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Beginning from the conventional square-lattice nearest-neighbor antiferromagnetic Heisenberg model, we
allow the Jx and Jy couplings to be anisotropic, with their values depending on the bond orientation. The emer-
gence of anisotropic, bond-dependent couplings should be expected to occur naturally in most antiferromagnetic
compounds which undergo structural transitions that reduce the point-group symmetry at lower temperature.
Using the spin-wave approximation, we study the model in several parameter regimes by diagonalizing the
reduced Hamiltonian exactly and computing the edge spectrum and Berry connection vector, which show clear
evidence of localized topological charges. We discover phases that exhibit Weyl-type spin-wave dispersion,
characterized by pairs of degenerate points and edge states, as well as phases supporting lines of degeneracy. We
also identify a parameter regime in which there is an exotic state hosting gapless linear spin-wave dispersions
with different longitudinal and transverse spin-wave velocities.
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I. INTRODUCTION

More than three decades ago, Anderson proposed [1]
that the large-amplitude quantum-spin fluctuations, present
in the ground-state of the lowest-possible spin, the spin-1/2
Heisenberg antiferromagnet on the low-dimensional lattice,
the square lattice, destroy the Néel order, and that the new
emerging state of matter could be the foundation of the su-
perconductivity observed in the cuprates. Subsequent work
showed that the idea was not applicable to the spin-1/2 square
lattice Heisenberg antiferromagnet [2]. However, Anderson’s
proposal for the resonating-valence-bond state, whose orig-
inal inception dates back nearly half a century [3], served
as the ignition of a field of research in quantum magnetism,
aimed at realizing the quantum-spin liquid state. Most ensuing
attempts to realize such states have focused on low-spin low-
dimensionality systems, but they have departed from bipartite
lattices in an effort to introduce geometric frustration or frus-
trating interactions.

In the meantime, topology has emerged as a means of
characterizing electronic structure [4], introducing concepts
and descriptions for condensed matter systems, such as the
topological insulator [5,6], the topological superconductor
[7], and the Weyl semimetal [8,9]. Importing these ideas from
topology into the field of quantum magnetism is a compelling
pursuit for various reasons, including technological applica-
tions. For example, quantum spins may be used as the degrees
of freedom in spintronics-magnonics applications [10] and in
many proposals for quantum computing devices that require
long coherence timescales. Such long lifetimes are expected to
be a fundamental property of topological quantum-spin states
because of their inherently robust nature.

There are various ways to construct quantum-spin models
furnishing topological characteristics. In this paper, we focus
on a model that exhibits quantum-spin Weyl behavior, an

idea that has been explored in the literature in the context of
various models. Quantum-spin Weyl behavior has been found
in a pyrochlore antiferromagnet where a local spin anisotropic
coupling [11,12], allowed by the symmetry group, led to the
emergence of Weyl magnons. Weyl magnons have also been
discussed in the case of honeycomb lattice ferromagnets [13]
such as in CsI3 [14]. Tunable topological magnon phases in
triangular-honeycomb lattices have been studied [15] and also
predicted [16] in layered ferrimagnets, where they arise as a
result of spin-orbit coupling. Rather recently, an anomalous
thermal Hall effect in the insulating van der Waals magnet
VI3 was observed [10], its existence attributed to topologi-
cal magnons. Furthermore, it has been shown [17] that the
addition of a second nearest-neighbor Dzyaloshinskii–Moriya
interaction to the isotropic Heisenberg interaction can create
Weyl magnons. Topological magnetic excitations have also
been discussed [18] in the context of the Kitaev-Heisenberg
model. Lastly, the general topological features of such bosonic
models have also been discussed in the literature [19].

In the present paper, we propose that such exotic, difficult-
to-realize models are not necessary to observe quantum-spin
Weyl behavior. In fact, as we will show, this behavior is
present in a slight (and known) modification of the familiar,
garden-variety, spin-1/2 Heisenberg XYZ antiferromagnet
on the square lattice! Beginning from the conventional
square-lattice XYZ antiferromagnetic Heisenberg model, we
introduce anisotropic couplings Jx and Jy whose values
depend on the bond orientation. Within the spin-wave ap-
proximation, the effective bosonic model exhibits a Weyl-type
spin-wave dispersion with edge states. The model is first in-
vestigated analytically, followed by a numerical investigation
[20,21] of the edge spectrum and Berry connection vector
in various parameter regimes, which show clear evidence
of localized topological charges. In short, we demonstrate
that breaking the inversion symmetry introduces various
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interesting topological excitations of Weyl-boson character
with topologically nontrivial edge states carrying topological
charge.

Finally, we argue that such Weyl-magnon behavior, in
perhaps the most basic model of magnetism, i.e., the nearest-
neighbor Heisenberg antiferromagnet, with no additional
terms, should be ubiquitous. We discuss how to experimen-
tally realize such square-lattice quantum magnets endowed
with the topological excitations and edge states found here.

The paper is organized as follows. In the following section,
we introduce and analyze our model. In Sec. III we present our
results and in Sec. IV we discuss our conclusions and how to
realize the proposed behavior experimentally.

II. MODEL

The Hamiltonian for the familiar XY Z quantum Heisen-
berg antiferromagnet can be written as

Ĥ =
∑
α,〈i j〉

Jα (δi j )Ŝ
α
i Ŝα

j − h
N∑

i=1

Ŝz
i , (1)

where α = x, y, z, δi j is the vector connecting the nearest-
neighbors i j, and N is the number of sites. We will assume
Jz � Jx, Jy, and that there is (π, π ) antiferromagnetic order
along the z internal-spin direction. We define

J±(δi j ) ≡ Jx(δi j ) ± Jy(δi j )

2
(2)

and introduce the spin-ladder operators,

Ŝx
i = Ŝ+

i + Ŝ−
j

2
, Ŝy

i = Ŝ+
i − Ŝ−

j

2i
, (3)

with which the Hamiltonian can be rewritten in the following
form:

Ĥ =
∑

R∈A,δ

{
JzŜ

z
RŜz

R+δ + 1

2
J+(δ)(Ŝ+

R Ŝ−
R+δ + Ŝ−

R Ŝ+
R+δ)

+ 1

2
J−(δ)(Ŝ+

R Ŝ+
R+δ + Ŝ−

R Ŝ−
R+δ)

}
− h

N∑
i=1

Ŝz
i , (4)

where we have introduced two sublattices, A and B. The sum
over R only includes sites on the A sublattice, and the vector
δ = ±ax̂,±aŷ connects sites on the A sublattice to sites on the
B sublattice. The sums over R and δ therefore include all sites
of the lattice.

Next, we carry out the well-known [2] substitution of the
spin operators in terms of boson operators âR (â†

R) and b̂R

(b̂†
R) that destroy (create) spin fluctuations on the A and B sub-

lattice, respectively. Then, by expanding the Hamiltonian and
keeping terms up to quadratic order in these boson operators,
we obtain

ĤLSW = −2NS2Jz + εA

N∑
R∈A

â†
RâR + εB

N∑
R∈B

b̂†
Rb̂R

+ J+S
∑

R∈A,δ

(âRb̂R+δ + â†
Rb̂†

R+δ
)

FIG. 1. Illustration of lattice with coupling terms. Sublattice A is
denoted by the red circles, and sublattice B by the blue circles. The
box above the illustration indicates the line style corresponding to
each coupling. Note that we have used the definition of J± shown
in Eq. (2) and taken J+ to be directionally independent, while J−
depends on the bond direction as described below Eq. (5).

+ S
∑

R∈A,α

[vα (â†
Rb̂R+α̂a + âRb̂†

R+α̂a)

+wα (â†
Rb̂R−α̂a + âRb̂†

R−α̂a)], (5)

where α = x, y, the spin S = 1/2, and we have taken Jz and
J+ to be directionally independent, i.e., Jz(δ) = Jz, J+(δ) =
J+, and let J−(ax̂) = vx, J−(−ax̂) = wx, J−(aŷ) = vy, and
J−(−aŷ) = wy. In addition we have defined εA ≡ 4SJz + h
and εB ≡ 4SJz − h. An illustration of the terms of the Hamil-
tonian is shown in Fig. 1.

In momentum space, we have

ĤLSW = −2NS2Jz + εA

∑
k

ã†
kãk + εB

∑
k

b̃†
kb̃k

+ 4SJ+
∑

k

γ (k)(ãkb̃−k + ã†
kb̃†

−k )

+ S
∑
α,k

(vαeikαa + wαe−ikαa)ã†
kb̃k + h.c., (6)

where γ (k) ≡ 1
2 ( cos(kxa) + cos(kya)). In matrix form, we

have

ĤLSW = 1

2

∑
k

(
ã†

k b̃†
k ã−k b̃−k

)
H(k)

⎛
⎜⎜⎝

ãk

b̃k

ã†
−k

b̃†
−k

⎞
⎟⎟⎠, (7)

where

H(k) =

⎛
⎜⎜⎝

εA V (k) 0 �(k)
V ∗(k) εB �(k) 0

0 �(k) εA V (k)
�(k) 0 V ∗(k) εB

⎞
⎟⎟⎠, (8)

with �(k) ≡ 4SJ+γ (k), and V (k) ≡ S[vxeikxa + wxe−ikxa +
vyeikya + wye−ikya].

As a simple illustration of the Weyl character of the model,
we consider the case of �(k) = 0 and h = 0 (i.e., εA=εB≡ε).
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FIG. 2. Spin-wave dispersion for (a) vx = wx = vy = wy = 0.0, J+ = 1.0, (b) vx = 0.05, wx = 0.025, vy = 0.05, wy = 0.05, J+ = 0.8,
(c) vx = 0.2, wx = 0.05, vy = 0.2, wy = 0.2, J+ = 0.8. The inset of (b) highlights a pair of degenerate points that emerge with the introduction
of anisotropic couplings. Another pair of degenerate points along the kx axis is not visible in the figure.

In this limit, the Hamiltonian in Eq. (8) is composed of two
identical 2 × 2 blocks. This 2 × 2 matrix can be written in the
form εI + τ · h(k), where τ is a vector of the Pauli matrices
in the pseudospin basis and

h(k) ≡
⎛
⎝VR(k)

VI (k)
0

⎞
⎠, (9)

where VR(k) and VI (k) are the real and imaginary parts of
V (k), respectively. The term εI is a constant that shifts the
overall energy of the system but does not affect its topology,
therefore we omit it from the following. If we take as a partic-
ular example the case of vx = wx and vy = −wy and expand
near the nodal points, retaining terms below second order in
k, we obtain

τ · h(k) ≈ αx�kxτx + αy�kyτy, (10)

where αx = −2vxa and αy = 2vya are constants and �kx ≡
(kx − k0

x ), �ky ≡ (ky − k0
y ), where (k0

x , k0
y ) is the momentum

of the nodal point. Equation (10) has the explicit form of the
Weyl Hamiltonian.

To diagonalize this Hamiltonian we seek a transformation,
T (k), commonly referred to as a paraunitary transformation
[22] that preserves the bosonic commutation relations:

(ã†
k b̃†

k ã−k b̃−k ) = (α†
k β

†
k α−k β−k )Tk. (11)

This constraint implies the following for the Hamiltonian ma-
trix:

T †(k)H(k)T (k) = E(k), (12)

where E(k) is a diagonal matrix of the energy eigenvalues and

T †(k)τzT (k) = T (k)τzT
†(k) = τz, (13)

where τz = diag{1, 1,−1,−1}. The matrix

H̃(k) ≡ T †(k)H(k)T (k)

=

⎛
⎜⎜⎝

εA V (k) 0 �(k)
V ∗(k) εB �(k) 0

0 −�(k) −εA −V (k)
−�(k) 0 −V ∗(k) −εB

⎞
⎟⎟⎠,

(14)

can be diagonalized by a unitary transformation, which yields
the spin-wave dispersions. In the case of periodic boundary

conditions, the eigenenergies can be obtained analytically and
expressed as

ω±(k) =
√

ε2
A + ε2

B

2
+ |V (k)|2 − |�(k)|2 ±

√
Z (k) (15)

Z (k) ≡
[

(εA − εB)2

2
+ 2|V (k)|2

][
(εA + εB)2

2
− 2|�(k)|2

]

+ 4|�(k)|2V 2
R (k). (16)

III. RESULTS

As alluded to above, the presence of anisotropic couplings
in this model can lead to band structures with topological
character, including Weyl points and lines of degeneracy. The
condition for these band-touching points is given by the fol-
lowing:

V 2
R (k)ε2 + V 2

I (k)(ε2 − �2) = 0. (17)

In the following, we take h = 0, which means εA = εB ≡ ε.
We note that the system is gapped when h �= 0, but we focus
here on the parameter regime that supports Weyl physics. Be-
cause we have chosen the z axis to be along the direction of the
antiferromagnetic order, we assume that Jz � J+. This implies
that the term (ε2 − �2) is always positive, which means that

TABLE I. Solutions to Eqs. (18) and (19) for various parameter
choices.

Case Parameters Solutions

1 vy = wy, vx �= wx kx = 0, π

a , kya = cos−1(∓ vx+wx
2vy

)

2 vx = wx , vy �= wy kxa = cos−1(∓ vy+wy

2vx
), ky = 0, π

a

3 vx = wx , vy = wy cos(kxa) = − vy

vx
cos(kya)

4 vy = −wy, vx �= −wx kx = ± π

2a , kya = sin−1(− vx−wx
2vy

)

5 vx = −wx , vy �= −wy ky = ± π

2a , kxa = sin−1(− vy−wy

2vx
)

6 vx = −wx , vy = −wy sin(kxa) = − vy

vx
sin(kya)

7 α = 1, β = 1 kya = ±π + kxa
8 α = 1, β = −1 kya = ±π − kxa
9 α = −1, β = 1 ky = −kx

10 α = −1, β = −1 ky = kx
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FIG. 3. Left: Spin-wave dispersion for vx = 0.1, wx = 0.05, vy = 0.1, wy = −0.1, J+ = 0.8. Center: Cut along kx = π/2 (indicated by
red region in left panel). Right: Berry connection vector. The direction is indicated by the arrows while the color plot shows the magnitude.

Eq. (17) can only be satisfied when V (k) = 0. In terms of the
real and imaginary parts of V (k), we have

(vx + wx ) cos(kxa) + (vy + wy) cos(kya) = 0, (18)

(vx − wx ) sin(kxa) + (vy − wy) sin(kya) = 0. (19)

The above system of equations can be solved by isolat-
ing cos(kxa) [or cos(kya)] in Eq. (18) and substituting into
Eq. (19) or, alternatively, by isolating sin(kxa) [or sin(kya)] in
Eq. (19) and substituting into Eq. (18). This general solution
involves a division by vx + wx (or vy + wy) or vx − wx (or
vy − wy), respectively. This division is not well-defined when
any of these coefficients is equal to zero, therefore these cases
must be treated separately. We give the solutions for these
cases (1–6) in Table I.

Cases 1, 2, 4, and 5 correspond to solutions with Weyl
points, while the remaining cases correspond to solutions
where the spin-wave dispersions are degenerate along a line
in momentum space. In the remainder of this section, we will
illustrate examples of these cases. Note that all parameters and
energies are given in units of Jz.

In addition to the cases highlighted above (1–6 in Table I),
we note four additional special cases. First, if none of cases

1–6 occur, then the coefficients vx ± wx �= 0 and vy ± wy �= 0,
so we can rewrite Eqs. (18) as

cos(kxa) = − α cos(kya), (20)

sin(kxa) = − β sin(kya), (21)

where we have defined

β ≡ vy − wy

vx − wx
, (22)

α ≡ vy + wy

vx + wx
. (23)

The solutions corresponding to the four combinations of α =
±1, β = ±1, which represent lines of degeneracy, are given
as cases 7–10 in Table I.

When none of these ten special cases occurs, i.e., when
|vy| �= |wy| and |vx| �= |wx|, and α �= 1 (and β �= 1), the gen-
eral solution to the system of Eqs. (18) and (19) gives the
momenta at which Weyl points occur,

kxa = cos−1[∓α
], (24)

kya = cos−1[±
], (25)

where 
 ≡
√

(β2 − 1)/(β2 − α2).

FIG. 4. Left: Spin-wave dispersion for vx = 0.364, wx = 0.0455, vy = 0.273, wy = 0.273, J+ = 0.723. Center: Edge spectrum, bulk
shown in gray. Right: Berry connection vector. The direction is indicated by the arrows while the color plot shows the magnitude.
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FIG. 5. Left: Spin-wave dispersion for vx = 0.4, wx = 0.1, vy = wy = 0.625, J+ = 0.25. Center: Edge spectrum, bulk shown in gray.
Right: Berry connection vector. The direction is indicated by the arrows while the color plot shows the magnitude.

Having classified the various phases exhibiting topologi-
cal features, including Weyl points and lines of degeneracy,
we proceed by presenting examples of the band struc-
ture, edge spectrum, and Berry connection (defined as A =
−i〈ψ0|∇k|ψ0〉, where |ψ0〉 is the ground state) for these dif-
ferent states.

A. Solutions with Weyl points

We begin by considering cases 1, 2, 4, and 5 of Table I,
as well as the general case given by Eqs. (24) and (25), all of
which yield spin-wave spectra with Weyl points.

We first present the case of isotropic coupling (J+ =
Jz = 1.0, with all other parameters equal to zero), which
corresponds to the well-known nearest-neighbor antiferro-
magnetic Heisenberg model on the square-lattice to provide
a comparison for the spin-wave dispersions for the cases
with anisotropic couplings. Figure 2(a) shows the spin-wave
dispersion for the isotropic case, which displays the well-
known linear momentum dependence near k = 0 and at k =
(±π/a,±π/a). In this case, the bands associated with ω+
and ω− are degenerate. The introduction of coupling terms
between the two sublattices (vα,wα) breaks this degeneracy.

If J+ < Jz, a gap opens at � [and (±π/a,±π/a)], which can
lead to nontrivial topological band structures.

Figures 2(b) and 2(c) illustrate the presence of pairs of
Weyl-point solutions, given by case 1 of Table I, for small
values of vx, vy,wx,wy, i.e., for small deviations from the
isotropic limit. Note that case 2 is equivalent to case 1 with
the x and y axes interchanged. Both of these cases represent
situations where the inversion symmetry is broken in either
the x or y direction.

Figure 3 shows an example of case 4. Notice that there are
two pairs of Weyl points at the location given in Table I, which
are seen as singularities of the Berry-connection vector shown
in Fig. 3(c). Case 5 is obtained from case 4 by interchanging
the x and y axes.

We continue by exploring several different parameter sets,
with larger deviations from the isotropic limit, that dis-
play unique topological features. Figures 4 and 5 give the
calculated spin-wave dispersion (left), edge spectrum su-
perimposed on the bulk states, which are projected as a
gray background ribbon (center), and the Berry connection
vector (right). To compute the edge spectrum we treat a
system with semi-open boundary conditions that has Nx =
50 layers along the x direction and is periodic along the

FIG. 6. Left: Spin-wave dispersion for vx = 0.357, wx = 0.143, vy = 0.286, wy = 0.214, J+ = 0.571. Center: Edge spectrum, bulk shown
in gray. Right: Berry connection vector. The direction is indicated by the arrows while the color plot shows the magnitude.
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FIG. 7. Left: Spin-wave dispersion for vx = 0.214, wx = 0.071, vy = 0.571, wy = 0.5, J+ = 0.571. Center: Edge spectrum, bulk shown in
gray. Right: Berry connection vector. The direction is indicated by the arrows while the color plot shows the magnitude.

y direction. In both cases, there are edge states that con-
nect the bulk Weyl points in the lower (upper) half of
the Brillouin zone at kx = 0 to those in the lower (up-
per) half of the Brillouin zone at kx = π . The right panel
demonstrates that there is a 2π counter-clockwise and a 2π

clockwise rotation of the Berry connection vector as we travel
around the positive and negative pseudohelicity Weyl point,
respectively.

Figure 6 again shows the calculated spin-wave dispersion,
the edge spectrum superimposed on the bulk states, and the
Berry connection vector (using the same notations as in Fig. 4)
for a special case of parameters which gives α = 1 but β �=
±1, meaning degenerate points exist at kx = 0, kya = ±π and
vice versa. In this case, we find a quadratic dispersion at the
gapless band touching point. In this parameter regime, when
α > 1 there are two pairs of Weyl points that merge at kx =

FIG. 8. (a) Spin-wave dispersion for vx = 0.1, wx = 0.1, vy = 0.05, wy = 0.05, J+ = 0.8. (b) Path through Brillouin zone (as shown in
inset) for parameters in (a). (c) Spin-wave dispersion for vx = 0.1, wx = 0.05, vy = 0.1, wy = 0.05, J+ = 0.8. (d) Path through Brillouin zone
for parameters in (c).
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FIG. 9. (a) Spin-wave dispersion for vx = 0.1, wx = 0.05, vy = −0.1, wy = −0.05, J+ = 1.0. (b) Path through Brillouin zone (as shown
in inset) for parameters in (a). (c) Spin-wave dispersion for vx = 0.1, wx = −0.1, vy = 0.05, wy = −0.05, J+ = 1.0. (d) Path through Brillouin
zone for parameters in (c).

0, kya = ±π , and kxa = ±π , ky = 0 as α → 1, yielding the
quadratic band touching point we observe. For α < 1, there is
no solution to Eqs. (20) and (21), so the system is gapped.

Figure 7 illustrates a situation where the anisotropy is large
and, as a result, the edge state has significant dispersion along
the k direction parallel to the edge (in this case, ky). This
case is similar to that shown in Fig. 5, however, here vy �= wy,
which causes the Weyl points to shift away from kx = ±π and
kx = 0, and leads to a dispersive edge state.

B. Solutions with lines of degeneracy

In this subsection, we consider parameter sets that lead to
solutions with lines of degeneracy; these correspond to cases
3 and 6–10 of Table I.

Figure 8(a) illustrates case 3 of Table I, while Fig. 8(c)
presents an example of case 7, where α = 1 and β = 1, in
which case there is a pair of lines of degeneracy at ky =
±π + kx. Figures 8(b) and 8(d) show the spin-wave disper-
sions along the path in the Brillouin zone indicated in the inset
of Fig. 8(b), which crosses the lines of degeneracy in several
locations.

Finally, we consider cases 10 and 6 of Table I, which also
correspond to lines of degeneracy. Figure 9(a) is an example of
case 10 where α = β = −1, which results in a line of degen-
eracy at ky = kx. Figure 9(c) is an example of case 6 where the
couplings vx and vy in the +x and +y directions, respectively,
are opposite to those in the −x and −y directions. Note that
in both of these cases the global degeneracy present in the

isotropic limit is broken. Moreover, the spin-wave dispersions
are linear near k = 0 and k = (±π/a,±π/a), suggesting a
pair of spin waves with different velocities along the longi-
tudinal and transverse directions. This behavior is evident in
Figs. 9(b) and 9(d), which show the spin-wave dispersions
along the path in the Brillouin zone indicated in the inset of
Fig. 9(b).

IV. CONCLUSION

In the present paper, we have considered a slight modifica-
tion of the familiar isotropic Heisenberg antiferromagnet on a
square lattice, a model that is believed to describe a variety
of nongeometrically frustrated spin systems, either as-is or
as the foundation of Hamiltonians that describe a vast set of
magnetic systems.

We have discovered that by allowing the Jx and Jy coupling
constants to differ from Jz, so their values become slightly dif-
ferent for different orientations of the nearest-neighbor bonds,
thereby breaking the inversion symmetry of the lattice, the
model can host interesting magnetic excitations with fascinat-
ing topological character.

We are able to analytically solve the modified model,
within the spin-wave approximation, i.e., by taking into ac-
count the role of quantum-spin fluctuations around a Néel
ordered state. The magnetic Bravais-lattice unit cell remains
the same as in the simpler case of the antiferromagnetic order,
however, because our model breaks inversion symmetry, the
degeneracy of the magnon dispersion is lifted and we obtain
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a pair of magnon dispersions which can cross at lines of
degeneracy or form singular pairs of Weyl points with oppo-
site topological charge associated with a pseudohelicity. To
characterize the topological nature of these singularities, we
have calculated the edge spectrum and the field of the Berry
connection vector. We find that the model can host pairs of
Weyl-magnon states with opposite topological charge con-
nected by Weyl-arc edge states. In addition, we find parameter
regimes characterized by lines of degeneracy.

Given that the nearest-neighbor Heisenberg antiferromag-
net finds ubiquitous application in various magnetic materials,
our findings may be easily realizable in nature. In fact, the
slight modifications between the x-y and z components of
the Hamiltonian discussed in this paper are expected to be
necessary to describe the magnetic excitations of a wide va-
riety of two-dimensional antiferromagnets. In general, such
anisotropic couplings should be expected when the antiferro-
magnet undergoes structural transition at lower temperature
to phases of lower symmetry, such as orthorhombic or

monoclinic structures. In a similar fashion, Peierls distortion
can lead to different values for the J− coupling in the for-
ward and backward bonds along a given direction due to
differences in bond length caused by the distortion. The par-
ent compounds of the cuprate superconductors, for example,
La2CuO4, undergo a tetragonal to orthorhombic transition at
lower temperature. In the orthorhombic phase, the structural
distortions of the 2D Cu-O lattice should modify the couplings
in such a way that this or other parent compounds of the family
of oxides could host some of the states found in the present
paper.

In addition, continual progress in the field of ultracold
atoms suggests that our model could be artificially engineered
in optical lattices, where the conventional version of such a
model has already been simulated [23,24].
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