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Magnon influence on the superconducting density of states
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Superconductor–ferromagnetic-insulator heterostructures are paradigmatic systems for studying the mutual
influence of superconductivity and magnetism via proximity effects. In particular, spin-split superconductivity is
realized in such structures. Recent experiments and theories demonstrate a rich variety of transport phenomena
occurring in devices based on such heterostructures that suggest direct applications in thermoelectricity, low-
dissipative spintronics, radiation detection, and sensing. In this work we investigate the influence of the electron-
magnon interaction at the superconductor–ferromagnetic-insulator interface on the spin-split superconductivity.
It is predicted that due to the magnon-mediated electron spin-flip processes the spin-split quasiparticle branches
are partially mixed and reconstructed, and the BCS-like spin-split shape of the superconducting density of states,
which is typical for superconductors in the effective exchange field, is strongly modified. An odd-frequency
superconducting order parameter admixture to the leading singlet order parameter is also found. These findings
expand the physical picture of spin-split superconductivity beyond the mean-field description of the ferromagnet
exchange field.
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I. INTRODUCTION

Long ago it was demonstrated that the exchange field of
ferromagnetic insulators (FI), such as EuS and EuO, can
spin-split the excitation spectrum of an adjacent thin-film su-
perconductor [1–4]. The spin splitting in the density of states
(DOS) observed in those experiments resembles the spin
splitting created by a strong in-plane field applied to a thin
superconducting film. This discovery opened up the way for
performing spin-polarized tunneling measurements without
the need for applying large magnetic fields. A renewed inter-
est in studying ferromagnetic-superconductor (F-S) structures
came with active development of superconducting spintronics
[5,6], caloritronics, and spin caloritronics [7,8]. In particular,
in F-S structures with spin-split DOS, a series of promis-
ing phenomena have been studied. Among them are giant
thermoelectric [9–17], thermospin effects [10,18,19], highly
efficient thermally induced domain-wall motion [20], spin
and heat valves [21–25], cooling at the nanoscale [26,27],
low-temperature thermometry and development of sensitive
electron thermometers [28], and detectors of electromagnetic
radiation [29,30].

The spin-split DOS in F-S structures has also been ex-
plored in the presence of magnetic inhomogeneities, such as
textured ferromagnets and domain walls [25,31–37]. Charac-
teristic signatures of equal-spin-triplet pairing were reported
[35]. It was shown that the characteristic spatial and energy
dependence of the spin-dependent DOS allows to tomograph-
ically extract the structure of the spin-triplet Cooper pairs
[37]. Furthermore, the influence of the domain structure on
the position-averaged superconducting DOS in FI-S bilayers
was studied [25].

Another important direction in the field of F-S hybrid
structures is the investigation of interplay between the super-
conducting state and ferromagnetic excitations—magnons. A
series of interesting results, presumably related to the influ-
ence of the superconductor on the magnon spectrum, have
been reported. In particular, it was found that the adjacent su-
perconductor works as a spin sink strongly influencing Gilbert
damping of the magnon modes [38–48] and can result in
shifting of k = 0 magnon frequencies (Kittel mode) [43,46–
48]. The electromagnetic interaction between magnons in
ferromagnets and superconductors also results in the appear-
ance of magnon-fluxon excitations [49] and efficient gating of
magnons [50]. Furthermore, it was reported that the magnetic
proximity effect in thin-film F-S hybrids results in the appear-
ance of composite spin quasiparticles, which are composed of
a magnon in F and an accompanying cloud of spinful triplet
pairs in S [51].

Some aspects of back influence of magnons on the super-
conducting state have already been investigated. For example,
a possible realization of the magnon-mediated superconduc-
tivity in F-S hybrids has been proposed [52–57]. At the same
time, the influence of magnons via the magnetic proximity
effect on the superconducting DOS practically has not yet
been studied, although the electron-magnon interaction and
influence of this interaction on the DOS in ferromagnetic met-
als were investigated long ago [58,59]. Here we consider how
the effects of electron-magnon interactions in FI-S thin-film
hybrids manifest themselves in the superconducting DOS and
quasiparticle spectra of the superconductor. It is found that
the magnon-mediated electron spin-flip processes cause the
interaction and mixing of the spin-split bands resulting in
their reconstruction, which is especially important near the
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FIG. 1. Sketch of the FI-S thin-film bilayer.

edge of the superconducting gap. We demonstrate that the
classical BCS-like Zeeman-split shape of the superconducting
DOS can be strongly modified due to the electron-magnon
interaction and this modification is temperature dependent.
The influence of magnons on the temperature dependence of
the Zeeman splitting of the DOS and the relevance of our
findings to existing and future experiments are also discussed.

The paper is organized as follows. In Sec. II we describe
the system under consideration and the Green’s functions for-
malism taking into account magnon self-energies. In Sec. III
the modifications of the quasiparticle spectra in the supercon-
ductor due to the electron-magnon coupling are discussed.
In Sec. IV we study signatures of the electron-magnon in-
teraction in the Zeeman-split superconducting DOS and their
temperature dependence. Our conclusions are summarized in
Sec. V. Technical details of the derivation of the Green’s
functions are provided in Appendix A, and Appendix B is
devoted to the discussion of the influence of thermal magnons
on the Zeeman splitting of the DOS.

II. SYSTEM AND FORMALISM

We consider a thin-film bilayer as depicted in Fig. 1, in
which a ferromagnetic insulator is interfaced with a conven-
tional spin-singlet s-wave superconductor (S). The thickness
of the S layer dS is assumed to be small compared to the su-
perconducting coherence length ξS . In this case the S layer can
be considered homogeneous along the normal to the interface
plane. The FI layer in its ground state is magnetized in-plane,
along the z direction.

The Hamiltonian of the system takes the form

Ĥ = ĤS + ĤFI + Ĥex, (1)

where ĤS is the standard mean-field BCS Hamiltonian de-
scribing electrons in the superconducting film:

ĤS =
∑
kσ

ξkc†
kσ

ckσ −
∑

k

�c†
k↑c†

−k↓ −
∑

k

�∗c−k↓ck↑. (2)

ξk = k2/2m − μ is the normal-state kinetic energy of the elec-
trons in the S layer, counted from the chemical potential of the
superconductor, μ. � is the superconducting order parameter
in S, which is assumed to be of conventional isotropic s-wave
type. c+

kσ
and ckσ are creation and annihilation operators of

electrons with the wave vector k and spin σ .

ĤFI describes magnons in the FI. Assuming easy-axis mag-
netic anisotropy in the FI it can be written as

ĤFI =
∑

q

(ω0 + Dq2)b†
qbq, (3)

where b+
q and bq are creation and annihilation operators of

magnons in the FI with wave vector q, ω0 = |γ |(μ0H0 +
2Ka/Ms) is the magnonic frequency at q = 0, D is the magnon
stiffness constant, γ is the typically negative gyromagnetic ra-
tio, Ms is the saturation magnetization, μ0 is the permeability
of free space, Ka is the easy-axis anisotropy constant, and H0

is the external field (can be equal to zero in our consideration).
Electronic and magnonic wave vectors k and q are assumed

to be two dimensional (2D); that is, the electrons and magnons
can only propagate in plane of the FI-S interface. The wave
functions along the y direction, perpendicular to the interface,
are assumed to be quantized. For simplicity, in the formulas
we leave only one transverse magnon mode. In fact, we have
checked that different modes give quantitatively different,
but qualitatively the same, contributions to considered self-
energies. Their effect can be accounted for by multiplying our
results for the self-energy corrections by an effective number
of working transverse modes (see below).

Ĥex accounts for the exchange interaction between S and
FI:

Ĥex = −J
∫

d2ρSFI (ρ)se(ρ), (4)

where ρ is a two-dimensional radius vector at the interface
plane, and SFI and se are the spin density operators in the FI
and S, respectively. J is the interface exchange constant. By
performing the Holstein-Primakoff transformation [60–62] to
the second order in the magnonic operators in Eq. (4), one
obtains

Ĥex = Ĥ1 + Ĥ2 + Ĥ3, (5)

with

Ĥ1 =
∑
k,k′

Uk,k′ (c†
k,↑ck′,↑ − c†

k,↓ck′,↓),

Uk,k′ = JMs

2|γ |
∫

d2ρ�∗
k (ρ)�k′ (ρ), (6)

Ĥ2 =
∑

k,k′,q,q′
Tk,k′,q,q′b†

qbq′ (c†
k,↑ck′,↑ − c†

k,↓ck′,↓),

Tk,k′,q,q′ = −J

2

∫
d2ρ�∗

k (ρ)�k′ (ρ)φ∗
q (ρ)φq′ (ρ), (7)

Ĥ3 =
∑
k,k′,q

Vk,k′,q(bqc†
k,↑ck′,↓ + b†

qc†
k′,↓ck,↑),

Vk,k′,q = J

√
Ms

2|γ |
∫

d2ρ�∗
k (ρ)�k′ (ρ)φq(ρ), (8)

where Ĥ1 describes a spin splitting of the electronic energy
spectrum in S in the mean-field approximation. The second
term Ĥ2 represents the Ising term, which physically accounts
for the renormalization of the spin splitting by magnonic
contribution. Since the processes of the spin transfer between
electrons and magnons are of primary importance for our
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consideration, when calculating the electronic Green’s func-
tion we simplify this term by substituting the magnon operator
b†

qbq by its averaged value 〈b†
qbq〉 = nqδqq′ , where nq is the

density of magnons with wave vector q. The third term Ĥ3

transfers spin between electron and magnon operators and
will turn out to be the most significant for the effects under
consideration.

If we choose the wave functions of electrons �k(ρ) and
magnons φq(ρ) at the interface in the form of plane waves
propagating along the interface, that is, �k(ρ) = (1/

√
dS )eikρ

and φq(ρ) = (1/
√

dFI )eiqρ, then Ĥex can be simplified:

Ĥex = Ũ
∑

k

(c†
k,↑ck,↑ − c†

k,↓ck,↓)

+ V
∑
k,q

(bqc†
k,↑ck−q,↓ + b†

qc†
k−q,↓ck,↑), (9)

where Ũ = −J (Ms − Nm|γ |)/(2|γ |dS ) is the averaged spin-
splitting field in the superconductor renormalized by the
magnon density Nm, and V = J

√
Ms/2|γ |dFI A(1/dS ) is the

electron-magnon coupling constant, where A is the area of the
FI-S interface.

Introducing the following Nambu spinor �̌k =
(ck↑, ck↓,−c†

−k↓, c†
−k↑)T , we define the Gor’kov Green’s func-

tion in the Matsubara representation, Ǧk(τ ) = −〈Tτ �̌k�̌
†
k 〉,

where 〈Tτ · · · 〉 means imaginary-time-ordered thermal
averaging. Turning to the Matsubara frequency representation,
the Green’s function obeys the following equation:

(iω − ξkτz − Ũσz − �τx − �̌m)Ǧk(ω) = 1, (10)

where ω is the fermionic Matsubara frequency, and σi and
τi (i = x, y, z) are Pauli matrices in spin and particle-hole
spaces, respectively. �̌m is the magnonic self-energy, which
describes corrections to the electronic Green’s function due to
the electron-magnon interaction and in the framework of the

self-consistent Born approximation takes the form

�̌m = − V 2T
∑
q,


Bq(
){σ+Ǧk−q(ω − 
)σ−

+ σ−Ǧk+q(ω + 
)σ+}, (11)

where σ± = (σx ± iσy), 
 is the bosonic Matsubara fre-
quency, and Bq(
) = [i
 − (ω0 + Dq2)]−1 is the magnonic
Green’s function. From the spin structure of Eq. (11) it is seen
that �̌m is diagonal in spin space. For this reason the electronic
Green’s function, which is given by the solution of Eq. (10)
is also a diagonal matrix in spin space and Eq. (10) can be
written for the both spin subbands separately:

(iω − ξkτz − σŨ − �τx − �̂m,σ )Ĝk,σ (ω) = 1, (12)

where Ĝk,σ is 2 × 2 matrix in the particle-hole space corre-
sponding to the electron spin σ =↑,↓. �̂m,σ is also a 2 × 2
matrix in the particle-hole space representing the magnonic
self-energy for the given spin subband σ :

�̂m,σ = −V 2T
∑
q,


Bq(
)Ĝk−σq,σ̄ (ω − σ
), (13)

where a factor σ means ±1 for the spin-up (spin-down)
subbands, and σ̄ means the opposite spin subband. The di-
mensionless coupling constant quantifying the strength of
the electron-magnon coupling is K = V 2A/4π h̄vF

√
D�. Our

numerical estimates made for the parameters corresponding
to EuS-Al or YIG-Nb structures suggest that K should be
rather small, K 	 1 (for a detailed discussion of the numerical
estimates, see Sec. IV). The smallness of the electron-magnon
coupling constant allows us to use a non-self-consistent Born
approximation when calculating magnon self-energy. That is,
we substitute Ĝk−σq,σ̄ by the bare superconducting Green’s
function obtained without taking into account the magnon
self-energy Ĝ(0)

k−σq,σ̄
in Eq. (13). Then the explicit solution of

Eq. (12) takes the form

Ĝk,σ (ω) = iω̃k,σ + ξ̃k,σ τz + �̃k,σ τx

(iω̃k,σ )2 − (̃ξk,σ )2 − (�̃k,σ )2
, (14)

where all the quantities marked by ˜ are renormalized by the
electron-magnon interaction as follows (see Appendix A for a
more detailed derivation of the magnonic corrections):

�̃k,σ (ω) = � + δ�k,σ (ω) = � − V 2T
∑
q,


Bq(
)
�

(iω − iσ
 + Ũσ )2 − ξ 2
k−σq − �2

, (15)

ξ̃k,σ (ω) = ξk + δξk,σ (ω) = ξk − V 2T
∑
q,


Bq(
)
ξk−σq

(iω − iσ
 + Ũσ )2 − ξ 2
k−σq − �2

, (16)

iω̃k,σ (ω) = iω − Ũσ + iδωk,σ (ω) = iω − Ũσ + V 2T
∑
q,


Bq(
)
iω − iσ
 + Ũσ

(iω − iσ
 + Ũσ )2 − ξ 2
k−σq − �2

. (17)

For the problem under consideration all the in-plane di-
rections of k are equivalent. For this reason the magnonic
corrections only depend on the absolute value k of the wave
vector. Furthermore, in order to study the quasiparticle spectra
and density of states we turn from Matsubara frequencies

to the real energies in the Green’s functions, iω → ε + iδ,
where δ is an infinitesimal positive number. The magnonic
corrections for spin-up electrons δ�k,↑, δξk,↑, and δεk,↑ =
iδωk,↑(iω → ε + iδ) are presented in Figs. 2–4 as func-
tions of the quasiparticle energy ε and ξk ≡ ξ , which after
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FIG. 2. (a) Re[δ�k,↑]/K� and (b) Im[δ�k,↑]/K� as functions
of ξ and quasiparticle energy ε. K is the dimensionless quantity
characterizing the electron-magnon coupling strength (see text for
its exact definition). Here and below throughout the calculations we
take ω0 = 0.03�, δ = 0.01�, and Dm/ξ 2

S = 10−4�.

linearization in the vicinity of the Fermi surface takes the form
ξk ≈ vF (k − kF ).

The key features of the corrections, which can be seen in
the presented plots, are as follows:

(i) The dependence of the corrections on ξ is very weak.
The reason is that the most important range of magnonic wave
numbers contributing to the corrections is q � 1/ξS , where
ξS = vF /� is the superconducting coherence length. Then
taking parameters of the magnon spectrum corresponding
to yttrium iron garnet (YIG), ω0,Y IG = 3 × 10−2�, DY IG ≈
5 × 10−40 J m2, or EuS, ω0,EuS ∼ 10−2�, DEuS ≈ 3 × 10−42

J m2, we obtain that Dq2 	 ω0 to very good accuracy for all
reasonable parameters. Consequently, one can disregard Dq2

with respect to ω0 in the magnonic Green’s function Bq and
after linearization of ξk−σq ≈ vF (k − σq − kF ) in the vicinity
of the Fermi surface we see that the dependence on k drops
from Eqs. (15)–(17).

(ii) The correction to the normal-state electron dispersion
δξ is small with respect to all other corrections and is ne-
glected below.

(iii) The important corrections δ� and δε have peaks at
the energies corresponding to the superconducting coherence
peaks of the opposite spin subbands. While the coherence
peaks for the spin-up subband are located at ε = ±� + Ũ , the
peaks of the corrections are at ε = ±� − Ũ . It is an obvious

FIG. 3. (a) Re[δξk,↑]/K� and (b) Im[δξk,↑]/K� as functions of
ξ and ε.

consequence of the process of electron spin flip accompanied
by emission or absorption of a magnon.

(iv) The correction δ� represents an effective contribution
to the superconducting order parameter induced from the pure
singlet pairing � via the electron-magnon interaction. It de-
pends on the Matsubara frequency and contains both singlet
and triplet components. As can be seen from Eq. (15), the
correction obeys the condition δ�↑(ω) = δ�↓(−ω). It means
that the triplet component δ�t (ω) = δ�↑(ω) − δ�↓(ω) =
−δ�t (−ω) works as an effective odd-frequency supercon-
ducting order parameter. This situation is rather unusual
because typically in F-S hybrid systems we encounter an odd-
frequency anomalous Green’s function, but at the same time
the order parameter is still even frequency in the framework
of the conventional BCS weak-coupling theory.

III. QUASIPARTICLE SPECTRA

Now we turn to a discussion of how quasiparticle spectra
in the S layer are modified by the electron-magnon interac-
tion. In Fig. 5(a) we present the spectral functions for both
spins in the S layer calculated from the Green’s function (14)
according to the relation

Aσ (ε, k) = − 1

π
Tr

{
1 + τz

2
Im

[
ĜR

k,σ (ε)
]}

. (18)
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FIG. 4. (a) Re[δεk,↑]/K� and (b) Im[δεk,↑]/K� as functions of
ξ and ε.

FIG. 5. (a) Electronic spectral function in the S layer for both
spins A↑,↓(ε, ξ ) at K = 0.01. Dashed lines represent the spin-up
and spin-down branches of the spectrum without taking into ac-
count the electron-magnon interaction, that is, at K = 0. T = 0.1�,
Ũ = 0.5�. (b) The same on a logarithmic scale. (c) Only spin-up
electronic spectral function in the S layer A↑(ε, ξ ) at K = 0.01. The
spin-down spectral function can be found as A↓(ε, ξ ) = A↑(−ε, −ξ ).
(d) The same as in (c) on a logarithmic scale.

The spectral function is isotropic in momentum space
and for this reason we plot it as a function of ξk ≡ ξ . The
electronlike and holelike quasiparticle branches are clearly
seen at positive and negative energies, respectively. Black
dashed lines represent the quasiparticle spectra in the absence
of the electron-magnon interaction. The electron-magnon in-
teraction leads to the following main modifications of the
quasiparticle spectra:

(i) The Zeeman splitting of spin-up and spin-down
quasiparticle branches is reduced due to the magnon-
mediated interaction between quasiparticles with opposite
spins.

(ii) For positive energy branches, corresponding to elec-
tronlike quasiparticles, the lifetime of spin-up quasiparticles
and quasiparticles at the upper part of the spin-down branch is
considerably suppressed, which is seen as a broadening of the
corresponding branches. For negative energies, corresponding
to holelike quasiparticles, the situation is symmetric if we
interchange spins. The broadening of the spin-down branch
only occurs in the energy region, where the spin-up branch
also exists. The physical reason is that the spin-flip processes
providing the broadening are nearly horizontal due to the fact
that ω0 + Dq2 	 �; that is, the magnon energies are small as
compared to � in the whole range of ξ , considered in Fig. 5.
The lower (upper) part of the spin-down (spin-up) positive
(negative) energy branch is not broadened because there are
no available states for the opposite-spin quasiparticles at the
appropriate energies and, consequently, the spin-flip processes
are not allowed.

(iii) In Fig. 5(a) we also see a reconstruction of the spin-
down spectral branch in the energy range of the bottom of
the spin-up branch. In order to investigate this effect in more
detail we plot the same figure on a logarithmic scale in
Fig. 5(b), which allows to clearly see weak spectral features.
Figures 5(c) and 5(d) represent the spectral functions for the
spin-up band on the normal and on the logarithmic scale,
respectively. From Figs. 5(b) and 5(d) it is seen that due to the
electron-magnon interaction in the energy region of the ex-
tremum of the spin-up (spin-down) branch, a nonzero density
of states appears for the opposite-spin branch. It looks like a
horizontal line starting from the bottom of the corresponding
branch. This line is horizontal due to the independence of the
electron-magnon self-energy corrections (15) and (17) on ξ .
This mixing of the spin-up and spin-down bands resulting
from the magnon-mediated spin-flip processes is natural and
exists at all energies, but the spectral weight of the opposite-
spin branch is too small except for the regions of the extrema
of the bands corresponding to the coherence peaks of the
superconducting DOS. Intersection of the additional lines
with the original spin-down band results in its reconstruction,
which looks like an avoided crossing point.

The results for the spectral function presented and dis-
cussed above correspond to T = 0.1�. This temperature is
higher than the gap in the magnonic spectrum, ω0 = 0.03�,
which we take in our calculations. Therefore, a large number
of thermal magnons are excited at this temperature. In Fig. 6
the spectral function is demonstrated for lower temperature,
T = 0.01� < ω0. It is seen that the characteristic signatures
of the magnon-mediated spin-flip processes, that is, the mix-
ing, reconstruction, and broadening of the branches, are much
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FIG. 6. The same as in Figs. 5(a) and 5(b), but for lower
temperature T = 0.01�. The other parameters are the same.
The reconstruction and broadening of the spectra are much less
pronounced.

less pronounced due to the suppression of the thermally ex-
cited magnons at such low temperatures.

IV. DOS IN THE PRESENCE OF MAGNONS

Now we turn to a discussion of the local density of states
(LDOS) in the S layer, which is calculated as the momentum-
integrated spectral function:

N (ε) =
∫

d2k

(2π )2
A(ε, k). (19)

Figure 7(a) demonstrates the LDOS in the presence of
electron-magnon interaction (solid line) as compared to the
LDOS calculated at V = 0 (dashed line). The LDOS at V = 0,
which is calculated assuming mean-field approximation for
the exchange field, takes the conventional BCS-like shape. It
manifests Zeeman-split coherence peaks, and the outer peak
is always higher than the inner one. This BCS-like shape
is typical for thin-film FI-S bilayers with dS 	 ξS and thin
superconducting films in the applied parallel magnetic field
[1–3,11,25]. For thicker superconducting films with dS � ξS

the shape of the DOS is modified and becomes dependent
on the coordinate along the normal to the FI-S plane [63].
Although the Zeeman splitting is still present in the vicinity
of the FI-S interface, the coherence peaks can be smeared
and, therefore, the manifestations of the electron-magnon in-
teraction in the DOS in this case is a separate task, which is
beyond the scope of the present work. The electron-magnon
interaction can invert the relative ratio of the peak heights
and broadens the outer peaks, while the width of the inner
peaks remains unchanged. The reason is the same as for the
broadening of the spectra in Fig. 5: electron spin-flip pro-
cesses accompanied by a magnon emission or absorption. The
outer coherence peaks in Fig. 7(a) correspond to the energy
regions of the bottom (top) of the positive-energy (negative-
energy) spin-up (spin-down) bands. This type of broadening,
which only affects outer peaks, differs from the other physi-
cal mechanisms resulting in the broadening of the coherence
peaks, such as the orbital effect of the magnetic field, inelastic
scattering, or magnetic impurities, which affect all the peaks
[4] and can be roughly described by the Dynes parameter.

Figure 7(b) represents the spin-resolved LDOS N↑ (red)
and N↓ (blue). The solid line in Fig. 7(a) is obtained by

FIG. 7. (a) LDOS in the S layer with (solid line, K = 0.01) and
without (dashed, K = 0) taking into account electron-magnon inter-
action. (b) Spin-resolved LDOS N↑ (red) and N↓ (blue) for K = 0.01.
The solid line in panel (a) is obtained by summing red and blue
curves from panel (b). T = 0.1�, Ũ = 0.5�.

summing red and blue curves from Fig. 7(b). Figure 7(b) addi-
tionally illustrates the unique magnon-induced mechanism of
broadening of the outer peaks of the LDOS. As discussed in
Sec. III, the broadening of the spin-down branch only occurs
in the energy region where the spin-up branch also exists.
The same is valid for the spin-up branch. Physically it is a
signature of nearly horizontal spin-flip processes accompa-
nied by a magnon emission or absorption. In order to have
a possibility to flip the spin, one needs an available space in
the opposite-spin subband at the corresponding energy. This
broadening of the quasiparticle branches manifests itself as
an asymmetric broadening of coherence peaks in Fig. 7(b).
Only one of the coherence peaks on the blue curve, which
corresponds to the energy, where we have a nonzero DOS in
the red subband, is broadened. The same is valid for the red
subband.

The other important manifestation of the electron-magnon
interaction is that the shape of the LDOS strongly depends
on temperature even at very low temperatures, ∼ω0 	 �, in
agreement with the above-discussed behavior of the spectral
function. The temperature evolution of the LDOS is pre-
sented in Fig. 8. It is seen that the broadening of the outer
peak develops with increasing temperature in the temperature
range ∼ω0. It is clear if we remember that the broadening is
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FIG. 8. Inner LDOS peak (left) and outer LDOS peak (right) as
functions of energy. Different curves correspond to different temper-
atures. K = 0.01, Ũ = 0.5�.

caused by the spin-flip processes, which are mediated by the
thermally excited magnons. We do not consider larger temper-
atures T � ω0 comparable to the critical temperature of the
superconducting film because in this temperature range the
temperature dependence of the superconducting gap comes
into play and correct consideration of the problem requires
solution of a self-consistency equation for the order parameter.

Now let us discuss numerical estimates of the dimen-
sionless constant K = V 2A/4π h̄vF

√
D�, which controls the

strength of the electron-magnon coupling. Substituting V =
J
√

Ms/2|γ |dFI A(1/dS ) and expressing the interface exchange
coupling constant via the experimentally accessible quantity
Ũ as |J| = 2|γ |ŨdS/Ms (where to the leading approximation
we neglect magnonic contribution to the magnetization), we
obtain K = Ũ 2(2|γ |/Ms)1/(4π

√
D�h̄vF dFI ) for one trans-

verse magnon mode. The effective number of working
transverse modes N⊥ ∼ dFI/a, where a is the interatomic dis-
tance in the ferromagnet. According to our estimates for dFI ≈
10 nm, N⊥ ∼ 2–5. One can take the following parameters
for YIG-Nb heterostructures: Ũ/� = 0.5 (Ũ was estimated
in Ref. [64] as 1–10 T, which corresponds to h ∼ 10−23–
10−22 J), vF = 106 m/s, �Nb = 2.7 × 10−22 J, a = 1.2 nm,
2|γ |/Ms = 3.3 × 10−27 m3, D = Dbare,Y IG − δDY IG, where
Dbare,Y IG = 5 × 10−40 J m2 [65] is the exchange stiffness of
YIG and δDY IG is the renormalization of the stiffness in FI-S
bilayers due to the formation of composite spin quasiparticles
[51]. As it was predicted [51], for the material parameters of
YIG-Nb heterostructures δDY IG can be ∼(0.5–1)DY IG,bare for
dFI ∼ (1–0.5)dS . Therefore, the electron-magnon coupling
constant for YIG-Nb heterostructures can vary in the wide
range KY IG/Nb � 10−4. The values considered here, K ∼ 0.01,
can be realized in the regime of strong renormalization of
the exchange stiffness constant D. It is also worth noting that
there is rather strong impurity-induced spin-orbit interaction
in Nb. It is known [8] that the spin-orbit scattering mixes both
spin subbands, thus killing Zeeman splitting of the coherence
peaks at large values of the parameter (τsoTc)−1 � 1, where
τ−1

so is the strength of the spin-orbit scattering and Tc is the
critical temperature of the superconductor. It was reported
[66] that at low temperatures for Nb τso ≈ 10−12 s, which
means (τsoTc)−1 ≈ 1. For this value of spin-orbit strength the

Zeeman splitting of the superconducting DOS can be clearly
resolved [8].

For EuS-Al heterostructures one can take Ũ/� = 0.25
[25], vF = 106 m/s, �Al = 3.5 × 10−23 J, a = 10−10 m,
2|γ |/Ms = 3.3 × 10−28 m3, D = Dbare,EuS , where Dbare,EuS =
3 × 10−42 J m2 [67]. The superconducting renormalization of
the stiffness due to the formation of composite spin quasiparti-
cles is predicted to be small for the parameters corresponding
to EuS-Al heterostructures at reasonable thicknesses dFI due
to smaller values of � and larger Ms. Substituting these pa-
rameters into the expression for K we come to the conclusion
that for EuS-Al heterostructures KEuS-Al ∼ 10−7–10−6; that is,
the electron-magnon effects are unlikely to be observed in
such structures.

In general, the electron-magnon effects in the LDOS and
quasiparticle spectra should be more pronounced in ultrathin
superconducting films with high critical temperatures, where
large absolute values of the effective exchange field Ũ can be
realized. The smaller values of the exchange stiffness of the
ferromagnet will also enhance the effect. The manifestations
of the electron-magnon coupling become more pronounced at
T � ω0 and grow with temperature.

Now we discuss the influence of the electron-magnon in-
teraction on the effective Zeeman splitting, which is defined as
the distance between the split coherence peaks of the LDOS
divided by 2. Experimentally, the low-temperature reduction
of the effective Zeeman splitting at T 	 � for EuS-Al het-
erostructures has been reported [25]. It was ascribed to the
presence of weakly bound spins at the EuS-Al interface. The
renormalization of the effective exchange field in the super-
conductor by the thermal magnons can also contribute to this
effect. Indeed, the fit of experimentally observed temperature
dependence of the distance between the Zeeman-split co-
herence peaks �Vpeaks(T ) by 2|Ũ | = J (Ms − Nm|γ |)/(|γ |dS )
with the magnon density Nm = (1/SdFI )

∑
q{exp[−(ω0 +

Dq2)/T ] − 1}−1 and ω0 ≈ 0.03K is in reasonable agreement
with the experimental data and is presented in Appendix B.

In addition, the broadening of the outer coherence peaks,
predicted in this work, leads to enhancement of the distance
between the spin-split coherence peaks. The broadening be-
comes stronger with increasing temperature. This effect leads
to an apparent growth of the peaks splitting with temperature
and, therefore, acts opposite to the renormalization of the
effective Zeeman field by magnons. However, our numerical
estimates suggest that the temperature growth is unlikely to
be observed, at least for heterostructures consisting of the
materials discussed above, because the renormalization of the
effective Zeeman field by magnons dominates.

V. CONCLUSIONS

In this work the influence of the electron-magnon interac-
tion at the superconductor–ferromagnetic-insulator interface
in thin-film FI-S heterostructures on the spectrum of quasipar-
ticles and the LDOS in the superconducting layer is studied.
It is predicted that due to the magnon-mediated electron
spin-flip processes the spin-split quasiparticle branches are
partially mixed and reconstructed. The reconstruction is the
most pronounced in the region of the bottom of the en-
ergetically unfavorable spin band because of the enhanced
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FIG. 9. Calculated dependence of the Zeeman splitting of the
DOS coherence peaks �Vpeaks(T ) accounting for the reduction of
the average magnetization of the ferromagnet by thermal magnons
(red) and experimental data for �Vpeaks(T ) taken from Ref. [25] (blue
points). ω0 = 0.03K , 2|γ |/Ms = 3.3 × 10−28 m3, DEuS = 3 × 10−42

J m2, dEuS = 5 nm.

density of the electronic states and existence of the available
states in the opposite-spin band. The BCS-like Zeeman-split
shape of the superconducting DOS, which is typical for
superconductors in the effective exchange field, is strongly
modified due to the electron-magnon interaction. The outer
spin-split coherence peaks are broadened, and the inner peaks
remain intact. This type of broadening is a clear signa-
ture of the magnon-mediated spin flips and strongly differs
from other mechanisms of the coherence peak broadening,
which usually influence all peaks. The broadening grows
with temperature due to the thermal excitation of magnons.
The above-described features in the electronic DOS are
mainly caused by magnonic contributions that are diagonal
in the particle-hole space to the electron self-energy, that
is, by the quasiparticle processes. Besides that we have also
found a magnonic contribution that is off-diagonal in the
particle-hole space to the electronic self-energy. It mimics an
odd-frequency superconducting order parameter admixture to
the leading singlet order parameter. The study of its influence
on the superconducting properties of the system may be an
interesting direction for future research.
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APPENDIX A: DERIVATION OF THE EXPRESSION FOR
THE GREEN’S FUNCTION AND MAGNONIC

SELF-ENERGY CORRECTIONS

As described in Sec. II, the electronic Green’s function is a
diagonal matrix in spin space and is to be found from Eq. (12),

where the magnon self-energy for a given spin subband σ

is expressed by Eq. (13). The magnon self-energy is a 2 × 2
matrix in particle-hole space and in general can be expanded
over Pauli matrices τi as follows:

�̂m,σ = −iδωk,σ + δξk,σ τz + δ�k,σ τx. (A1)

The term proportional to τy is absent in this general expression
due to the fact that the superconducting order parameter is
chosen to be real. Substituting Eq. (A1) into Eq. (12) we
immediately obtain the solution for the Green’s function in
the form

Ĝk,σ (ω) = iω̃k,σ + ξ̃k,σ τz + �̃k,σ τx

(iω̃k,σ )2 − (̃ξk,σ )2 − (�̃k,σ )2
, (A2)

where

�̃k,σ (ω) = � + δ�k,σ (ω), (A3)

ξ̃k,σ (ω) = ξk + δξk,σ (ω), (A4)

iω̃k,σ (ω) = iω − Ũσ + iδωk,σ (ω). (A5)

Substituting Eq. (A2) into the magnon self-energy [Eq. (13)]
and taking into account expansion (A1), we obtain

δ�k,σ (ω) = − V 2T

×
∑
q,


Bq(
)
�̃k,σ̄

(iω̃k,σ̄ − iσ
)2 − ξ̃ 2
k−σq,σ̄

− �̃2
k,σ̄

,

(A6)

δξk,σ (ω) = − V 2T

×
∑
q,


Bq(
)
ξ̃ 2

k−σq,σ̄

(iω̃k,σ̄ − iσ
)2 − ξ̃ 2
k−σq,σ̄

− �̃2
k,σ̄

,

(A7)

iδωk,σ (ω) =V 2T

×
∑
q,


Bq(
)
iω̃k,σ̄ − iσ


(iω̃k,σ̄ − iσ
)2 − ξ̃ 2
k−σq,σ̄

− �̃2
k,σ̄

.

(A8)

In principle, Eqs. (A6)–(A8) represent a system of self-
consistency equations for calculation of the magnonic correc-
tions δ�k,σ , δξk,σ , and δωk,σ . However, the smallness of the
electron-magnon coupling constant allows us to neglect the
corrections on the right-hand sides of these equations. It is
equivalent to the non-self-consistent Born approximation and
leads to Eqs. (15)–(17).

APPENDIX B: REDUCTION OF THE ZEEMAN SPLITTING
OF THE DOS BY THERMAL MAGNONS

The suppression of the average magnetization of the fer-
romagnet by thermal magnons results in the suppression of
the spin-splitting field U in the superconductor because it is
directly proportional to the average magnetization of the ferro-
magnet. The renormalized value of the effective spin-splitting
field can be calculated as |Ũ | = J (Ms − Nm|γ |)/(2|γ |dS )
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with the magnon density Nm = (1/SdFI )
∑

q{exp[−(ω0 +
Dq2)/T ] − 1}−1 [68]. Even without taking into account
magnon-assisted electron spin-flip processes this reduction of
the spin-splitting field should contribute to the temperature
dependence of the experimentally observed Zeeman splitting
of the DOS coherence peaks.

In Fig. 9 we demonstrate the Zeeman splitting of the
DOS coherence peaks �Vpeaks(T ) = 2|Ũ (T )|, calculated in
the framework of this model, and compare it to the exper-
imental data from Ref. [25]. The only free parameter here

is the value of the gap in the magnonic spectra ω0, which
depends strongly on the magnetic anisotropy, realized in the
particular sample. The other parameters are extracted from
experimental data. We can see that the dependence �Vpeaks(T )
plotted for ω0 ≈ 0.03K is in reasonable agreement with the
experimental data. The remaining discrepancy between the
calculated dependence �Vpeaks(T ) and the data can be due
to other reasons, which are also present in real experiments.
For example, weakly bound spins at the interface should also
contribute to �Vpeaks(T ), as it was indicated in Ref. [25].
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