded pairing susceptibility
χR by integrating out the q̂ matrix and bosonic φ̂ fields to
obtain an effective propagator for the � field. We proceed by
parametrizing q̂ with coordinates [9,72] and derive a set of
Feynman rules. In addition to Sqφ and Sq�, there is a Hikami
box quartic interaction term appearing after the parametriza-
tion of Sq. Diagram conventions follow Refs. [9,72]; see
Sec. V.

B. Pairing susceptibility

At the semiclassical level, the Cooperon ladder contribu-
tion to the pairing susceptibility [25,67] is diagrammatically
depicted in Fig. 1(b). The corresponding (retarded) inverse
pairing susceptibility as T → Tc is

[
χR

semi

]−1
(� → 0, q → 0) = −2N

W
+ 2πν0 N S (tc) = 0,

(13)

FIG. 1. (a) Feynman diagram for the dynamically screened
SU(N) matrix boson propagator (red wavy line with a red dot)
under the random phase approximation. The wavy line represents
the quantum relaxational bosonic propagator DR

b [Eq. (3)]. (b)–(e)
The diagrams contributing to the inverse static pairing susceptibility
[χR]−1(� = 0, q = 0): panel (b) is the semiclassical Cooperon lad-
der contribution; see also Eq. (14). Panels (c)–(e) are the quantum
interference corrections due to the interplay of diffusive collective
modes (diffusons and Cooperons) and the attractive quantum-critical
interaction; see Eq. (19). The diffuson propagator is represented
diagrammatically by two black solid lines carrying counterpropa-
gating arrows. Similarly, the Cooperon propagator is represented by
two blue dashed lines. �cl/q represents the Cooper pairing field.
The vertex for the coupling between �cl/q and the Cooperon is
represented by the purple dot. More details appear in Secs. V and
VI. (f) The Feynman diagrams renormalizing the BCS channel
scattering amplitude �c in conventional many-body perturbation the-
ory [21,26]. These quantum corrections are analogous to diagrams
(c)–(e) within the sigma model. The dashed lines represent impu-
rity scattering and solid black lines denote the fermionic Green’s
functions.

where

S (t ) =
∫ 1/t

−1/t

dy

2π

tanh(y)

yAMFL(y) + i/(4tγel τϕ )
, (14)

AMFL(y) = 1 + ḡ2 ln

[
ωc/T

max(J, 2|y|)
]
, (15)

t ≡ T/γel, and τ−1
ϕ ≡ τ−1

MFL + τ−1
C is the dephasing rate that

in principle contains effects from both the MFL and the
Cooperon self-energy [72,79]. To make the physical picture
more transparent, we will treat τ−1

C as a phenomenologi-
cal constant in this work for simplicity and defer a more
detailed analysis to a separate study. The temperature de-
pendence of S for various ḡ2 is shown in Fig. 2. At low
temperatures, the dephasing rate drops out and S can be
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FIG. 2. Plot of the semiclassical Cooperon ladder integral S(T )
in Eq. (14) as a function of the dimensionless temperature t = T/γel,
for different reduced fermion-boson Yukawa couplings ḡ2 (increas-
ing from black to red). Here, the dephasing rate due to the Cooperon
self-energy is chosen to be τ−1

C /γel = 10−3. The black curve cor-
responds to the Fermi liquid case in which there is no marginal
Fermi liquid (MFL) self-energy contribution. The singularity of S
is strongly suppressed by the MFL effects as ḡ2 increases, owing to
the absence of well-defined quasiparticles.

estimated as

S (t ) � 1

π ḡ2
ln(1 − ḡ2 ln tc). (16)

In the absence of the MFL self-energy (ḡ2 = 0, black curve),
S diverges logarithmically as T decreases, resulting in the
standard BCS result T BCS

c ∝ e−1/ν0W for 1/Tcτϕ � 1, in-
dependent of disorder and in accordance with Anderson’s
theorem. However, as ḡ2 increases (blue to red), the log-
arithmic divergence is increasingly weakened by AMFL >

1, leading to a much smaller transition temperature T S
c in

Eq. (2). The suppression can be understood physically as a
consequence of attempting to pair incoherent MFL fermions
[80]. Although the MFL self-energy does not contribute to
transport at the semiclassical level with a spatially uniform
Yukawa coupling g [6,8,9], it strongly degrades supercon-
ductivity as there is no conservation law associated with the
Cooperon propagator.

We now consider quantum interference corrections to the
pairing susceptibility at the leading order of 1/σdc. The cor-
responding Feynman diagrams are shown in Figs. 1(c)–1(e).
These involve the dynamically screened quantum-critical bo-
son, which has the propagator

DR
scr(ω, k) = 1[

DR
b

]−1
(ω, k) − �R

b (ω, k)
, (17)

�R
b (ω, k) � 2i

N

ν0g2ω

Dk2 − iω [1 + ḡ2 ln(ωc/|ω|)] , (18)

where DR
b is given by Eq. (3). Depending on the tempera-

ture T , the quantum correction scales differently due to the
competition between thermal and dynamical screening. The
explicit expressions for the diagram amplitudes can be found
in Sec. VI. The quantum diagrams in Figs. 1(c)–1(e) are analo-
gous to those considered by Maekawa and Fukuyama [21,26].
For readers unfamiliar with this notation, the analogous di-
agrams in conventional many-body perturbation theory are
shown in Fig. 1(f). For the case of repulsive Coulomb interac-
tions, we recover the ln3(�/Tc) suppression of Tc [21,26,28].

Upon summing up the diagrams, the total inverse pairing
susceptibility in the static limit is found to be

[
χR

tot

]−1
(0, 0) = −2N

W
+ πν0 [NS (t ) + Q(t )]. (19)

The quantum correction

Q(t ) �
⎧⎨
⎩

ḡ2 C(t )
πν0 D t , t � t∗,

7.25
√

N ḡ2

23π4ν0 D t , t � t∗,
(20)

where t = T/γel is the reduced temperature and t∗ ≡
2π2ḡ2ν0/(αmN ). For t � t∗, thermal screening dominates and
the singularity in t originates from the thermal mass of the
quantum-relaxational bosons [Eq. (3)]. For t � t∗, the ther-
mal mass and dephasing drop out and the quantum correction
diverges in a less singular manner. C(t ) is a dimensionless
parameter which varies weakly with T and depends on α, αm,
ḡ2, and τ−1

ϕ (see Sec. VI). It encodes the integrals involved in
Figs. 1(c)–1(e).

The second and third terms in Eq. (19) correspond re-
spectively to the semiclassical and quantum corrections. As
the T dependence of the semiclassical contribution S (T ) is
extremely weak, its primary effect is merely to enhance the
BCS coupling W to Weff:

W −1
eff ≡ W −1 − (πν0/2)S (tc). (21)

Meanwhile, the quantum correction is singular in t owing
to the quantum-critical nature of the bosons. Consequently,
superconductivity is mainly driven by the quantum correction.
As T → Tc, [χR

tot]
−1(0, 0) → 0. Solving for Tc using Eq. (19)

results in Eq. (1). The enhancement due to the quantum cor-
rection overcomes the MFL suppression and increases as ḡ2.
This is the main result of this paper.

C. Discussion

The physical origin of the pairing enhancement is twofold.
On one hand, the quantum-critical interaction is magnified
by the collective modes encoding the diffusive motion of
the fermions. Physically, this is because the fermions have
a higher probability to interact strongly with each other due
to their slow diffusive motion [25,27,67]. This in turns am-
plifies the interaction in the BCS channel through operator
mixing that results in multifractal enhancement [34,38]. On
the other hand, as the attractive SU(N) Altshuler-Aronov con-
ductance correction suppresses localization, fermions become
more itinerant at low T [9,69]. These two effects overcome
the MFL suppression of the single-particle phase coherence
and promote superconductivity through collective excitations.
Our results differ from the suppressive Maekawa-Fukuyama
quantum correction [21,26,28], owing to the attractive and
long-ranged nature of the quantum-critical interaction studied
here.

Our work suggests a mechanism to boost superconductiv-
ity in a disordered quantum-critical system. Importantly, the
robust superconductivity predicted by Eq. (1) demonstrates
how collective phase coherence can survive in systems with-
out well-defined quasiparticles. Similar conclusions apply to
Altshuler-Aronov quantum corrections to the conductivity
[9,69,81–83]. While the above calculation was carried out
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perturbatively in 1/σdc, the physical picture is more general
and we expect it to hold when higher-order corrections are
included.

III. REVIEW: MULTIFRACTAL ENHANCEMENT
OF SUPERCONDUCTIVITY

In this section, we review the key steps leading to
the prediction of enhanced superconductivity in an or-
dinary (not strange) metal due to static quantum-critical
spatial fluctuations near an Anderson metal-insulator transi-
tion (MIT). Following Refs. [32,33], we consider the pairing
of exact eigenstates of a disordered, noninteracting system.
Although this simple approach demonstrates that wave-
function multifractality can enhance pairing, it is less accurate
than a full solution to the self-consistent Bogoliubov–
de Gennes equations [29,30]. Enhanced superconductiv-
ity with full self-consistency has been demonstrated in
Refs. [58,59].

We consider an attractive Hubbard model with disorder in
d spatial dimensions,

H = −
∑
i, j

ti, j c†
iσ c jσ − |U |

∑
i

c†
i↑c†

i↓ci↓ci↑. (22)

Here c jσ annihilates an electron at site j with spin σ and ti, j

is the single-particle Hamiltonian that encodes hopping and
quenched disorder. We assume time-reversal symmetry, so
that exact eigenstates of t̂ arise in degenerate pairs. Let ψα (i)
denote such an eigenstate with eigenenergy ξα . We reexpress
Eq. (22) in this basis,

H =
∑

α

ξα c†
ασ cασ − |U |

∑
α,β,γ ,ν

[∑
i

ψ∗
α (i)ψ∗

β (i)ψγ (i)ψν (i)

]

× c†
α↑c†

β↓cγ↓cν↑. (23)

As in the reduced BCS approximation, we simplify the
interaction term, retaining only products of Cooper-pair an-
nihilation and creation operators that populate or empty a pair
of single-particle states. The mates of the pair are related by
time reversal. In the absence of spin-orbit coupling, we get

Hred =
∑

α

ξα c†
ασ cασ −

∑
α,β

Mα,β c†
α↑c†

ᾱ↓cβ̄↓cβ↑, (24)

where the labels (β̄,↓) denote the time-reversed partner of
(β,↑). The eigenstate correlations are encoded in the matrix
element

Mαβ = |U |
∑

i

|ψα (i)|2|ψβ (i)|2. (25)

Defining a BCS order parameter �α ≡ −∑β Mαβ cβ̄↓cβ↑ and
following the standard steps, we obtain the BCS mean-field
equation

�α =
∑

β

Mαβ tanh

(
Eβ

2T

)
�β

2Eβ

, (26)

where T denotes the temperature and Eβ =
√

ξ 2
β + |�β |2.

For weak pairing near the Fermi energy in a system resid-
ing within the diffusive metallic phase or close to the MIT (but

still on the metallic side), we can take �α → �, independent
of α. Then Eq. (26) can be rewritten in terms of an energy
integration,

1

|U | � (adν0)1−ϒ

∫
dξ

|ξ |ϒ
tanh

(√
ξ 2+�2

2T

)
2
√

ξ 2 + �2
. (27)

Here ν0 is the density of states and a is the lattice spac-
ing. The exponent ϒ ≡ (d − d2)/d measures the second
multifractal dimension d2 of the eigenstates near the Fermi
energy. In the metallic phase d2 = d and Eq. (27) reduces
to the usual BCS form. Near the MIT, however, multi-
fractal eigenstates have 0 < d2 < d , leading to an infrared
enhancement of the integral. Neglecting any UV cutoff (the
integral is now convergent), Eq. (27) yields an amplified,
non-BCS prediction for Tc ∼ |U |1/ϒ . A more realistic treat-
ment [37] retains the Debye energy cutoff to the integral
in Eq. (27).

IV. REVIEW: DISORDER-MEDIATED MIXING
OF INTERACTION CHANNELS

The approach in Sec. III cannot be easily generalized
to the case of a strange metal, where quasiparticles are
ill defined due to Planckian dissipation. In this paper, we
instead employ the sigma model, which allows the incorpo-
ration of non-Fermi liquid effects [9,69]. In this section, we
review the sigma-model version of disorder-induced inter-
action operator mixing in a diffusive Fermi liquid [34,38].
Results are presented for two spatial dimensions, obtained
by calculating Feynman diagrams involving interaction op-
erators and interference processes. The latter are treated to
lowest nontrivial order in 1/σdc, where σdc is the dimension-
less semiclassical conductivity. By taking appropriate limits,
we can demonstrate (a) the enhancement of superconduc-
tivity, consistent with the results of the previous section,
or (b) the suppression of Tc, due to long-ranged Coulomb
interactions [21,26].

In the sigma-model approach to a diffusive Fermi liquid,
renormalization group (RG) beta functions can be derived
for dimensionless interaction couplings. For a time-reversal
invariant system with strong spin-orbit coupling, the inter-
actions include density-density and BCS pairing coupling
strengths γs and γc, respectively. Repulsive (attractive) inter-
actions in each channel correspond to γ > 0 (γ < 0). The
lowest-order beta functions are

d

dl

[
γs

γc

]
= −λ

2

[
1 −2

−1 0

][
γs

γc

]
−
[

0
2γ 2

c

]
, (28)

where l = ln(L) is the logarithm of the RG length scale
(e.g., system size L) and λ ∝ 1/σdc. The second term on
the right-hand side (RHS) of Eq. (28) drives the usual BCS
instability, which survives in the presence of nonmagnetic
disorder (Anderson’s theorem). The first term on the RHS
of Eq. (28) encodes the renormalization of the interactions
due to disorder. The matrix is off diagonal because the bare
density-density and pairing terms are not eigenoperators of
the interference processes.

Ignoring the nonlinear −2γ 2
c term for the moment, the

flow equations in (28) possess a single relevant direction that
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drives both interactions towards strong coupling. For suitable
initial conditions, this results in an instability wherein both
γs,c → −∞. We denote α ≡ −4γs,c/3 (tuning the irrelevant
difference of the interaction coupling strengths to zero) and
we then obtain a beta function for the instability

dα

dl
= η α + α2, (29)

where η = λ/2. We solve this equation to determine α =
α(L). At a certain length scale L the coupling diverges; we
identify this scale with the coherence length ζcoh of the super-
conducting state, leading to a ground-state gap of the form

� ∼ α
1/ϒ

0 , (30)

where α0 is the bare coupling and ϒ = η/d . Here we have
used the fact that � ∼ ζ−d

coh for superconductivity nucleating
from a diffusive Fermi liquid in d spatial dimensions. At
an Anderson MIT, ϒ becomes a universal scaling exponent,
leading to a prediction consistent with the results presented in
the last section.

The flow equations (28) apply for a Fermi liquid with short-
ranged density-density and BCS-pairing interactions. For a
charged liquid with long-ranged Coulomb interactions, one
should instead pin γs → 1 [38]. In this case, the remaining
flow equation for the Cooper coupling reduces to

dγc

dl
= η − 2γ 2

c . (31)

The first term on the RHS of this equation corresponds to a
perturbative shift of γc to the repulsive side,

δγc = η ln

(
L

a

)
, (32)

which is obtained from the diagrams in Figs. 1(c)–1(f). For an
overall attractive γc < 0, the change in Tc is

δTc

T BCS
c

∼ −δγc

γ 2
c

= −η ln

(
L

a

)
ln2

(
�

T BCS
c

)

∼ −η

d
ln3

(
�

T BCS
c

)
, (33)

where again we have converted T ∼ L−d . Equation (33) is the
Maekawa-Fukuyama suppression of Tc due to interference in
a charged, diffusive Fermi liquid [21,26].

V. MARGINAL-FERMI-LIQUID
NONLINEAR SIGMA MODEL

We consider s-wave superconductivity with spin-singlet,
flavor “triplet” pairing [Eq. (12)] in a system of disordered
fermions with N flavors coupled to SU(N) quantum-critical
bosons [9,68,69]. In the presence of spin rotational and time-
reversal symmetries, the system in the diffusive regime can be
described by the class-AI Finkelstein nonlinear sigma model
(FNLsM), which is an effective field theory describing the
diffusive collective modes of the fermions [9,27,70–73]. The
derivation of the sigma model is similar to the one in class
A. Upon disorder averaging and integrating out the fermions,
followed by the gradient expansion we obtain the following
partition function and action [9,72]:

Z =
∫

Dq̂Dφ̂ D|�|2 e−S, (34)

S = 1

8λ

∫
x

Tr [∇q̂ · ∇q̂] + i
h

2

∫
x

Tr {q̂[σ̂ 3(ω̂ − �̂) + iη σ̂ 3τ̂ 3]} − i

2

∫
�,k

Tr {φ̂T
−�,−k[D̂b(�, k)]−1φ̂�,k}

− ih
g√
N

∫
x

Tr
[(

φ̂aτ̂ aÊσ
11 + ŝ2φ̂aTτ̂ aŝ2Êσ

22

)
M̂F (ω̂)q̂(x)M̂F (ω̂)

]
+ ih

2

∫
x

Tr [(�clσ̂+ + �̄clσ̂− + �qσ̂+τ̂ 1 + �̄qσ̂−τ̂ 1)M̂F (ω̂)q̂(x)M̂F (ω̂)] − i
2N

W

∫
t,x

(�̄q�cl + �q�̄cl). (35)

The Pauli matrices τ̂ , σ̂ , ŝ, and �̂ act respectively in the
Keldysh, particle-hole, spin-1/2, and frequency spaces. �̂1 is
defined via 〈ω|�̂1|ω′〉 = 2π δ(ω + ω′), where ω is frequency.
The thermal matrix M̂F is defined as

M̂F (ω̂) =
[

1 F (ω̂)
0 −1

]
τ

, (36)

where F (ω) = tanh(ω/2T ) is the generalized Fermi distri-
bution function and T denotes temperature. The subscript τ

means that this is a matrix in the Keldysh space. For brevity,
we work with the units kB = c = h̄ = 1, where kB is the
Boltzmann constant, c is the speed of light, and h̄ is the
Planck constant. The q̂ matrix q̂ → q̂a,b

σ,σ ′;i, j;ω1,ω2;α,β (x) car-
ries indices in {σ, σ ′} ∈ {1, 2} particle-hole, {α, β} ∈ {↑,↓}

spin-1/2, {i, j} ∈ {1, 2, . . . , N} flavor, and {a, b} ∈ {R, A}
Keldysh (fermion retarded/advanced [72]) spaces, as well as
frequency labels {ω1, ω2}. It is subjected to the following
constraints:

q̂2 = 1, Tr [q̂] = 0, ŝ2σ̂ 1τ̂ 1�̂1q̂T ŝ2σ̂ 1τ̂ 1�̂1 = q̂. (37)

In Eq. (35), we have employed the shorthand notations∫
t,x = ∫

dt
∫

d2x and
∫
�,q = ∫

d�
2π

∫ d2q
(2π )2 . We have also in-

troduced the particle-hole-space projectors Êσ
11 ≡ (1 + σ̂ 3)/2,

Êσ
22 ≡ (1 − σ̂ 3)/2, and σ̂± ≡ (σ̂ 1 ± i σ̂ 2)/2. The coupling

constants for the pure q̂-matrix action are

h = πν0,
1

λ
= Dh, (38)
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where ν0 is the density of states per channel, the diffusion
constant is D = v2

F /(4γel), and γel is the elastic impurity
scattering rate. The small dimensionless parameter πλ is the
inverse conductance per channel.

In the above action S, we have Hubbard-Stratonovich
(H.S.) decoupled the bare pairing interaction in the spin-
singlet, flavor-“triplet” [Eq. (12)], s-wave channel, resulting in
the H.S. fields �cl,q and �̄cl,q. W in the last term of Eq. (35)
is the effective Bardeen-Cooper-Schrieffer (BCS) interaction
strength.

The last term on the second line of Eq. (35) describes the
linear coupling between the fermion-bilinear q̂ matrix and the
matrix bosonic field φ̂ → φa

i j (�, k), which carries Keldysh
label a = cl, q and flavor indices {i, j}. This term mediates the
Sint I interaction in Eq. (77) of Ref. [9]. The Keldysh matrices
{τ̂ cl, τ̂ q} ≡ {1̂, τ̂ 1}.

The SU(N) boson propagator D̂b at the saddle-point level
[9] is given by

D̂b(�, k) =
[

DK
b (�, k) DR

b (�, k)

DA
b (�, k) 0

]
,

DR
b (�, k) = − 1

2(k2 − iα � + αmT )
, (39)

where α and αm are constants. The αmT term serves as the
thermal mass for the quantum-critical bosons and generically
arises due to symmetry-allowed quartic φ4 interactions
amongst the bosons [6,8,9,66]. In contrast with the |ω|/k
frequency structure in the clean case, the bosonic propagator
now behaves diffusively due to disorder smearing. Such
a quantum-relaxational form of the bosonic propagator is
quite generic and was also obtained in a slightly different
model [6,8].

The quantum-relaxational boson induces a marginal Fermi
liquid (MFL) self-energy for the fermions [1,6,8,9] (instead of
∼|ω|2/3), which enters the sigma model as the matrix

�̂ω̂ =
[
�̂R

MFL,ω̂
0

0 �̂A
MFL,ω̂

]
τ

= Re �̂R
MFL,ω̂ + i Im �̂R

MFL,ω̂ τ̂ 3,

(40a)

where

�R
MFL,ω = −ḡ2

[
ω ln

(ωc

x

)
+ i

π

2
x
]
, x = max(|ω|, JT ).

(40b)

Here J is a constant and ḡ2 = g2/4π2γel is the dimen-
sionless squared Yukawa coupling constant. Note that
the causality structure of the σ̂ 3 Im �̂MFL,ω̂ term in the
sigma model is consistent with the iη σ̂ 3τ 3 Keldysh
prescription.

The Sint II term in Eq. (78) of Ref. [9] is a vertex-correction
term that is crucial for the calculation of the density response
function, in order to satisfy the Ward identity for charge
conservation. It also prevents strange metallicity (linear-T
resistivity) from manifesting at the semiclassical level for pure
potential disorder [8,9]. However, Sint II is irrelevant for the
discussion of the pairing susceptibility and we thus do not
discuss this term further in this paper.

In the following, we present the parametrization of the
FNLsM and the corresponding Feynman rules. Our main
goal is to compute the pairing susceptibility and explore
the consequences of the interplay between disorder and
quantum-critical interactions on the superconducting tran-
sition temperature Tc. While we focus on a particular
microscopic model here, the physics of the conclusion is quite
general and expected to be applicable to a wide range of
disordered quantum-critical systems.

A. Rotation of the saddle point and the π − σ parametrization

To facilitate the parametrization, we perform a unitary ro-
tation [72]

q̂ → R̂ q̂ R̂, R̂ = Êσ
11 + Êσ

22 τ̂ 1, (41)

where Êσ
11,22 are defined above Eq. (38), so that the saddle

point becomes

q̂sp → τ̂3. (42)

The symmetry constraints for q̂ are now

q̂2 = 1, Tr [q̂] = 0, ŝ2σ̂ 1�̂1q̂T ŝ2σ̂ 1�̂1 = q̂. (43)

We then employ the “π -σ” parametrization for the q̂ matrix

q̂ =
[√

1 − Ŵ †Ŵ Ŵ †

Ŵ −
√

1 − ŴŴ †

]
τ

= q̂(0) + q̂(1) + q̂(2) + q̂(4) + · · · , (44)

where

q̂(0) = τ̂ 3, (45)

q̂(1) =
[

0 Ŵ †

Ŵ 0

]
τ

, (46)

q̂(2) = 1

2

[−Ŵ †Ŵ 0
0 ŴŴ †

]
τ

, (47)

q̂(4) = 1

8

[−(Ŵ †Ŵ )2 0
0 (ŴŴ †)2

]
τ

, (48)

and the Ŵ field satisfies

Ŵ = ŝ2σ̂ 1�̂1(Ŵ †)T ŝ2σ̂ 1�̂1, (49)

which follows immediately from Eq. (43).
We further introduce the unconstrained, C-valued matrix

fields X̂ and Ŷ defined by

Xi j;ω1,ω2;αβ (k) = W +,+
i j;ω1,ω2;αβ (k),

Yi j;ω1,ω2;αβ (k) = W +,−
i j;ω1,ω2;αβ (k). (50)

To satisfy the constraint in Eq. (49), we can write

Ŵ =
[

X̂ Ŷ

�̂1ŝ2(Ŷ †)T�̂1ŝ2 �̂1ŝ2(X̂ †)T�̂1ŝ2

]
σ

. (51)

We then plug Eqs. (44) and (51) back into the FNLsM and
expand the action in Eq. (35) up to quartic order.

To facilitate the perturbative expansion in λ, which is pro-
portional to inverse conductance, we rescale X̂ → √

λ X̂ ,
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Ŷ → √
λ Ŷ [9,72]. At quadratic order, the action is given by

S(2)
X = 1

2

∫
Tr [X̂ †

1,2(k1)M2,1;4,3(k1, k2)X̂3,4(k2) + I†
2,1(k)X̂1,2(k) + I2,1(k)X̂ †

1,2(k)], (52)

S(2)
Y = 1

2

∫
Tr [Ŷ †

1,2(k1)N2,1;4,3(k1, k2)Ŷ3,4(k2) + J†
2,1(k)Ŷ1,2(k) + J2,1(k)Ŷ †

1,2(k)], (53)

where the numerical subscripts {1, 2, 3, 4} correspond to frequencies {ω1, ω2, ω3, ω4},
∫ = ∫

1,2,3,4,k integrates over all frequen-
cies and momentum, and Tr traces over the flavor and spin-1/2 labels. We also defined

M2,1;4,3(k1, k2) = [�X
2,1(k1)

]−1
δ1,4δ2,3δk1,k2 + ihλ

1√
N

[
φ̂cl

4−1(k1 − k2) + F4φ̂
q
4−1(k1 − k2)

]
δ2,3

+ ihλ
1√
N

[− φ̂cl
2−3(k1 − k2) + F3φ̂

q
2−3(k1 − k2)

]
δ1,4, (54)

N2,1;4,3(k1, k2) = [�Y
2,1(k1)

]−1
δ1,4δ2,3δk1,k2 + ihλ

1√
N

[
φ̂cl

4−1(k1 − k2) − F1φ̂
q
4−1(k1 − k2)

]
δ2,3

+ ihλ
1√
N

[−φ̂cl
2−3(k1 − k2) + F3φ̂

q
2−3(k1 − k2)

]
δ1,4, (55)

I†
2,1(k) = 2ih

√
λ

1√
N

[(F2 − F1)φ̂cl
2−1(−k) + (1 − F1F2)φ̂q

2−1(−k)], (56)

I2,1(k) = 2ih
√

λ
1√
N

φ̂
q
2−1(k), (57)

J†
2,1(k) = 2ih

√
λ

1√
N

(
�̄cl

1−2(k) − F1�̄
q
1−2(k)

)
, (58)

J2,1(k) = 2ih
√

λ
1√
N

(
�cl

2−1(k) − F1�
q
2−1(k)

)
, (59)

where the Dirac delta functions δω1,ω2 ≡ δ1,2 ≡ 2π δ(ω1 − ω2) and δk1,k2 = (2π )2 δ(2)(k1 − k2).
The bare propagators are given by

〈Xi, j;1,2;α,β (k) X †
k,l;3,4;δ,γ (k)〉0 = 2�X

1,2(k) δ1,4 δ2,3 δil δ jk δαγ δβ,δ, (60)

〈Yi. j;1,2;α,β (k)Y †
k,l;3,4;δ,γ (k)〉0 = 2�Y

1,2(k) δ1,4 δ2,3 δil δ jk δαγ δβ,δ, (61)

�X
1,2(k) = 1

k2 + ihλ(ω1 − ω2) + ihλḡ2
(
ω1 ln ωc

x1
− ω2 ln ωc

x2

)+ hλ τ−1
MFL

, (62)

�Y
1,2(k) = 1

k2 + ihλ(ω1 + ω2) + ihλḡ2
(
ω1 ln ωc

x1
+ ω2 ln ωc

x2

)+ hλ τ−1
MFL

, (63)

where x1,2 = max(|ω1,2|, JT ) and τ−1
MFL = ḡ2πJ T is the dephasing rate due to the MFL self-energy �̂MFL [Eq. (40)]. Note: the

prefactor 2 in Eqs. (60) and (61) is due to the prefactor 1/2 in the Gaussian action.
At quartic order, there are five Hikami box terms [72]. The relevant one responsible for the pairing susceptibility to the leading

order of λ is

S(4)
q = λ

4

∫
δk1+k3,k2+k4�k1,k2,k3,k4

1,2,3,4 Tr
[
X̂1,2(k1)ŝ2Ŷ T

3,−2(−k2)X̂ †T
4,3(−k3)ŝ2Y †

−4,1(k4)
]
, (64)

where Tr traces over the flavor and spin indices, T is the transpose in the flavor ⊗ spin space, and

�k1,k2,k3,k4
1,2,3,4 =

⎡
⎢⎢⎣

− (k1 · k3 + k2 · k4) + 1

2
(k1 + k3) · (k2 + k4)

+ i
h

2
λ
(
ω1 − ω2 + ω3 − ω4 − �R

MFL,1 + �A
MFL,2 − �R

MFL,3 + �A
MFL,4

)
⎤
⎥⎥⎦. (65)

B. Feynman rules

We adopt the same convention for the Feynman rules pre-
sented in Refs. [9,72]. The diffuson (Cooperon) propagator
is represented diagrammatically in Figs. 3(a) [3(b)] by two

black solid lines (blue dashed lines) with arrows pointing in
the opposite directions. The frequency indices of the matrix
fields X̂ (Ŷ ) and X̂ † (Ŷ †) are labeled by the numbers. The
flavor and spin indices are implicit. Along a solid line, the
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FIG. 3. Diagrammatic representation of the propagators for
(a) diffusons (X̂ fields) and (b) Cooperons (Ŷ fields). The ar-
rows on these lines represent frequency flow in the propagators.
The numerical labels 1,2 are shorthand notations for frequencies
ω1, ω2. Meanwhile, the short arrows between the two lines indicate
the momentum (k) flow.

frequency label, spin, and flavor indices remain unchanged.
The momentum flowing through the diffuson is labeled by
an arrow in the middle of the two black solid lines. The mo-
mentum arrow points inwards (outwards) for the fields X̂ , Ŷ
(X̂ †, Ŷ †).

The interaction vertices are diagrammatically depicted in
Fig. 4. The corresponding amplitudes are given by

Fig. 4(a) = −ih
√

λ
[
(F2 − F1)φcl

2−1,−k

+ (1 − F1F2)φq
2−1,−k

]
/
√

N, (66)

Fig. 4(b) = −ih
√

λφ
q
2−1,k/

√
N, (67)

Fig. 4(c) = −ih
√

λ
[
�̄cl

1−2,k − F1�̄
q
1−2,k

]
, (68)

Fig. 4(d) = −ih
√

λ
[
�cl

2−1,k − F1�
q
2−1,k

]
, (69)

Fig. 4(e) = − ih

2
λ
[− φcl

2−3,k1−k2
+ F3φ

q
2−3,k1−k2

]
/
√

N,

(70)

Fig. 4(f) = − ih

2
λ
[
φcl

4−1,k1−k2
− F1φ

q
4−1,k1−k2

]
/
√

N, (71)

Fig. 4(g) = −λ

4
�k1,k2,k3,k4

1,2,3,4 . (72)

VI. PAIRING SUSCEPTIBILITY CALCULATION

A. Semiclassical contribution: Cooper ladder

The retarded inverse pairing susceptibility [χR
semi]

−1 can
be obtained by computing the effective propagator of �cl

and �̄q. At the semiclassical level (ignoring quantum
interference), we only consider the linear coupling be-
tween Ŷ , Ŷ † and �, �̄. By integrating out the Ŷ fields,
we have

i
[
χR

semi

]−1
(ω, k) = −i

2N

W
+ 4h2λN

∫
ε

Fε− ω
2

k2 − 2ihλε + ihλḡ2
[
(−ε + ω/2) ln ωc

|−ε+ω/2| − (ε + ω/2) ln ωc
|ε+ω/2|

]+ hλτ−1
ϕ

, (73)

where τ−1
ϕ is the effective dephasing rate incorporating τ−1

MFL
and the Cooperon self-energies represented by the diagrams
in Fig. 18 of Ref. [72]. The corresponding Feynman diagram
for the second term in Eq. (73) is depicted in Fig. 5(a), which
is equivalent to summing the Cooper ladders [84]. In the static
limit ω = 0 and k → 0, we have

i
[
χR

semi

]−1
(0, 0) = −i

2N

W
+ 4hN

∫
ε

Fε

−2iεAMFL(ε) + τ−1
ϕ

,

(74)

where the marginal Fermi liquid (MFL) self-energy [Eq. (40)]
is encoded by the factor

AMFL(ε) = 1 + ḡ2 ln
ωc

max(JT, |ε|) > 1. (75)

In the absence of the MFL effects, ḡ2 → 0, and the above
expression reduces to the FL result [67,71]. At the proximity

of the transition temperature T → Tc, [χR
semi]

−1 → 0. If we
assume τ−1

ϕ � Tc for simplicity, then

0 = [
χR

semi

]−1
(0, 0) = −2N

W
+ 2hN

π

∫ �/2Tc

0
dy

tanh(y)

yAMFL(2Tcy)

(76)

� −2N

W
+ 2hN

π

1

ḡ2
ln

(
1 + ḡ2 ln

�

Tc

)
, (77)

implying that [Eq. (2)]

Tc � � exp

[
− 1

ḡ2
(eπ ḡ2/hW − 1)

]
, (78)

which is much smaller than the BCS result. Physically, the
strong suppression of the transition temperature is due to
the MFL self-energy that destroys well-defined quasiparticles
before they can form Cooper pairs.

B. Quantum interference correction

Despite the absence of well-defined quasiparticles, phase coherence can still manifest through collective modes. In the
following, we consider the quantum correction to the pairing susceptibility represented by the diagrams in Figs. 5(b)–5(d).
The corresponding expressions are respectively given by

Fig. 5(b) = 4h4λ3g2
∫

ε1,ε2,q
�Y

ε1,ε1
(k)�Y

ε2,ε2
(k)�Y

ε1,ε2
(k + q)(−Fε+

1
)i
[
Fε+

2
DA

b,ε1−ε2
(q) + Fε−

1
DR

b,ε1−ε2
(q)
]
, (79)

Fig. 5(c) = 4h4λ3g2
∫

ε1,ε2,q
�Y

ε1,ε1
(k)�Y

ε2,ε2
(k)�Y

ε1,ε2
(k + q)(−Fε+

1
)i
[
Fε−

1
DR

b,ε1−ε2
(q) + Fε+

2
DA

b,ε1−ε2
(q)
]
, (80)
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FIG. 4. Feynman diagrams representing the vertices relevant for evaluating the pairing susceptibility [see Eqs. (66)–(71)]. The diffuson
(Cooperon) propagator is represented diagrammatically by two black solid (blue dashed) lines with arrows pointing in the opposite directions
(see Fig. 3). The red wavy line denotes the bosonic field φ. The vertex for converting between the Hubbard-Stratonovich Cooper pairing field
�cl/q and the Cooperon mode is denoted by the purple dot.

Fig. 5(d) = 8h4λ3g2
∫

ε1,ε2,q
�Y

ε1,ε1
(k)�Y

ε2,ε2
(k)
[
�X

ε1,−ε2
(q)
]2�q,−k,−q,k

ε+
1 ,−ε+

2 ,ε−
2 ,−ε−

1
Fε+

1
(−Fε1 − Fε2 ) iDR

b,ε1+ε2
(q), (81)

where ε± = ε ± ω/2. Due to the Cooperon self-energy, τ−1
MFL in the propagator �Y should be replaced by the total dephasing

rate τ−1
ϕ = τ−1

MFL + τ−1
C . In the above expressions, we omitted terms proportional to the Keldysh component of the bosonic

propagator; these can be absorbed into the dephasing rate [72].

1. Thermal-screening dominated regime

For T � T∗, thermal screening is more important than dynamical screening and thus the bosonic propagator can be approx-
imated by the quantum relaxational version Db [Eq. (3)]. Here the thermal-to-dynamical screening crossover temperature is
defined via

T ∗ ≡ g2ν0

2αmN
, (82)

where αm = m2
b/T is the coefficient of the quantum-relaxational boson thermal mass.

In the thermal screening regime, by focusing on the static limit ω → 0, k → 0 and performing the q integral, we have

Fig. 5(b) + Fig. 5(c) + Fig. 5(d ) � −i hλ C ḡ2

t
, (83)

where t = T/γel, and the dimensionless parameter

C(t ) =− h

π

∫
dy1 dy2

tanh y1[
2iy1AMFL(2Ty1) + 1

2T τϕ

][
2iy2AMFL(2Ty2) + 1

2T τϕ

]

×

⎡
⎢⎢⎢⎢⎣

�
(
y1, y2, α, αm, τ−1

ϕ , λ
)

tanh y1

+�
(
y1, y2,−α, αm, τ−1

ϕ , λ
)

tanh y2

+�H
(
y1, y2, α, αm, τ−1

MFL, λ
)
(tanh y1 + tanh y2)

⎤
⎥⎥⎥⎥⎦, (84)

with

�(y1, y2, α, αm, τ−1
ϕ , λ, ḡ2, T ) ≡ − 2T

∫ ∞

0
dx �Y

2Ty1,2Ty2
(x)DR

b,2T (y1−y2 )(x)

= 1

−ihλ[2y1AMFL(2Ty1) + 2y2AMFL(2Ty2)] − hλ
τ−1
ϕ

T + αm − 2iα(y1 − y2)

× ln

⎧⎨
⎩ αm − 2iα(y1 − y2)

ihλ[2y1AMFL(2Ty1) + 2y2AMFL(2Ty2)] + hλ
τ−1
ϕ

T

⎫⎬
⎭, (85)
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FIG. 5. Feynman diagrams responsible for the pairing susceptibility. (a) The semiclassical contribution and (b)–(d) the quantum interfer-
ence corrections to the leading order in λ, which is proportional to the inverse conductance.

and similarly

�H
(
y1, y2, α, αm, τ−1

MFL, λ, ḡ2, T
) ≡ − 2T

∫ ∞

0
dx �X

2Ty1,−2Ty2
(x)DR

b,2T (y1+y2 )(x)

= 1

−ihλ[2y1AMFL(2Ty1) + 2y2AMFL(2Ty2)] − hλ
τ−1

MFL
T + αm − 2iα(y1 + y2)

× ln

⎧⎨
⎩ αm − 2iα(y1 + y2)

ihλ[2y1AMFL(2Ty1) + 2y2AMFL(2Ty2)] + hλ
τ−1

MFL
T

⎫⎬
⎭. (86)

Note that since the MFL and total dephasing rates, τ−1
MFL and τ−1

ϕ , respectively, are proportional to temperature, C is just a function
of ln T and thus only weakly depends on temperature. We plot C(t ) versus the dimensionless temperature t = T/γel in Fig. 6 for
various model parameters.

2. Dynamical-screening dominated regime

We now consider the regime T � T∗ in which dynamical screening dominates over thermal screening. Repeating the above
calculation using the dynamically screened bosonic propagator Dscr [Eq. (17)], we obtain a new version of �. The full expression
is very complicated, but for small T

�scr(y1, y2) = π
√

T

2
√

2i (y2 − y1) β
+ O(T ), (87)

where β = 2h2g2λ/πN . This contribution arises from the regime where q2 ∼ 2Ty1,2, where q is the loop momentum in
Eqs. (79)–(81). The dimensionless parameter C then becomes

Cscr � − h

π

∫
dy1 dy2

tanh y1

(2iy1)(2iy2)

[
[�scr(y1, y2) tanh y1 + �∗

scr(y1, y2) tanh y2]

+�scr(y1,−y2)(tanh y1 + tanh y2)

]
. (88)

FIG. 6. Plot of C(t ) as a function of the reduced temperature t = T/γel in the thermal-screening dominated regime, based on Eq. (84). Here,
the parameters are h = 1, λ = 0.02, αm = α = 0.5, J = 1, and � = γel = 10 and γC = τ−1

C is the dephasing rate. We phenomenologically take
a linear-T dephasing rate γC (t ) = γ max

C (t/tmax ), where tmax = 0.2.
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By numerically evaluating the remaining integral, we have

Re Cscr � 7.25
h

π

√
T

β
= 7.25

h

π

√
T

2h2g2λ/πN
= 7.25

√
NT

2πg2λ
= 7.25

√
Nt

(2π )3ḡ2λ
. (89)

C. Overall pairing susceptibility

1. Without dynamical screening

Combining both the semiclassical and quantum contribu-
tions, the total inverse pairing susceptibility at the transition
temperature t → tc is

[χR]−1(0, 0) = −2N

W
+ hN

π

1

ḡ2
ln

(
1 + ḡ2 ln

1

tc

)
+ λhḡ2C

tc
.

(90)

Since the second term has a weak temperature depen-
dence, it just effectively renormalizes the pairing interaction
strength W , Eq. (21). By combining the first two terms as
−2N/Weff, we have

tc � λhḡ2C
2N

Weff, (91)

valid up to some logarithmic corrections. Since πλ is
the inverse conductance per channel, the full conductiv-
ity accounting for two spin and N flavor components
is

σdc = 2N

πλ
. (92)

With h = πν0, Tc = tc γel, and γel ḡ2 = g2/4π2, we recover
Eq. (1) for T � T ∗.

2. With dynamical screening

For T � T∗, dynamical screening becomes important and
the inverse pairing susceptibility is instead

[χR]−1(0, 0) = −2N

W
+ hN

π

1

ḡ2
ln

(
1 + ḡ2 ln

1

tc

)

+ λhḡ2

tc
7.25

√
Ntc

(2π )3ḡ2λ

= −2N

W
+ hN

π

1

ḡ2
ln

(
1 + ḡ2 ln

1

tc

)

+ 7.25 h

√
Nλḡ2

(2π )3tc
. (93)

Thus we have (by combining the first two terms as −2N/Weff)

tc = λḡ2

(2π )3N
(

2
7.25 hWeff

)2 = λḡ2(hWeff)2

(2π )3N
(

2
7.25

)2

� 0.05
λḡ2(hWeff)2

N
. (94)

This is Eq. (1) for T � T ∗.

VII. CONCLUSION

The results of Refs. [4–9] suggest that disorder plays an es-
sential role in strange-metal physics. We find that interference
can supply the mechanism by which superconductivity evades
suppression expected due to Planckian dissipation [Eq. (2)],
and can even be enhanced [Eq. (1)] in a 2D strange metal.

Our results are applicable to a broad range of quantum-
critical materials where disorder is inevitable in practice,
although we do not attempt to estimate transition temperatures
for particular materials here (which would depend upon de-
tails of the critical bosonic mode and disorder). However, we
note that a recent experiment reported a significant increment
of Tc in Y5Rh6Sn18 by atomic disorder [85]. It would be
interesting to further experimentally explore the effects of
disorder on Tc in other strongly correlated quantum materials
to test our predictions. Another avenue for exploration would
be to extend this theoretical analysis to more complicated
(e.g., spatially correlated) forms of inhomogeneity [86].
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