
PHYSICAL REVIEW B 108, 214430 (2023)

Weak universality, quantum many-body scars, and anomalous infinite-temperature
autocorrelations in a one-dimensional spin model with duality

Adithi Udupa,1,* Samudra Sur ,1,* Sourav Nandy,2 Arnab Sen ,3 and Diptiman Sen 1,4

1Center for High Energy Physics, Indian Institute of Science, Bengaluru 560012, India
2Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia

3School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
4Department of Physics, Indian Institute of Science, Bengaluru 560012, India

(Received 2 August 2023; revised 22 November 2023; accepted 8 December 2023; published 26 December 2023)

We study a one-dimensional spin-1/2 model with three-spin interactions and a transverse magnetic field h.
The model is known to have a Z2 × Z2 symmetry and a duality between h and 1/h. The self-dual point at
h = 1 is a quantum critical point with a continuous phase transition. We compute the critical exponents z, β,
γ , and ν, and the central charge c numerically using exact diagonalization (ED) for systems with periodic
boundary conditions. We find that both z and c are equal to 1, implying that the critical point is governed by
a conformal field theory with a marginal operator. The values obtained for β/ν, γ /ν, and ν from ED suggest that
the model exhibits Ashkin-Teller criticality with an effective coupling that is intermediate between the four-state
Potts model and two decoupled transverse field Ising models. A more careful analysis on much larger systems
but with open boundaries using density-matrix renormalization group (DMRG) calculations, however, reveals
important additive and multiplicative logarithmic corrections at and near criticality, and we present evidence
that the self-dual point may be in the same universality class as the four-state Potts model. An energy level
spacing analysis shows that the model is not integrable. For a system with an even number of sites and periodic
boundary conditions, there are exact mid-spectrum zero-energy eigenstates whose number grows exponentially
with the system size. A subset of these eigenstates have wave functions that are independent of the value of h
and have unusual entanglement structures; hence these can be considered to be quantum many-body scars. The
number of such quantum scars scales at least linearly with system size. Finally, we study the infinite-temperature
autocorrelation functions at sites close to one end of an open system. We find that some of the autocorrelators
relax anomalously in time, with pronounced oscillations and very small decay rates if h � 1 or h � 1. If h is
close to the critical point, the autocorrelators decay quickly to zero except for an autocorrelator at the end site.

DOI: 10.1103/PhysRevB.108.214430

I. INTRODUCTION

The well-known transverse field Ising model (TFIM) in
one dimension has been studied extensively over many years
[1–3]. The Hamiltonian of the model consists of two-spin
interactions (with strength set equal to 1) and a transverse
magnetic field with strength h,

H2 = −
L∑

j=1

[
σ z

j σ
z
j+1 + h σ x

j

]
, (1)

where σ a
j denote the Pauli matrices at site j corresponding

to a spin-1/2 degree of freedom, and we are considering a
system with L sites and periodic boundary conditions (PBC).
The model has a Z2 symmetry since an operator D = ∏L

j=1 σ x
j

commutes with the Hamiltonian. The model is known to have
a quantum phase transition at a critical point given by h = 1.
It has a ordered phase for h < 1 with a finite magnetization
(the Z2 symmetry is spontaneously broken in this phase), and
a disordered phase for h > 1 with zero magnetization. It also
exhibits duality [4,5] and the self-dual point h = 1 is the

*These authors contributed equally to this work.

quantum critical point. The critical point is known to be de-
scribed by a conformal field theory with c = 1/2 and certain
critical exponents which are known analytically [6].

Generalizations of the TFIM with p-spin interactions with
duality have been proposed [7] and studied using mean-field
theory [8], finite-size scaling [9–11], and series expansions
[12], with the TFIM corresponding to the case p = 2. It is of
particular interest to take a close look at what happens in the
next simplest case p = 3 where the order of phase transition
in literature has been debated. We study this case numerically
using exact diagonalization (ED) and look at the quantum
criticality in this system at the self-dual point which is again
given by h = 1. Another motivation for studying the case of
p = 3 is that a Hamiltonian of this form may be engineered
using optical lattices either with two atomic species [13] or
with polar molecules driven by microwave fields [14]. We
note that for the model with p = 4, it is not clear whether the
transition at the self-dual point is first-order or continuous,
while models with p � 5 are believed to have a first-order
transition at the self-dual point [8,9,12].

The three-spin (p = 3) model is a candidate for interesting
high-energy behavior as well. For an even number of spins
and periodic boundary conditions (PBC), this model satis-
fies an index theorem [15] that results in the presence of an
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exponentially large number (in system size) of exact mid-
spectrum zero energy eigenstates. Since these states are
degenerate in energy, any linear combination of these is also
an eigenstate of the system. Recent works [16–20] have
shown that this freedom allows for the possibility of creat-
ing mid-spectrum eigenstates which violate the eigenvalue
thermalization hypothesis (ETH) by possessing very low en-
tanglement entropy compared to the expected thermal entropy.
These eigenstates can be classified as quantum many-body
scars [21–28]. It would be interesting to see if the three-spin
model hosts such scar states in the middle of the energy spec-
trum. Finally, we would like to examine if infinite-temperature
autocorrelation functions in open chains show anomalous be-
haviors as a function of time for this model. A motivation to
do so is provided by the observation of infinite (long) coher-
ence times for boundary spins for the TFIM without (with)
integrability-breaking perturbations due to the presence of a
strong zero mode (an almost strong zero mode) that commutes
(almost commutes) with the Hamiltonian [29–33]. While the
TFIM can be mapped to free fermions by the standard Jordan-
Wigner transformations, the perturbed TFIM has additional
four-fermion interactions. It is not known if the three-spin
model has analogous (almost) strong zero modes. A study
of the autocorrelators near the ends of a long system may
possibly shed light on this.

The plan of this paper is as follows. In Sec. II, we present
the Hamiltonian of the model with three-spin interactions and
its symmetries. We find that the model has a Z2 × Z2 symme-
try which leads to some degeneracies in the energy spectrum
of a system with PBC. In Sec. III, we discuss the duality of the
model. While the duality is easy to show for an infinite-sized
system, we discover that the existence of a duality is a subtle
issue for finite-sized systems with PBC. In Sec. IV, we make
a detailed study of the criticality properties of the model at
the self-dual point given by h = 1, using ED for systems with
PBC. Finite-size scaling is used to first confirm that there is
a critical point at h = 1 and then to compute the dynami-
cal critical exponent z, the order parameter exponent β, the
magnetic susceptibility exponent γ , and the correlation length
exponent ν. We find that z = 1 suggesting that the low-energy
sector of the model at h = 1 has conformal invariance. We
then determine the central charge c and find that it is close
to 1. Next, we observe that although the values of β, γ and ν

for the two-spin and three-spin models are different from each
other, the ratios β/ν and γ /ν are the same in the two models.
This suggests that there is a weak universality [34] and the
three-spin model lies on the Ashkin-Teller (AT) line, just like
two copies of the TFIM and the four-state Potts model. Using
the numerically computed value of ν for the three-spin model,
we estimate the location of this model on the AT line of critical
points. We then perform a more careful analysis of the nature
of the critical point using the density-matrix renormalization
group (DMRG) method that allows us to access much larger
system sizes, but with open boundary conditions, compared to
the ED method. We find evidence for important additive and
multiplicative logarithmic corrections in the critical regime
which match those expected at the critical point of the four-
state Potts model. Incorporating these logarithmic corrections
as well as comparing with the corresponding quantities for the
quantum AT model, the data for larger chains suggests that the

self-dual point for the three-spin model may be in the same
universality as the four-state Potts model.

In Sec. V, we study the energy level spacing statistics
to determine if the three-spin model is integrable. We find
that the level spacing statistics has the form of the Gaussian
orthogonal ensemble, and hence the model is nonintegrable.
Next, we find that the model has an exponentially large num-
ber of mid-spectrum zero-energy eigenstates. Further, we find
that the zero-energy eigenstates are of two types which we
call type I and type II. The type-I states are simultaneous
zero-energy eigenstates of the two parts of the Hamiltonian
(the three-spin interaction and the transverse field) and con-
sequently stay unchanged as a function of h, thus violating
the ETH. Hence they qualify as quantum many-body scars.
We give exact expressions for a subset of these type-I states
in terms of emergent singlets and triplets which shows that
their number increases at least linearly with system size. In
Sec. VI, we study the infinite-temperature autocorrelation
function at sites close to one end of a large system and in
the bulk with open boundary conditions; the purpose of this
study is to understand if there are any states which can be
interpreted as the end modes of a semi-infinite system. We
find that far from the critical point, at either h � 1 or h � 1,
some of the autocorrelators show an anomalous behavior in
that they oscillate and also decay very slowly with time. We
provide a qualitative understanding of the oscillatory behavior
using perturbation theory. For values of h close to the critical
point, the infinite-temperature autocorrelators decay quickly
to zero except for a particular autocorrelator at the end site. In
Sec. VII, we summarize our main results and point out some
directions for future research.

In brief, we have studied several aspects of a spin-1/2
model with three-spin Ising interactions and placed in a
transverse field. The features studied include the duality and
other symmetries of the model and its energy spectrum, the
continuous phase transition and its critical exponents at the
self-dual point h = 1, a weak universality of the critical ex-
ponents indicating that the model lies on the Ashkin-Teller
line, in fact, possibly exhibiting four-state Potts universality,
an analysis of the of energy level spacing indicating the nonin-
tegrability of the model, the presence of an exponentially large
number of states with exactly zero energy, the existence of a
subset of the zero energy states which are many-body scar
states (along with an exact analytical expression for some
of these scar states), and infinite-temperature autocorrelation
functions near the ends of a finite-sized system which show
anomalous relaxation with time.

We would like to mention here that several other one-
dimensional models with multispin interactions have been
studied over the years, and they show a wide variety of un-
usual features [35–37]. Our work makes a contribution to this
interesting area of research.

II. THE MODEL AND ITS SYMMETRIES

The Hamiltonian of the three-spin model is given by [7–12]

H3 = −
L∑

j=1

[
σ z

j σ
z
j+1σ

z
j+2 + h σ x

j

]
, (2)
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FIG. 1. The lattice for the Hamiltonian H3 with three sublattices
A, B, and C are shown here. The symmetry operators are defined
with respect to these sublattices in Eq. (5).

where σ a
j (where a = x, y, z) denotes the Pauli matrices at site

j, and we assume PBC so that σ a
L+1 = σ a

1 and σ a
L+2 = σ a

2 .
There are three operators D1, D2, and D3 which commute

with the Hamiltonian H3 in Eq. (2). If the system size L is a
multiple of 3, we can divide the lattice into three sublattices
A, B and C as shown in Fig. 1. The three operators for this
system are then defined

D1 = �
L/3
j=1σ

Aj
x σ

Bj
x ,

D2 = �
L/3
j=1σ

Bj
x σ

Cj
x ,

D3 = �
L/3
j=1σ

Cj
x σ

Aj
x . (3)

These satisfy the constraint D1D2D3 = I . Thus we have
four decoupled sectors corresponding to the different
allowed values of these operators; (D1, D2, D3) =
(1, 1, 1), (1,−1,−1), (−1, 1,−1) and (−1,−1, 1). Thus
this model has a Z2 × Z2 symmetry. All the four sectors
have equal number of states. We also notice that the operator
C = �L

j=1σy anticommutes with the Hamiltonian. Hence for
every state |ψ〉 with energy E , there is a state C |ψ〉 with
energy −E due to which the spectrum of this model has a
E → −E symmetry.

With PBC the system also has translation symmetry. If
the translation operator is given by U , then we can see from
Eq. (3), that

UD1U
−1 = D2,

UD2U
−1 = D3,

UD3U
−1 = D1. (4)

We can further see that a combination of these three operators
D′ = D1 + ωD2 + ω2D3 where ω is the cube root of unity,
transforms into e−i2π/3(D1 + ωD2 + ω2D3) upon translation
by one site. This is because U (D1 + ωD2 + ω2D3)U −1 =
ω2(D1 + ωD2 + ω2D3). This means that for a state |ψk〉
with momentum k, that is, U |ψk〉 = eik |ψk〉, we have a
state (D1 + ωD2 + ω2D3) |ψk〉 = e−i2π/3eik |ψk〉 = |ψk−2π/3〉
with momentum k − 2π/3. Similarly, we have a state (D1 +
ω−1D2 + ω−2D3) |ψk〉 for which the momentum is k + 2π/3.
Since the D operators commute with the Hamiltonian, the
states |ψk〉, |ψk−2π/3〉 and |ψk+2π/3〉 are degenerate. How-
ever in the sector (D1, D2, D3) = (1, 1, 1), the operators D1 +
ωD2 + ω2D3 and D1 + ω2D2 + ωD3 give zero when they act
on a state |ψk〉. Therefore the states belonging to this sector
do not have a degenerate partner. Thus in the entire spectrum,
three-fourths of the states have an exact threefold degeneracy
whereas the other one-fourth belonging to the sector (1,1,1)
has no degeneracy. We also have a parity symmetry in this
system. For an even system size, we can define parity as a
mirror reflection about the middle bond. The parity operator
then takes the operator D1 → D2 and D2 → D1 and keeps
D3 unchanged. Thus, for a system with open boundary con-
ditions which breaks translation symmetry, we can still have

degeneracies coming from parity symmetry. These come
from the states in sectors (D1, D2, D3) = (1,−1,−1) and
(−1, 1,−1) as they go to a different sector under parity.

III. DUALITY OF THE MODEL

Just like the TFIM, the three-spin model also exhibits dual-
ity on an infinitely large system. We show this by starting from
the original lattice with sites labeled by an integer j which
goes from −∞ to +∞. Then the sites of dual lattice also lie
at j. (This is in contrast to the TFIM where the sites of the
dual lattice lie at j + 1/2.) The transformation of the Pauli
matrices going from the original lattice σ a

j to the dual lattice
σ̃ a

j is given by

σ̃ x
j+1 = σ z

j σ
z
j+1σ

z
j+2,

σ̃ z
j−1σ̃

z
j σ̃

z
j+1 = σ x

j . (5)

The Hamiltonian on the dual lattice then takes the form

H̃3 = −
∞∑

j=−∞

[
σ̃ x

j+1 + h σ̃ z
j−1σ̃

z
j σ̃

z
j+1

]
. (6)

Thus going from H3 to H̃3, the transverse field h gets mapped
to 1/h. The self-dual point lies at h = 1/h. Hence, if H3 (or
H̃3) has a phase transition it must occur at |h| = 1.

We will now examine if duality also holds for a finite sys-
tem with PBC as described in Eq. (2). Clearly, we would like
both the original and dual lattices to have the same number
of sites, L, and the number of states should be 2L in both
cases. The latter can only happen if the Pauli operators are
independent operators on different sites on both the lattices.
The first equation in Eq. (9) and the fact that (σ z

j )2 = 1 for all
j imply that

σ̃ x
1 σ̃ x

2 σ̃ x
4 σ̃ x

5 · · · σ̃ x
L−2σ̃

x
L−1 = I,

and σ̃ x
2 σ̃ x

3 σ̃ x
5 σ̃ x

6 · · · σ̃ x
L−1σ̃

x
L = I (7)

if L is a multiple of 3. Hence there are two constraints on the
σ̃ x

j operators, implying that the eigenvalues of the operators
cannot take all possible values independently of each other.
To put it differently, the two constraints mean that the number
of states in the dual system is 2L−2 rather than 2L. We reach a
similar conclusion for the original system by using the second
equation in Eq. (9). We therefore conclude that duality does
not hold for a finite system with PBC if L is a multiple of 3.
It turns out that duality does hold if L is not a multiple of 3 as
the Pauli operators do not satisfy any constraints on either the
original lattice or the dual lattice in that case. (Note, however,
that the operators Dj defined in Sec. II do not exist if L is
not a multiple of 3). Next, duality implies that there must be
a unitary operator UD which relates the states of the original
and dual lattices. Let us write the Hamiltonian in Eq. (2) in
the form

H3 = −Z − hX,

where Z =
L∑

j=1

σ z
j σ

z
j+1σ

z
j+2,

X =
L∑

j=1

σ x
j , (8)
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and similarly

H̃3 = −X̃ − hZ̃. (9)

Then there must be a unitary operator UD such that
UDXU −1

D = Z̃ and UDZU −1
D = X̃ . This means that at the self-

dual point h = 1, if |ψn〉 is an eigenstate of H3 with eigenvalue
En, and |ψ̃n〉 = UD|ψ〉 is an eigenstate of H̃3 with the same
eigenvalue, we must have

〈ψn|X |ψn〉 = 〈ψ̃n|Z̃|ψ̃n〉 = 〈ψn|Z|ψn〉, (10)

where the equality 〈ψ̃n|Z̃|ψ̃n〉 = 〈ψn|Z|ψn〉 is a consequence
of self-duality. Since 〈ψn|(−X − Z )|ψn〉 = En, Eq. (10) im-
plies that

〈ψn|X |ψn〉 = −En

2
. (11)

at h = 1. A test of this relation will be discussed in Ap-
pendix B.

Before ending this section, we note that it is not useful to
perform a Jordan-Wigner transformation from spin-1/2’s to
spinless fermions for this model because there are three-spin
terms in the Hamiltonian. The Jordan-Wigner transformation
maps σ x

j to the occupation number c†
j c j of fermions at site

j, and σ z
j to c j + c†

j times a string of σ x
n operators running

from n = −∞ to j − 1 (for an infinitely large system). The
presence of the three-spin term σ z

j σ
z
j+1σ

z
j+2 in the Hamiltonian

implies there will be an infinitely long string of σ x
n operators

left over which does not cancel with anything. Thus this model
cannot be solved by fermionizing since the fermionic Hamil-
tonian will have highly nonlocal terms. We will henceforth
analyze the model numerically. In the next section, we will
carry out ED calculations to confirm the location of the critical
point of the quantum phase transition and to extract the critical
exponents.

IV. QUANTUM CRITICALITY OF THE MODEL

We will now study the three-spin model numerically to
understand the nature of the phase transition at h = 1 and
the critical properties. We will use ED to obtain the ground
state and low-lying excitations and then compute various ther-
modynamic quantities like the magnetization and magnetic
susceptibility to study the criticality.

A. Energy levels

We use ED to compute the first few energy levels for
the Hamiltonian in Eq. (2). The first three excited energy
levels with respect to the ground state energy are plotted
in Fig. 2. We first notice that the phase transition hap-
pens close to |h| = 1. In the region |h| > 1, the system is
gapped with a finite difference between the ground state
and the first excited energy. The first three excited states
are exactly degenerate due to the symmetries D1, D2, D3

of the model (see Sec. II) with eigenvalues (D1, D2, D3) =
(1,−1,−1), (−1, 1,−1), and (−1,−1, 1). The ground state
is unique and belongs to the sector (D1, D2, D3) = (1, 1, 1).
In the region |h| < 1, the ground state becomes degenerate
with the threefold degenerate states as the system size ap-
proaches infinity. For finite-sized systems, there is a small

FIG. 2. First three energy levels as measured from the ground
state energy plotted as a function of the transverse field h for L = 15.
We see some degeneracies which arise from the Z2 × Z2 symmetry.

gap in the region |h| < 1. The gap varies with h and falls off
exponentially with the system size; for h = 0.4 and L = 15,
the gap is of the order of 10−4.

B. Finite-size scaling

To understand the nature of the phase transition in this
model in comparison to the TFIM which has two-spin inter-
actions, we look at the behaviors of different quantities close
to the critical point. Close to the critical point, any singular
quantity, 
, will have an asymptotic behavior of the form [38]


 ∼ |h − hc|−θ , (12)

where θ is the critical exponent of the quantity 
. In addi-
tion, continuous phase transitions have a diverging correlation
length scale ξ which diverges close to the critical point as
ξ ∼ |h − hc|−ν , where ν is the critical exponent correspond-
ing to the correlation length. This implies that 
 ∼ ξ θ/ν . At
the critical point, the correlation length diverges. However
for finite system sizes, we are limited by the system size L.
Hence, when the correlation length exceeds the system size,
the quantity will vary with L depending on the ratio L/ξ , and
the above relation gets modified to


 ∼ ξ θ/ν
0(L/ξ ), (13)

where 
0(L/ξ ) is a scaling function with


0(L/ξ ) =
{

constant for L � ξ

(L/ξ )θ/ν for L � ξ
.

Thus at the critical point when ξ � L, we find that 
 scales
as [38]


|hc ∼ Lθ/ν . (14)

By evaluating 
 for different system sizes we can calculate
the critical exponent θ/ν once we know the exact location of
the critical point hc.

C. Numerical determination of critical point

The ground state fidelity is the one of the preliminary
ways to detect a quantum phase transition. The fidelity is de-
fined as F (h, δh) = |〈ψ0(h − δh/2) | ψ0(h + δh/2)〉|, where
ψ0(h ± δh/2) is the ground state of the Hamiltonian with
parameter h ± δh/2, and δh is a small but fixed number. The
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FIG. 3. Fidelity as a function of the transverse field h (for
a fixed δh = 0.005) is plotted for different system sizes L =
9, 12, 15, 18, 21, and 24. There is a dip in the fidelity close to
the expected critical point h = 1.

fidelity is expected to show a pronounced deviation from unity
in the neighborhood of a phase transition.

In Fig. 3, we show the variation of the fidelity F (h, δh)
as a function of the transverse field h for different system
sizes L = 9, 12, 15, 18, 21, and 24 for a fixed δh = 0.005.
We see a dip close to h = 1 for all system sizes confirming
that a phase transition occurs at this point. As the system
size increases, the magnitude of the dip increases and the
location of the dip approaches the predicted value h = 1.
For the largest system size here L = 24, we find that the
minimum occurs at hc = 0.9960. We also note that the loca-
tion of the minimum, hc(L), obtained from the fidelity scales
as hc(L) = 1 + aL−2/ν , while the value of the fidelity sus-
ceptibility χF (hc = 1) = −∂2F (hc, δh)/∂2(δh)|δh→0 at hc =
1 scales as bL2/ν , where a, b are constants and ν is the cor-
relation length exponent yielding ν ≈ 0.71 (see Sec. IV H for
further discussion).

D. Dynamical critical exponent z

The smallest energy gap in the system at finite sizes (Fig. 2)
can be used to estimate the dynamical critical exponent z. As

we approach the critical point, the energy difference between
the first excited state and the ground state, �, behaves as

� ∼ |h − hc|zν . (15)

Given the exponent zν, Eqs. (12) and (14) imply that

�|hc ∼ L−z. (16)

We evaluate � by performing ED for various system sizes
L = 12, 15, 21, 24, and 27 in the neighborhood of the critical
point. Figure 4(a) shows the variation of � with h for different
system sizes. At h = hc we plot a log-log graph of �|hc versus
L [inset of Fig. 4(a)], and fit it linearly to obtain the slope.
We find that z = 1.0267 ± 0.0014 indicating that z = 1 at
criticality.

E. Calculation of central charge c

Since the critical exponent z = 1 for this model, the low-
lying excitations at the critical point have a linear dispersion
making the system Lorentz invariant with some velocity
v which will be discussed below. Thus the model can be
described by a 1 + 1-dimensional conformal field theory char-
acterized by a central charge c [6]. In such a theory, the von
Neumann entanglement entropy of the system can be used to
extract the central charge c. If the system is divided into two
subsystems A and B, the von Neumann entanglement entropy
between the two systems is given by

SA = −TrA(ρA ln ρA), (17)

where ρA is the reduced density matrix of the subsystem A
obtained by tracing out the states in B from the density matrix
of the ground state: ρA = TrB |ψGS〉 〈ψGS|. For a finite system
size L with PBC, if we divide the system into two subsys-
tems with sizes l and L − l , the von Neumann entanglement
entropy for the subsystem l is found to be [39]

S(l ) = c

3
ln[g(l )] + c′, (18)

where g(l ) = (L/π ) sin(π l/L), and c′ is a constant. For
our model, we take L = 27 and calculate S(l ) for different

FIG. 4. (a) Plot of the smallest gap, �, as a function of h for different system sizes. The inset shows a log-log plot of �|hc fitting which
to a straight line gives the dynamical exponent z = 1.0267 ± 0.0014. (b) Plot of the ground state entanglement entropy versus the logarithm
of g(l ) = (L/π ) sin(lπ/L), where l is the size of one of the subsystems, and L = 27 at the critical coupling hc = 1. The slope of the graph
is c/3 which gives c = 1.0644. (c) From Eq. (19), the variation of the ground state energy with the system size L at hc = 1 gives an estimate
for c, namely, the slope of EGS/L versus 1/L2 has a slope equal to −πvc/(6L). For L = 27, we find that c = 0.9585. The inset shows the
velocity estimate of the gapless excitations which is calculated by fitting the function E (k) = a sin(bk) + d . For L = 27, we find a = 2.2893
and b = 1.5012 respectively giving the velocity v = ab = 3.4367.
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subsystems l , plot S(l ) [Fig. 4(b)] as a function of ln[g(l )],
and fit it linearly. The central charge c is three times the slope
obtained from this fit which gives c = 1.0644 ± 0.0072.

We can use another method to calculate c. The ground state
energy of a finite-sized system is found to show the following
dependence on the system size L [39],

EGS = αL − πvc

6L
, (19)

where α is a nonuniversal constant equal to the ground state
energy per site in the thermodynamic limit [40], v is the ve-
locity of the gapless excitations at the critical point which can
be obtained from the dispersion, and c is the central charge.
We first calculate the velocity by plotting the dispersion for
L = 27 as shown in the inset of Fig. 4(c). As discussed earlier,
the dispersion varies periodically with the momentum with
a period equal to 2π/3. Fitting the inset in Fig. 4(c) with a
function of the form E = a sin(bk) + d , where a = 2.2893 ±
0.0134 and b = 1.5012 ± 0.0015 respectively (the value of
b is consistent with a period of 2π/3. Thus the velocity in
the linear region near k = 0 is v = ab = 3.4367 ± 0.0236.
The slope of EGS/L versus 1/L2 shown in Fig. 4(c) gives a
slope equal to −πvc/(6L). Putting all this together, we get
the value of c for this model to be c = 0.9585 ± 0.0015. Thus
both the methods give an estimate of c which is close to 1. A
value of c = 1 suggests the possibility of a marginal operator
at the critical point [41] of the three-spin model, and hence
weak universality. To investigate this further, we proceed to
compute the other critical exponents of this system: β related
to the order parameter, γ to the magnetic susceptibility, and ν

to the correlation length.

F. Order parameter exponent β

We now study the order parameter in this model. Given
the three-spin form of the interaction, we define a symmetric
order parameter as follows. As described earlier, the lattice
has three sublattices A, B, and C. We define three quantities

mA = 3

L

L/3∑
n=1

σ z
3n−2,

mB = 3

L

L/3∑
n=1

σ z
3n−1,

mC = 3

L

L/3∑
n=1

σ z
3n, (20)

and a combined order parameter

m =
√〈

m2
A

〉 + 〈
m2

B

〉 + 〈
m2

C

〉
. (21)

For numerical clarity, it would be worthwhile to note here
that for finite-size systems, the ground state expectation values
〈ma〉 are equal to zero for a = A, B,C even for h < hc. This
is due to the fact that the ground state is fourfold degenerate
(in the infinite size limit), and the ground state obtained from
ED is a linear combination of these four states making the ex-
pectation values exactly equal to zero. To bypass this problem
we have first evaluated 〈m2

a〉 and then taken the square root of
the squares. The behavior of m for our model as a function of

transverse field h is shown in Fig. 5(a). It begins to drop to
zero as we approach hc. Close to the critical point, we have

m ∼ |h − hc|β. (22)

From the finite-size scaling of magnetization, we have

Mz ∼ L−β/ν, (23)

where Mz = m|hc . The log-log graph for Mz versus L is
shown in the inset of Fig. 5(a); from this, we find that β/ν =
0.1291 ± 0.0018. This ratio is close to the value of β/ν = 1/8
found for the TFIM (two-spin model) where it is analytically
known that β = 1/8 = 0.125 and ν = 1.

G. Magnetic susceptibility exponent γ

We now compute the magnetic susceptibility χ . For this
calculation, we add a longitudinal field to the system so that
the Hamiltonian becomes

H = −
L∑

j=1

[
σ z

j σ
z
j+1σ

z
j+2 + hσ x

j + hzσ
z
j

]
, (24)

where hz is the longitudinal field in the system.
The magnetic susceptibility is defined as [42]

χ = ∂〈Mhc〉
∂hz

∣∣∣∣
hz→0

, (25)

where 〈Mhc〉 is computed as follows. We first define M =
1
L

∑L
i=1 σ z

i and evaluate its expectation value in the ground
state as a function of the transverse and longitudinal fields hz

and h. It will be nonzero due to the presence of the longitudi-
nal field. At the critical point hc = 1 we take the derivative of
Mhc with respect to hz and find its value in the limit hz → 0.
The magnetic susceptibility as a function of the transverse
field h is shown in Fig. 5(b).

For different system sizes at the critical point we have the
quantity χ0 = χ |hc which, from finite-size scaling, behaves as

χ0 ∼ Lγ /ν, (26)

where γ is the exponent corresponding to susceptibility. This
is estimated by plotting a log-log graph of χ0 versus L as
shown in the inset of Fig. 5(b). The ratio of the exponents
γ /ν comes out to be 1.7976 ± 0.0034 for this model, which
is close to the value of γ /ν = 7/4 known for the TFIM where
γ = 7/4 = 1.75 and ν = 1.

H. Correlation length exponent ν

To evaluate the correlation length exponent, we return
to Eq. (13). Reorganizing that equation using the relation

̃(y) = yθ
0(yν ), we get


L−θ/ν ∼ 
̃(L1/ν |h − hc|). (27)

By choosing the thermodynamic quantity 
 to be the smallest
energy gap � and by fixing the corresponding exponent z to
be 1 as obtained earlier, we look at the derivative of Eq. (27)
with respect to h. At the critical point, we therefore have

d (�Lz )

dh

∣∣∣∣
hc

∼ L1/ν . (28)
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FIG. 5. (a) Plot of the order parameter defined in Eq. (21) versus h for different system sizes. We see that it has a finite value for h < 1 and
falls off as h > 1. The log-log plot of this quantity at the critical point with maximum system size L = 27 gives a slope of β/ν close to 0.129.
(b) Plot of the magnetic susceptibility for this model as a function of h. At the critical point, it scales with the system size with an exponent γ .
From the log-log plot shown in the inset, we find that γ /ν = 1.7976. (c) A log-log plot of d (�(h)L)/dh|hc at the critical point vs L. The slope
gives us the inverse of the exponent of correlation length ν. From this data fitting, we obtain the value of ν to be 0.7538.

In Fig. 5(c), we plot the logarithm of d (�Lz )
dh |hc versus the

logarithm of the system sizes with L = 12, 15, 18, 24, and
27. From the slope of the data fitting, we find the value of
ν = 0.7538. From this analysis, we see that the critical point
of the three-spin model is different from the TFIM (where
ν = 1) even though the values of β/ν and γ /ν seem to be
identical.

I. Comparison with transverse field Ising model,
hyperscaling, and quantum Ashkin-Teller model

We have repeated the numerical analysis for the TFIM
(two-spin Ising model) using ED for system sizes L =
8, 10, 12, 14, 16, 18, 20, and 22. In that case our
calculations give z = 1.0026, c ≈ 0.50, β/ν = 0.1337, and
γ /ν = 1.7936. For the three-spin model we found above that
z = 1.02, β/ν = 0.129, and γ /ν = 1.798 with the data from
system sizes L = 9, 12, 15, 18, 21, 24, and 27. We can
see that the values of the ratios of critical exponents β/ν

and γ /ν are very close to each other for the two models.
However the correlation length critical exponent ν is 1 for the
two-spin model (TFIM) and close to 0.75 for the three-spin
model. Since all the exponents and the central charge value
conform with the theoretical values from analytical and nu-
merical calculations for the two-spin Ising model [38,43], we
expect that the exponents obtained by the same methods for
the three-spin model are also reliable. The estimated values
for the two models are tabulated and compared in Table I.
Furthermore, we check for the validity of the hyper-scaling
relation for our model. The hyperscaling relation is given
by [38]

2β + γ = ν(d + z), (29)

where d is the space dimensionality of the system (d = 1
in our case). Since d , z, β/ν, and γ /ν are the same for the
two-spin and three-spin models, our model also satisfies the
hyperscaling relation.

Since the central charge c = 1 for the three-spin model and
the ratios of the critical exponents β/ν and γ /ν are essentially
identical to those of the TFIM, this strongly suggests that the
critical behavior of the three-spin model belongs to the class
of 1 + 1-dimensional models with z = 1 and c = 1 described

by the AT model [44]. The AT model constructed on a lattice
has two spin s = 1/2 freedom on each site denoted by σ

and τ . These operators are coupled by a parameter λ. The
Hamiltonian for the quantum AT model is given by [45]

HAT = −
L∑

j=1

(
σ z

j σ
z
j+1 + τ z

j τ
z
j+1 + λσ z

j σ
z
j+1τ

z
j τ

z
j+1

)

−h
L∑

j=1

(
σ x

j + τ x
j + λσ x

j τ
x
j

)
. (30)

For any value of λ and h, this model has a Z2 × Z2 symmetry,
where the two Z2’s are given by (σ z

j → −σ z
j , σ x

j → σ x
j ) and

(τ z
j → −τ z

j , τ x
j → τ x

j ), respectively.
At the critical point h = 1, the model in Eq. (30) is known

to exhibit weak universality, namely, the ratios of the expo-
nents β/ν = 1/8 and γ /ν = 7/4 are independent of λ but the
values of the exponents individually depend on λ. One limit
of λ = 0 reduces the AT model to two decoupled TFIM thus
giving c = 1. For this case, we know that ν = 1. In the other
limit of λ = 1, we get the four-state Potts model [46], with
the critical exponent ν = 2/3. We thus see that our three-spin
model H3 also appears to show this weak universality since
c = 1, and β/ν and γ /ν are close to 1/8 and 7/4. However,
ν is different from the TFIM. Since the value of ν = 0.7538

TABLE I. Numerical estimates of the critical exponents and the
central charge for the three-spin and two-spin Ising models in a
transverse field. Here EE stands for entanglement entropy. The error
bars shown are obtained from the fitting procedures as discussed in
the text.

Exponent Method used Three-spin Two-spin

z � scaling with L at hc 1.0267 (14) 1.0026 (3)
β m scaling with L at hc 0.0973 (14) 0.1337 (64)
γ χ scaling with L at hc 1.3550 (84) 1.7936 (20)

ν
d

dh
(�L) scaling with L 0.7538 (45) 1.0335 (42)

at hc

c EE Scaling at hc 1.0644 (72) 0.5096 (13)
Energy scaling at hc 0.9585 (15) 0.5034 (68)
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(a)

(c)

(b)

(d)

FIG. 6. (a) Behavior of the entanglement entropy S(�) as a function of the subsystem size � in the ground state of the three-spin model at
the critical point hc = 1 for L = 600. (b) Behavior of �L as a function of system size for both the three-spin model and the AT model at λ = 1
is consistent with the form shown in Eq. (31). The inset shows the result of fitting the corresponding data for the three-spin model to the form
�|hc ∼ L−z. (c) Plot of �L versus h in the vicinity of hc = 1 for various L shown for the three-spin model. The inset shows the determination
of the exponent ν using d (�L)

dh |hc ∼ L1/ν . (d) �L in the neighborhood of hc, both for the three-spin model and the AT model at λ = 1, can be
collapsed to the same universal curve by assuming the scaling form shown in Eq. (32) and choosing the metric factor A = 1 in the former
case and A ≈ 2 in the latter case. The inset shows the scaling collapse assuming Eq. (32) without adjusting for the different metric factors in
the two different models.

for the three-spin model, results from ED suggest that it must
lie somewhere in between two copies of the TFIM and the
four-state Potts model. To find the value of λ for which the
three-spin model would get mapped to the AT model, we
would have to study the AT model as a function of λ. However
since the number of degrees of freedom are doubled, we can
go only up to system sizes L = 13 using ED, and thus cannot
rely on those numerical results. We note that the value of
ν ≈ 0.75 for the three-spin model is consistent with the values
obtained earlier by finite-size scaling for system sizes up to
L = 18 [9–11] and by series expansions [12].

J. DMRG results

We now present the results extracted from studies using
the density-matrix renormalization group (DMRG) method
[47,48] for the three-spin model with open boundary condi-
tions (OBC). The primary objective of performing the DMRG
is to better understand the nature of the critical point at hc = 1.
We implement DMRG using the ITENSOR (JULIA) library [49].
The reasons for using OBC while performing DMRG studies
are twofold: (i) the traditional DMRG algorithm (and the one
used by the ITENSOR library) is based on optimization of open
matrix product states [50], and (ii) even though one can try

in a straightforward manner to implement DMRG with PBC
simply by including a “long bond” directly connecting the
two ends of the systems, such a naive approach suffers from
serious drawbacks. In particular, if DMRG with OBC achieves
a certain accuracy while keeping χ states (where χ denotes
the bond dimension), then to reach the same accuracy with
PBC, one needs to keep approximately χ2 states [50]. This
drawback of the DMRG method with PBC makes it rather
costly and therefore impractical. We note that although there
are certain proposals for efficient DMRG studies with PBC
[51], such proposals are yet to be well tested for critical
systems to the best of our knowledge.

Using DMRG, we first compute the entanglement entropy
S (�) as a function of the subsystem size � in the ground
state of the three-spin model at the critical point hc = 1.
We extract the central charge c using the well-known re-
lation S (�) = (c/6) ln((L/πa) sin(π�/L)) + c′ [39] on open
chains. As shown in Fig. 6(a), using data for a system size
of L = 600, we get c = 1.0116 ± 0.00071 (along with c′ =
0.3552 ± 0.00058) which provides strong evidence that the
hc = 1 critical point is described by a c = 1 conformal field
theory. Furthermore, we can reliably extract the smallest exci-
tation gap above the ground state, �, in the neighborhood of
hc = 1 for open chains up to L � 390 which gives us a way
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to estimate both z and ν. We also calculate the smallest gap,
�, in the vicinity of the critical point hc = 1 for the AT model
at various values of λ [Eq. (30)] to compare certain universal
features at criticality with the three-spin model. Since the local
Hilbert space for the AT model is four-dimensional unlike that
of the three-spin model, we can only go up to open chains of
size L � 180 with our available resources.

As in the ED procedure, we first estimate z using �|hc ∼
L−z [see the discussion around Eq. (16)]. For the three-spin
model, using data for L ∈ [90, 330], we obtain z ≈ 0.97 which
is still reasonably far from the theoretically expected value
of z = 1 [see the inset of Fig. 6(b)]. In contrast, we obtain
z ≈ 0.995 for the AT model at λ = 0 (the decoupled Ising
limit) even after using smaller system sizes L ∈ [75, 180].
On the other hand, the analysis of � for the critical point
of the AT model in the vicinity of λ = 1 again yields z ≈
0.97 with the available system sizes. This suggests the pres-
ence of slowly decaying corrections in L for �|hc L. It is
well-known from the study of the critical properties of the
classical two-dimensional four-state Potts model [52,53] that
there are important universal additive and multiplicative log-
arithmic corrections to scaling in many quantities. From the
classical-to-quantum correspondence, we expect the same in
the one-dimensional quantum version. In fact, one expects a
leading additive logarithmic correction of the form [53]

�|hc L

|hc| = a∗ + b

ln(L)
+ · · · , (31)

where a∗ is a universal number that characterizes the critical
point and · · · refers to terms that decay faster than 1/ ln(L).
We indeed see from Fig. 6(b) that the smallest gap �|hc for
both the three-spin model and the AT model at λ = 1 are con-
sistent with this form. We choose to only consider the leading
additive logarithmic correction while fitting the data since we
only have a limited range of L available to us from DMRG.
We estimate a∗ ≈ 9.86(9.61) from the data for the three-spin
model (AT model at λ = 1) from the available system sizes.

We estimate ν from the DMRG data by using the rela-
tion d (�L)

dh |hc ∼ L1/ν [see the discussion around Eq. (28)] and
fitting system sizes in the range of L ∈ [90, 390] for the three-
spin model, from which we extract ν = 0.7233 ± 0.0011 as
shown in the inset of Fig. 6(c). In the main panel of the same
figure, we show the behavior of �L versus h for different
system sizes. We obtain a good scaling collapse (not shown)
when �Lz (with z = 1) is plotted as a function of (h − hc)L1/ν

(see the discussion around Eq. (27)), with ν ≈ 0.72. The sig-
nificant difference between the numerical values of ν obtained
via ED (≈0.75) and DMRG plausibly indicates the strong
sensitivity of the system to both finite size effects and the
boundary conditions. However, we note that d (�L)

dh |hc ∼ L1/ν

follows from Eq. (27). On the other hand, it is known that
there are important multiplicative logarithmic corrections to
the scaling form [Eq. (27)] for � in the vicinity of the critical
point of the two-dimensional classical four-state Potts model.
In fact, we expect that

�L = F (A(h − hc)L3/2(ln L)−3/4) (32)

from the behavior of the correlation length near critical-
ity for the two-dimensional classical four-state Potts model
[53], where F denotes a universal function and A denotes a

metric factor that varies depending on the microscopics of
the model. Assuming Eq. (32) gives d (�L)

dh |hc ∼ L3/2(ln L)−3/4

which mimics a power law L1/ν with ν ≈ 0.72 given that
L ∈ [90, 390]. In fact, the inset of Fig. 6(d) shows that the � in
the neighborhood of hc = 1 for different L is consistent with
this scaling ansatz [Eq. (32)] both for the three-spin model
and for the AT model with λ = 1 (where L ∈ [75, 180]). Note
that the inset of Fig. 6(d) requires no fitting parameter. In fact,
choosing a metric factor of A = 1 for the three-spin model and
A ≈ 2 (by visual inspection) for the AT model at λ = 1 makes
the data for the two different microscopic models fall on the
same scale-collapsed curve [Fig. 6(d), main panel], which is
strong evidence that the two critical points belong to the same
universality class, i.e., four-state Potts criticality.

Since the scaling collapse of the smallest gap, �, is con-
sistent with both Eq. (27) with ν ≈ 0.72 and Eq. (32), one
may ask whether some other quantity can distinguish between
the two scenarios. An analytical study using the real-space
renormalization group gives a relation between the critical
exponents ν and the corresponding λ of the AT model as [54]

ν = 1

2 − (
π
2

)
[arccos(−λ)]−1

, (33)

which gives λ = 0.8267 for ν = 0.7233 extracted from the
behavior of d (�L)/dh at hc = 1 for various values of L as-
suming a scaling of the form L1/ν(ignoring the statistical error
in the fitting procedure). First, fitting �|hc ∼ L−z again yields
z ≈ 0.97 at this λ, similar to the case of the three-spin model
and the AT model at λ = 1. However, even though �|hc L
seems to be consistent with Eq. (31), the extrapolated value of
a∗ ≈ 7.97 turns out to be quite different from the correspond-
ing value for the critical point of the three-spin model. Second,
it turns out that probing Binder cumulants [55–57], denoted by
U2, constructed from the second and fourth moments of appro-
priately defined order parameters for the three-spin model, as
well as the AT model for both λ = 1 as well as λ = 0.8267
helps to clarify the situations.U2 can be defined such that it
equals 1 (0) in the ordered (disordered) phase and attains a
nontrivial value U ∗

2 at the critical point in the thermodynamic
limit. For finite systems, U2 typically displays a monotonic
behavior as a function of h, the parameter that drives the quan-
tum phase transition, and thus stays bounded between 0 and 1.
On the other hand, U2 shows a nonmonotonic behavior and in
fact develops a negative peak whose location approaches the
critical points and whose magnitude diverges polynomially
with L as L → ∞ [58,59]. However, from the results for the
classical Ashkin-Teller model in two dimensions [60], U2 is
expected to display a pseudo-first-order behavior character-
ized by a nonmonotonic behavior of U2 in h as well as a
negative dip that increases in magnitude with system size,
albeit much slower than what is expected from a first-order
transition, for the one-dimensional quantum AT model in
the neighborhood of λ = 1 but not sufficiently away from
it. Obtaining U2 from DMRG for finite open chains for the
three-spin model, and the AT model at λ = 1 and λ = 0.8267
respectively, one sees that while both the three-spin model
and the AT model at λ = 1 shows such pseudo-first-order
behavior, U2 displays a monotonic behavior and is bounded
between 0 and 1 for the case of the AT model with λ = 0.8267
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for the available system sizes (see Appendix A for numerical
plots and further discussion). We take this as evidence that the
three-spin model, in fact, displays four-state Potts criticality
and is not in the universality class of an intermediate critical
point described by λ ≈ 0.83.

Before ending the discussion of the DMRG results, we
point out that we have carefully checked that our results are
well converged with respect to the bond dimension. For all
the calculations, apart from keeping track of energy conver-
gence, we have also checked that the energy fluctuation in the
obtained state 〈H2〉 − 〈H〉2 ∼ 10−10, ensuring that the state
obtained at the end of the DMRG calculation is indeed an
eigenstate of H . While computing the energy gap, we have
explicitly checked that the overlap between ground state and
the first excited state obtained via DMRG is of the order
10−10, which ensures their expected orthogonality.

V. PRESENCE OF QUANTUM MANY-BODY SCARS

A. Nonintegrability of the model

We now show that the three-spin model is different from
the TFIM in that while the latter model is well-known to be
integrable, the former seems to be nonintegrable. A common
diagnostic to test integrability is to study the energy level
spacing statistics. In this section, we will study that level
spacing for H3 and discover that shows that the model is non-
integrable. If the spectrum of energies is sorted in increasing
order so that En is the n-th energy level, then we define the
level spacing as [61,62]

sn = En+1 − En. (34)

The distribution of s, called P(s), gives a way of testing the
integrability of the system. The system is integrable if P(s) is
Poisson-like and is nonintegrable if P(s) has a Wigner-Dyson
distribution. However, for many-body systems with a noncon-
stant density of states, a new quantity proposed by Oganesyan
and Huse [63] is more useful and reliable. This quantity r̃ is
defined as follows

r̃ = min(sn, sn−1)

max(sn, sn−1)
. (35)

Since r̃ involves the ratio of energy spacings, the advantage
of evaluating r̃ is that it is independent of the local density of
states. The definition in Eq. (35) implies that it is restricted
to lie in the range 0 to 1.The average value of r̃ turns out
to be 0.34 for integrable models but close to 0.53 for non-
integrable models governed by the Wigner-Dyson Gaussian
orthogonal ensemble (GOE). For our model, we evaluate r̃
in a particular sector (D1, D2, D3) = (1,−1,−1) and with
open boundary conditions to eliminate degeneracies due to
any residual global symmetries. For L = 18, we obtain the
value of the average of r̃ to be 0.533. We further see that the
numerical data fits very well to the Wigner-Dyson distribution
of P(r̃) given by [62]

P(r̃) = 27

4

r + r2

(1 + r + r2)5/2

(1 − r), (36)

where rn = sn/sn−1 and 
(x) is the usual theta function. In
Fig. 7, we see that the distribution given in Eq. (36) matches
very well with the numerical data. This establishes that the

FIG. 7. The distribution of r̃ defined in Eq. (35) is plotted for
system size L = 18 with open boundary conditions in the sector
(D1, D2, D3) = (1, −1, −1) that contains 65 536 eigenstates. Further
the expected distribution derived for a GOE P(r̃) is shown in red. We
see that they agree quite well. The average of r̃ also turns out to be
close to 0.53 as expected for GOE.

three-spin model is nonintegrable. Given that it is noninte-
grable, we find some of the energy eigenstates with zero
energy have an interesting feature as will be discussed in the
section below.

B. Zero-energy states

An the interesting property of the three-spin model is that
for even system sizes with PBC, we find a large number of
states with E = 0. These are mid-spectrum states since we
have a E → −E symmetry of the energy levels. We find that
the number of zero-energy increases with system size at least
as fast as 2L/2. We can prove this using an index theorem [15].
Writing the Hamiltonian H3 in the σ y basis we find that it
can be made to have only off-diagonal blocks when the states
are divided into two sectors as follows. The spin states for a
system size of L is divided into sectors of (i) states with the
number of spin states with σ y = +1 being even, labeled as
N↑,even (ii) states with the number of spin states with σ y =
+1 being odd labeled as N↑,odd. This is because for states in
N↑,even, the first term in H3 will flip spins on three sites in
the state and the second term will flip one spin, both giving
a state with an odd number of up spins, thus connecting to
the sector of N↑,odd. The index theorem states that the number
of zero-energy states in the system is equal to or greater than
the absolute value of the difference in the number of states
in each sector, thus giving a lower bound on the number of
zero-energy states. In this case, however, we find that |N↑,even-
N↑,odd| = 0. However we see that the parity operator can be
used to further divide these two sectors into states with P =
±1. Since L is even, we define parity as reflection about the
middle of the ( L

2 )th and ( L
2 + 1)th sites and find the number

of states with parity P = ±1 in the two sectors N↑,even and
N↑,odd. Let n1 be the number of states with (P = 1, N↑,even), n2

with (P = 1, N↑,odd), n3 with (P = −1, N↑,even), and n4 with
(P = −1, N↑,odd). We know the following relations between
n1, n2, n3, and n4.

n1 + n2 + n3 + n4 = 2L,

n1 + n3 = n2 + n4 = 2L−1. (37)
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FIG. 8. (a) Plot of logarithm of total number of zero-energy states NE=0 versus the system size L. For all L, we see that it is greater than
2L/2 which is a bound given by an index theorem. (b) Plot of the total number N1 of type-I states versus L. This number also generally increases
with system size although not monotonically.

Next, given the spin configuration in one of the states, we
can see that there are two possibilities. For the system size
with L sites, we can have the configuration from site numbers
1 to L/2 to be either (i) different from or (ii) same as the
configuration from sites L to (L/2) + 1. Examples of this for
L = 6 are as follows. For the first type, an example of such
a configuration is a state like |ψ〉 = |↑↑↓↑↓↑〉 for which we
see that the spins from 1 to 3 are not the same as from 6 to
4. For such states we can take superpositions |ψ〉 + P |ψ〉 and
|ψ〉 − P |ψ〉 which are eigenstates of P with eigenvalues +1
and −1, respectively. These two come in equal numbers for
all |ψ〉. An example of the second type of configuration is
|↑↑↓↓↑↑〉 where the reflection about the midpoint has the
same configuration on either side. Such states therefore are
eigenvectors of the parity operator with eigenvalue +1, i.e.,
P |ψ〉 = ψ . We also note that such states have to belong to
the sector N↑,even since the total number of up- pointing spins
is always twice the number of them till half the lattice. From
this, we can conclude that the total number of such states of
second type are equal to the difference between the number of
N↑,even with P = 1 and P = −1. It is also equal to the number
of ways of selecting the configuration from sites 1 to L/2,
since the other half is then fixed by mirror reflection. This
gives 2L/2, which leads to the relation

n1 − n3 = 2L/2. (38)

Turning to the sector N↑,odd, we see that no state can have
P |ψ〉 = ± |ψ〉. The combination |ψ〉 + P |ψ〉 and |ψ〉 −
P |ψ〉 again gives equal number of states with eigenvalues ±1.
This further implies that

n2 = n4. (39)

From Eqs. (37)–(39), we have the following expressions for
the numbers of states in the four sectors:

n1 = 1
2 (2L−1 + 2L/2),

n2 = 1
2 2L−1,

n3 = 1
2 (2L−1 − 2L/2),

n4 = 1
2 2L−1. (40)

Thus considering the parity sector P = +1, we see that a
lower bound for the number of zero-energy states is given by
|n1 − n2| = 1

2 2L/2, and similarly for P = −1, we have |n3 −
n4| = 1

2 2L/2. Adding these up we see that the total number of
zero-energy states for this system must satisfy NE=0 � 2L/2.
We plot the total number of zero-energy states as a function of
L in Fig. 8(a). We indeed see that the number is greater than
the lower bound of 2L/2 for all values of L.

C. Type-I and type-II zero modes

We now notice something more interesting about the zero-
energy states described in Sec. V B. We again consider the
Hamiltonian written in the form given in Eq. (8). It then turns
out that the zero-energy states come in two types, type-I and
type-II. A given zero-energy state |ψ〉 is said to be type-II
if H3 |ψ〉 = 0 but the two terms separately do not give zero,
i.e., Z |ψ〉 �= 0 and X |ψ〉 �= 0. However for a few of the
zero-energy states, it turns out that the terms individually also
give zero eigenvalues, that is, Z |ψ〉 = 0 and X |ψ〉 = 0. This
means that the wave functions of these states are independent
of the transverse field h. These type-I zero modes violate the
ETH since they remain unchanged as the coupling h is varied
in spite of the energy level spacing in their neighborhood
being exponentially small in L [18] and can, therefore, be
classified as quantum many-body scars [23]. The number of
these type-I zero-energy states N1 also increases with system
size as shown in Fig. 8(b). We do not know precisely how
fast N1 grows with the system size L, but we will show below
that the growth is at least linear. The speciality of the type-I
states becomes more clear when we look at a plot of the half-
chain entanglement entropy versus the energy spectrum of this
model. We find that most of the states lie close to the thermal
entropy of the system except for some states which stand out
at E = 0. These are the type-I zero-energy states which turn
out to typically have very low entanglement entropy compared
to a generic state close to E = 0 showing a violation of the
ETH [64,65]. For a given system size, we can further perform
a minimization of the entanglement entropy within the sub-
space of these scar states [20] using the algorithm outlined
in Ref. [66]. We show these plots with the full spectrum
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FIG. 9. Plots of the half-chain entanglement entropy spectrum for all the energy levels of the system for L = 12 and 18 are shown in (a) and
(b), respectively. The plot in red correspond to the type-I scar states which have entanglement entropy much lower than the neighboring states,
clearly violating the ETH.

along with the entanglement-entropy minimized scar states in
Figs. 9(a) and 9(b), for system sizes L = 12 and L = 18. We
see that there is a dramatic drop in the entropy for most of
these scar states confirming that they indeed violate the ETH.

The total number of zero-energy states and the number
of type-I zero-energy states for various system sizes L are
shown in Table II. We see that the total number of zero-energy
states increases rapidly with L while the number of type-I
states changes nonmonotonically but on the average increases
with L.

We can further appreciate the difference between type-II
and type-I states by studying their distribution over the Fock
space. A state can be written as a superposition of the basis
states of the entire Fock space. A particular scar state, after it
has been minimized for entanglement entropy, can be written
as |ψS〉 = ∑2L

n cn |ψn〉, where |ψn〉 are the basis states in the
Fock space and cn is the corresponding amplitude for the scar
state |ψS〉. In Fig. 10, we plot the probability |cn|2 for a generic
zero-energy state and for the scar states. We see that a type-II
state [Fig. 10(a)] has nonzero coefficients over a large number
of basis states, and the distribution looks random. However,
type-I states as shown in Figs. 10(b) and 10(c) can be easily
distinguished as they have a large weight over only a few basis
states with equal probabilities.

An interesting feature of the type-I states is that since they
are annihilated simultaneously by the operators X and Z and

TABLE II. Total number of zero-energy states and number of
type-I zero-energy states for various system sizes.

System size Total number of Number of
L zero-energy states type-I states

4 6 2
6 20 10
8 30 9
10 56 16
12 202 34
14 236 19
16 492 21
18 970 50

are therefore zero energy eigenstates of the Hamiltonian H3

for any value of h, they will not evolve with time even if h
varies with time in an arbitrary way. In particular, if h is taken
to vary periodically with a time period T , the type-I states
will be eigenstates of the Floquet operator UT which evolves
the system over one time period, and the eigenvalue will be
exactly equal to 1. While examples of quantum many-body
scars has been found in driven systems for specific driving
protocols [67–72], these type-I states provide examples of
scars for any driving protocol h(t ). Similarly, if the value of
h is suddenly changed from one value to another (called a
quench), these states will not change. Finally, if h is held fixed
and we initialize the system in one of these states (or in an
arbitrary linear combination of them), the system will stay in
that state for all times, namely, the system will not thermalize.

D. Some exact type-I states

We will now present some type-I states (scars) which we
have found analytically [73]. To this end, let us define two
states involving sites j and k given by

S j,k = 1√
2

(|↑ j↓k〉 − |↓ j↑k〉),

Tj,k = 1√
2

(|↑ j↓k〉 + |↓ j↑k〉), (41)

where ↑ and ↓ denote spin-up and spin-down in the σ x ba-
sis. These are, respectively, spin-singlet and spin-triplet states
with total Sx = (σ x

j + σ x
k )/2 = 0. Note that these states are

antisymmetric and symmetric respectively under the exchange
of sites j and k. We find that they satisfy the identities

σ z
j S j,k = −σ z

k S j,k, σ z
j σ

z
k S j,k = −S j,k,

σ z
j Tj,k = σ z

k Tj,k, σ z
j σ

z
k Tj,k = Tj,k . (42)

We now consider a system with L sites with PBC and a state
which is a product of singlets with the form

|ψ1〉 = SL,1SL−1,2SL−2,3 · · · S(L/2)+1,L/2. (43)

Clearly X |ψ〉 = 0 where the operator X is given in Eq. (8).
[A picture of |ψ1〉 for L = 8 is shown in Fig. 11(a)]. Each
line connecting a pair of sites denotes a spin-singlet state).
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FIG. 10. (a) Probabilities |cn|2 of a generic type-II E = 0 state in the entire Fock space for all the basis states are plotted for L = 18. We
see that the distribution is random. (b) and (c) show the same plot for different type-I scar states. The distribution is more sparse and also has
equal probabilities for many basis states.

Equations (42) then imply that(
σ z

L−1σ
z
Lσ z

1 + σ z
Lσ z

1σ z
2

)|ψ1〉 = 0,(
σ z

L−2σ
z
L−1σ

z
L + σ z

1σ z
2σ z

3

)|ψ1〉 = 0,(
σ z

L−3σ
z
L−2σ

z
L−1 + σ z

2σ z
3σ z

4

)|ψ1〉 = 0,

· · ·(
σ z

L/2+1σ
z
L/2+2σ

z
L/2+3 + σ z

L/2−2σ
z
L/2−1σ

z
L/2

)|ψ1〉 = 0,(
σ z

L/2σ
z
L/2+1σ

z
L/2+2 + σ z

L/2−1σ
z
L/2σ

x
L/2+1

)|ψ1〉 = 0. (44)

Hence the state |ψ〉 satisfies Z|ψ〉 = 0 where the operator Z
is given in Eq. (8). Since both X and Z annihilate |ψ〉, we
conclude that this is a type-I state.

Next, we can take the state |ψ1〉 and rotate all the sites
clockwise by 1 site on the circle. This gives the state

|ψ2〉 = S1,2SL,3SL−1,4 · · · S(L/2)+2,(L/2)+1, (45)

and following similar arguments we can show that |ψ2〉 is also
a type-I state. Continuing in this way, we find L/2 distinct
states, denoted |ψn〉, n = 1, 2, · · · , L/2, which are all type-I
states.

Now we observe that if the system is cut into two equal
parts by a line, and we consider the state |ψ1〉, the line may

FIG. 11. (a) Picture of the state |ψ1〉 given in Eq. (43) for L = 8.
The lines joining pairs of sites denote spin singlets. Two straight
lines dividing the system into two equal parts are shown by dashed
lines. The vertical dashed line cuts L/2 singlets, while the horizontal
dashed line does not cut any singlet; thereby producing half-chain
entanglement entropies equal to (L/2) ln 2 and zero respectively.
(b) Picture of the state |φ1〉 given in Eq. (46).

cut no singlets, one singlet, two singlets, and so on all the way
up to L/2 singlets, depending on the orientation of the line
[see the two dashed lines in Fig. 11(a)]. As a result, the
half-chain entanglement entropy can take all possible values
from zero up to (L/2) ln 2. Even the largest of these values is
only half of the thermal entropy given by L ln 2. This again
confirms that these are all scar states. We note that the state
shown in Fig. 11(a) resembles the rainbow scars discussed in
Ref. [74].

It turns out that there are two other singlet states, denoted
|φ1〉 and |φ2〉, which are also type-I states. These have the form

|φ1〉 = S1,2S3,4S5,6 · · · SL−1,L,

|φ2〉 = S2,3S4,5S6,7 · · · SL,1. (46)

[A picture of |φ1〉 is shown in Fig. 11(b)]. Using Eqs. (42), we
can show that these states are also annihilated by the operator
Z . (As before, we can find pairs of three-spin terms σ z

i σ z
j σ

z
k

and σ z
l σ z

mσ z
n such that the sum of the two terms annihilates the

states |φn〉). Further, the half-chain entanglement entropy for
these two states range from zero to 2 ln 2 depending on the
orientation of the line which cuts the system into two halves.

For L = 4, the states ψn and φn are identical, and we there-
fore have only two exact type-I states; according to Table II,
these form the complete set of type-I states. For L � 6, the
states ψn and φn are distinct, and we therefore have (L/2) + 2
type-I states.

The states |ψn〉 and |φn〉 discussed above are examples of
resonating valence bond (RVB) states for a L-site system.
If the L sites are arranged around a circle, the RVB states
correspond to joining pairs of sites by lines in such a way that
no two lines cross each other. According to the Rumer-Pauling
rules [75], there are L!/(L/2)!((L/2) + 1)! such states which
are linearly independent, although not orthogonal to each
other. We see that (L/2) + 2 of the RVB states are type-I states
for our model. We conclude that the number of type-I states
increases at least linearly with L.

We can construct one more type-I state using singlet states
as follows. For a system with L sites and PBC, consider
the following state which is a product of singlets connecting
diametrically opposite sites,

|ψd〉 = S1,(L/2)+1S2,(L/2)+2S3,(L/2)+3 · · · SL/2,L. (47)
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FIG. 12. (a) Picture of the state |ψd 〉 given in Eq. (47) for L = 8.
The lines joining pairs of diametrically opposite sites denote spin
singlets. (b) Picture of the state |φd 〉 given in Eq. (49).

We find that this state is annihilated by terms of the
form σ z

nσ z
n+1σ

z
n+2 + σ z

(L/2)+nσ
z
(L/2)+n+1σ

z
(L/2)+n+2, where n =

1, 2, . . . , L/2. Hence |ψd〉 is annihilated by the operator Z
given in Eq. (8). A picture of |ψd〉 for L = 8 is shown in
Fig. 12(a). However, |ψd〉 is not an RVB state since the dif-
ferent singlet lines cross each other; in fact, any two singlet
lines cross each other. However, we can write |ψd〉 as a linear
combination of RVB states by using the identity

Si, jSk,l − Si,kS j,l + Si,l S j,k = 0 (48)

several times. Depending on how four sites labeled i, j, k, l
are arranged around a circle, one of the terms in Eq. (48) will
corresponding to a state with one crossing while the other
two terms will correspond to noncrossing states. Hence, by
repeatedly using Eq. (48), we can successively decrease the
number of crossings to eventually reduce |ψd〉 to a superposi-
tion of RVB states. For L = 8, we find that the superposition
contains all the states shown in Figs. 11(a) and 11(b) as well as
a specific linear combination of eight other RVB states which
are of the form

|φd〉 = S1,8S2,7S3,4S5,6, (49)

shown in Fig. 12(b), and seven other states obtained from
Eq. (49) by rotating all the sites clockwise by 1, 2, . . . , 7
sites.

The different kinds of exact type-I states discussed above
do not exhaust all the type-I states. For instance, Table II
shows that there are 9 type-I states for L = 8, but the argu-
ments above only account for (L/2) + 2 + 1 = 7 of them.

Finally, we note that if L is a multiple of 6, we can find
exact type-I states involving both singlets and triplets. Two
such states are shown in Fig. 13 for a system with six sites.
The state in Fig. 13(a) has the form

|ψ ′
1〉 = T6,1S5,2T4,3, (50)

while the state in Fig. 13(b) has the form

|φ′
1〉 = T1,2S3,4T5,6. (51)

These can be shown to be type-I states by similar arguments
as above and using the identities in Eqs. (42). Then one can re-
peatedly rotate all the sites by 1 site from |ψ ′

1〉 and |φ′
1〉 obtain

states of the form |ψ ′
n〉, n = 1, 2, 3, and |φ′

n〉, n = 1, 2, . . . , 6,
respectively. We thus obtain nine states each of which involves
one singlet and two triplets. However, one can show that

FIG. 13. (a) Picture of the state |ψ ′
1〉 given in Eq. (50) for L = 6.

The lines joining pairs of sites denote spin singlets or triplets shown
as S or T respectively. The dashed lines divide the system into two
equal parts and they cut one and three bonds respectively. (b) Picture
of the state |φ′

1〉 given in Eq. (51).

only five of these states are linearly independent; one can
choose these to be of the form |φ′

n〉, where n = 1, 2, . . . , 5.
For L = 6, therefore, we get (L/2) + 2 = 5 states involving
only singlet states and five state involving both singlets and
triplets. This gives a total of 10 type-I states for L = 6 which
is in agreement with Table II.

A similar construction of type-I states involving singlets
and triplets exists whenever L is a multiple of 6. There are
two kinds of such states. The first kind of states resembles the
one shown in Fig. 13(a) and is given by

|ψ ′
1〉 = TL,1SL−1,2TL−2,3TL−3,4 · · · SL−4,5

· · · TL/2+3,L/2−2SL/2+2,L/2−1TL/2+1,L/2, (52)

and similar states obtained by rotating all the sites by 1 site.
The pattern of bonds from the top to the bottom follows the
pattern T ST T ST T · · · ST T ST . There are L/2 states of this
kind. The second kind of states resembles the one shown in
Fig. 13(b) and is given by

|φ′
1〉 = T1,2S3,4T5,6T7,8S9,10T11,12

· · · TL−5,L−4SL−3,L−2TL−1,L, (53)

and similar states obtained by rotating all the sites by 1 site.
The bonds follow the pattern T ST T ST T · · · ST T ST around
the circle. There are six states of this kind. We therefore have
a total of (L/2) + 6 type-I states, each of which is a product
of L/6 singlets and L/3 singlets. However, unlike the type-I
states which involve only singlets where we found that there
are (L/2) + 2 linearly independent states, we do not know
how many of the (L/2) + 6 type-I states involving singlets and
triplets are linearly independent for a general value of L. For
L = 6, we saw above that the number of independent states is
5, but a formula for L = 12, 18, 24, . . . is not known.

Once again, we note that when the system is cut into two
equal parts by a line, the number of bonds (singlets or triplets)
cut by the line can vary from zero to L/2 depending on
its orientation [see Fig. 13(a)]. The half-chain entanglement
entropy can therefore vary from zero up to (L/2) ln 2 which is
much smaller than the thermal entropy equal to L ln 2.

The fact that there are several exact type-I states involving
singlets and triplets which appear only when L is a multiple

214430-14



WEAK UNIVERSALITY, QUANTUM MANY-BODY SCARS, … PHYSICAL REVIEW B 108, 214430 (2023)

FIG. 14. Autocorrelation function Azz
l (t ) for L = 14 plotted versus time on a log scale for different values of the transverse field. Deep inside

the ordered phase, (a) h = 0.2, or the disordered phase, (c) h = 5, the autocorrelators at several sites near the boundary show oscillations for a
long time before decaying to zero. (b) At the critical point, h = 1, the autocorrelators decay quickly to zero at all sites except at the boundary
site.

of 6 may help to explain why there is a jump in the number
of type-I states whenever L hits those particular values, as we
can see in Table II.

It would be interesting to find all possible type-I states
exactly but this seems to be a difficult problem. We note that
all the exact type-I states discussed in this section have been
found by demanding that they be annihilated by the sum of
two three-spin terms of the form σ z

i σ z
j σ

z
k + σ z

l σ z
mσ z

n , and these
sums combine to give the total operator Z in Eq. (8). However,
there may be more complicated type-I states which are only
annihilated by the sum of three or more three-spin terms.

It is intriguing that singlets and triplets (with zero mag-
netization) play such an important role in the construction of
type-I states even though the Hamiltonian H3 is not invariant
under SU (2) or any other continuous symmetry.

VI. ANOMALOUS RELAXATION
OF AUTOCORRELATORS AT DIFFERENT SITES

The ordered phase of the TFIM on a semi-infinite system
is characterized by a doubly degenerate spectrum and the
presence of a strong edge mode operator that connects pairs
of degenerate states with opposite parity [29,30]. Numerically,
this can be observed by studying the infinite-temperature au-
tocorrelator of the σ z operator at different sites near the edge
of the system [31–33].

Azz
l (t ) = 1

2L
Tr

[
σ z

l (t )σ z
l

]
. (54)

Since the strong mode operator has a large overlap with the
operator σ z

1 operator at the boundary site, the autocorrelator
shows a long plateau near the value of unity with a time
scale that increases exponentially with the system size before
relaxing to zero. However the autocorrelator of σ z at any other
site falls off to zero very quickly in a time scale t � 10.

This motivates us to ask a similar question for the noninte-
grable model H3 with open boundary conditions. As discussed
earlier, this model has an exact degeneracy in three-fourths
of its eigenstates due to the presence of the D1, D2, D3

operators for PBC, and also a twofold degeneracy in half
of its eigenstates due to parity symmetry for open boundary
conditions. These degeneracies are present for any value of the
transverse field h. We will study how the spin autocorrelators
relax in time at sites near the boundary for various values of

h and see if the degeneracies play any role in the relaxation.
The infinite-temperature autocorrelators can be calculated as
traces over all the energy eigenstates of the Hamiltonian. We
will be interested in the zz and xx autocorrelators given by

Azz
l (t ) = 1

2L

∑
n,m

e i(En−Em )t
∣∣〈n∣∣σ z

l

∣∣m〉∣∣2
(55)

and

Axx
l (t ) = 1

2L

∑
n,m

e i(En−Em )t
∣∣〈n∣∣σ x

l

∣∣m〉∣∣2
, (56)

respectively. The autocorrelators defined in this way are ex-
pected to reveal the nature of the phase transition and the
energy spectra on the two sides of the transition.

We present the results for Azz
l (t ) versus t on a logarithmic

scale for different lattice sites l = 1, 2, . . . 6 (with l = 1 being
the boundary site) and three values of the transverse field, h =
0.2, 1, and 5.0, in Figs. 14(a), 14(b) and 14(c), respectively.
The relaxation of the autocorrelators shows very interesting
behaviors depending on whether h � 1, h � 1 or h = 1. For
h = 0.2 [see Fig. 14(a)], we observe qualitatively that Azz

1 and
Azz

4 have a similar structure, with a small plateau for a time
interval of t � 104, where the autocorrelator remains near 1
before falling off to zero at large times. We believe that this
is due to the presence of an operator, which has an appre-
ciable overlap with σ z at sites 1 and 4 and also has a small
commutator with the Hamiltonian itself. The autocorrelator at
site l = 2 has the most striking behavior, showing oscillations
with an approximate period of 15.5. We also plot the same
autocorrelator in real time instead of the logarithmic scale in
Fig. 15(a), where the oscillations can be seen clearly.

The small frequency oscillations at the site l = 2 can be
explained by considering the Hamiltonian in the small h
limit and doing a perturbative calculation. First, by putting
h = 0, we have the Hamiltonian given by H3|h=0 = Z =
−∑L−2

j=1 σ z
j σ

z
j+1σ

z
j+2. The eigenstates of this are given by

product states where each site j has a definite value of σ z
j =

±1. Therefore, all the eigenvalues of Z are integer valued
and so are the energy differences. Now, an introduction of
a small value of transverse field h gives eigenstates with
energy differences of order h. To see this, we look at the
couplings in the Z term and the effects of σ z

l in the auto-
correlator more carefully. The couplings in Z containing a
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(a) (b)

FIG. 15. (a) Azz
l (t ) at site l = 2 for h = 0.2, showing long-time oscillations. This can be understood using first-order degenerate pertur-

bation theory. (b) Azz
l (t ) showing oscillations at different sites for h = 5. This can be understood using effective two-level systems. Both the

figures are for system size L = 14.

particular σ z
l can be considered for three separate cases, (a)

σ z
l (σ z

2σ z
3 ), for l = 1, (b) σ z

l (σ z
1σ z

3 + σ z
3σ z

4 ), for l = 2, and (c)
σ z

l (σ z
l−2σ

z
l−1 + σ z

l−1σ
z
l+1 + σ z

l+1σ
z
l+2), for l � 3. Since each σ z

j
can take values ±1, the products of two spin operators also
will take values ±1. Therefore, in cases (a) and (c), we have
a sum of an odd number of such products which necessarily
has a nonzero value. However, in case (b), we have an even
number of such terms and hence, for l = 2, we can have
a case where σ z

2 is multiplied by zero. More precisely, this
happens if σ z

3 (σ z
1 + σ z

4 ) = 0, i.e., if (σ z
1 + σ z

4 ) = 0. Thus the
two sets of eigenstates of Z corresponding to the value of
σ z

2 = ±1 (we label them as |I〉 and |II〉 respectively) will be
degenerate for any values of σ z

1 , σ z
3 , σ z

4 , σ z
5 , σ z

6 , . . . , with the
condition that (σ z

1 + σ z
4 ) = 0. This condition is satisfied for

half of the states when σ z
1 and σ z

4 are opposite to each other,
and then we have a pairwise degeneracy between the states
of types |I〉 and |II〉. With a small h present, the term −hσ x

2
will break the degeneracy, since σ x

2 |I〉 = |II〉 and vice versa.
Therefore we end up having a new set of eigenstates |±〉 =
1/

√
2(|I〉 ± |II〉) with an energy splitting of 2h. Now, since

〈−| σ z
2 |+〉 = 1, we see from Eq. (55) that for l = 2, half the

states of the spectrum in the autocorrelator will contribute to
a oscillatory term e±i2ht . This exactly explains the oscillations
seen in Fig. 15(a). Eventually, for later times the oscillations
decay as terms of order h2 and higher in the energy differences
become important.

We also note that since |±〉 are eigenstates of σ x
2 , with

eigenvalues ±1, these states will contribute to the diagonal
terms (i.e., terms with m = n and therefore Em = En) in the
xx autocorrelator at l = 2 in Eq. (56). Since the diagonal
terms are time-independent (as Em = En), we expect that the
xx autocorrelator at l = 2 will have a nonzero constant term.
This agrees with what we see in Fig. 16(a) for h = 0.2.

For large values of h, we see in Fig. 15(b) that at sev-
eral sites near one end of the system, the zz autocorrelators
show pronounced oscillations before eventually decaying to
zero. All the oscillations have the same frequency which is
found to be close to 2h. We can understand this as follows.
For h � 1, we see from Eq. (2) that the eigenstates of H
are given, to lowest order, by products of eigenstates of σ x

j
for all j. An operator σ z

j connects two states which have
σ x

j = ±1 and therefore unperturbed energies equal to ∓h. The
energy difference of these two states is 2h, hence Eq. (55)

implies that the contribution of these two states to the zz
autocorrelator at site j will oscillate as e±i2ht ; this explains
Fig. 15(b). Next, we can extend this argument to first or-
der in perturbation theory. Consider the zz autocorrelator at
the first site given by j = 1 where the oscillations are most
pronounced. To first order in the perturbation V = −σ z

1σ z
2σ z

2 ,
the two states given by |I〉 = |σ x

1 = +1, σ x
2 = a, σ x

3 = b〉 and
|II〉 = |σ x

1 = −1, σ x
2 = −a, σ x

3 = −b〉 will mix (here a, b can
take values ±1). The unperturbed energies of these states are
EI = −h(1 + a + b) and EII = h(1 + a + b), respectively.
Hence, to first order in perturbation theory, the energy of
the state lying close to |I〉 will shift from EI = −h(1 +
a + b) to E ′

I = −h(1 + a + b) + 1/(EI − EII ) = −h(1 + a +
b) − 1/(2h(1 + a + b)). Similarly, the perturbation V mixes
the two states |III〉 = |σ x

1 = −1, σ x
2 = a, σ x

3 = b〉 and |IV 〉 =
|σ x

1 = 1, σ x
2 = −a, σ x

3 = −b〉, and shifts the energy of the
state lying close to |III〉 from EIII = h(1 − a − b) to E ′

III =
h(1 − a − b) + 1/(2h(1 − a − b)). The operator σ z

1 connects
the states lying close to |I〉 and |III〉, and we see from the
expressions above that the energy difference between these
two states is

|E ′
I − E ′

III | = 2h + 1

2h

(
1

1 + a + b
+ 1

1 − a − b

)

= 2h + 1

h

(
1

1 − (a + b)2

)
. (57)

According to Eq. (55), therefore, the oscillations will have
the frequency given in Eq. (57). Now, since a, b can inde-
pendently take the values ±1, giving rise to four possibilities,
the expression in Eq. (57) can take two possible values given
by 2h + (1/h) (when a = −b) and 2h − (1/3h) (when a =
b). Hence we expect the oscillations to have a frequency
ω, where ω/(2h) = 1 + 1/(2h2) and 1 − 1/(6h2). Since
these two cases appear and equal number of times, the average
value is given by ω/(2h) = 1 + (1/6h2). This is in reasonable
agreement with the numerical result shown in Fig. 17 for large
values of h. We note that since the frequency ω used in that
figure is obtained by calculating the position of the peak of the
Fourier transform of the oscillations in Fig. 15(b), the decay
of the oscillations leads to a small width around the peak.
This width also turns out to be of the order of 1/h, and we
therefore do not see two separate peaks at ω = 2h + (1/h) and
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(a) (c)(b)

FIG. 16. Autocorrelation function Axx
l (t ) for L = 14 plotted versus time on a log scale for different values of the transverse field, (a) h =

0.2, (b) h = 1, and (c) h = 5.

2h − (1/3h). Remarkably, these early and intermediate time
oscillations in Azz

l (t ) persist all the way to h = 1 (Fig. 17)
for the boundary site when the critical point is approached
from h > 1, while the other autocorrelators show a reasonably
rapid decay in the neighborhood of the critical point (see
Appendix C for the extraction of the oscillation frequency ω

in Fig. 17).

VII. DISCUSSION

A summary of our main results is as follows. Motivated by
the one-dimensional TFIM which is one of the best studied
integrable models with duality and a quantum critical point,
we have made a detailed study of a generalization in which
there are Ising interactions between three successive spins
(instead of two successive spins as in the TFIM). We find that
the model has a Z2 × Z2 symmetry for a system with PBC
provided that the system size is a multiple of 3. This symmetry
implies that the system consists of four sectors which are
decoupled from each other, and this leads to threefold de-
generacies in the energy spectrum which involves states from
three of the four sectors. Next we have discussed the duality
of the model between h and 1/h. While the duality is straight-
forward to show for an infinite-sized system, the existence of
a duality turns out to be a subtle issue for finite-sized systems
with PBC. We find that exact duality holds only if the system
size is not a multiple of 3. Next, we make a detailed study

FIG. 17. Variation of the frequency of oscillations of Azz
l=1(t ) at

the end site with the transverse field h for L = 14. For large h the
dependence is consistent with the perturbative result ω/(2h) = 1 +
1/(6h2).

of the criticality properties of the model at the self-dual point
given by h = 1. Using ED and system sizes up to L = 27,
we use finite-size scaling to first confirm that there is indeed a
critical point at h = 1, and then to compute the dynamical crit-
ical exponent z, the order parameter exponent β, the magnetic
susceptibility exponent γ , and the correlation length exponent
ν. We find that z = 1 suggesting that the low-energy sector
of the model at h = 1 has conformal invariance. We then
determine the central charge c in two different ways (from the
length-dependences of the entanglement entropy between two
parts of the system and of the ground state energy). We find
that c is close to 1. We then observe that although the values of
β, γ and ν for the two-spin and three-spin models are different
from each other, the ratios β/ν and γ /ν are the same in the
two models. This suggests that there is a weak universality
and the three-spin model lies on the AT line, just like two
copies of the TFIM and the four-state Potts model. All models
on this line are known to have z = 1, c = 1, and the same
values of β/ν = 1/8 and γ /ν = 7/4. There is a quantum AT
model which has a parameter λ such that two copies of the
TFIM and the four-state Potts model correspond to λ = 0
and 1 respectively. Given our numerically obtained value of
ν ≈ 0.75 for the three-spin model from ED, we estimate this
model corresponds approximately to λ ≈ 0.7.

To better understand the nature of the criticality at the self-
dual point of the three-spin model, we have used the DMRG
method for much longer chains, but with open boundaries.
The DMRG method using longer chains indeed confirms
that c = 1 at the critical point. However, the analysis of the
behavior of the smallest excitation gap at hc = 1 and its
neighborhood reveals important additive and multiplicative
logarithmic corrections. Incorporating these and also compar-
ing to the Ashkin-Teller model at λ = 1, in fact, shows that
the critical point in the three-spin model is likely to lie in
the four-state Potts universality class. This claim is further
supported by an analysis of the Binder cumulants of the two
models. Thus the three-spin model seems to provide a lattice
realization of four-state Potts criticality with a smaller Hilbert
space dimensionality of 2L with L sites compared to 4L for the
Ashkin-Teller model.

If the three-spin model and the four-state Potts model in-
deed lie in the same universality class at their critical points,
they should have the same emergent symmetries at that point.
We would like to make some observations in favor of this.
First, we have seen that the three-spin model with PBC has
an exact threefold degeneracy for three-fourth of its states,
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namely, states whose momenta differ by multiples of 2π/(3d )
have the same energies (here d is the lattice spacing which we
have set equal to 1 in this paper). At the critical point, the
lattice model is gapless around k = 0, 2π/(3d ) and 4π/(3d ).
In the continuum theory which describes modes with low
energies and wave lengths much larger than d , all the gapless
modes of the lattice model at the critical point will get mapped
to momenta lying around k = 0. We would therefore expect
the conformal field theory to have a threefold degeneracy
of the low-lying excitations. We now note that this is also
the case for the four-state Potts model at criticality since
that model has several relevant operators, namely, three with
conformal dimensions (1/16, 1/16), one with (1/4, 1/4), and
three with (9/16, 9/16), and three marginal operators with
conformal dimensions (1,1) [41]. The multiplicities of 3 are
expected to lead to threefold degeneracies in the low-lying
spectrum [76,77]. Second, we have seen that the three-spin
model naturally has three order parameters, (mA, mB, mC ),
and in the ordered phase, there are four possible ground
states in which the expectation values of the order parame-
ters are proportional to (1,1,1), (1,−1,−1), (−1, 1,−1) and
(−1,−1, 1); this can be seen most clearly if we consider
the limit h → 0 in Eq. (2). These four patterns of the order
parameters form a tetrahedron, and the symmetry group of a
tetrahedron is the permutation group S4 of four objects. Next,
we note that the four-state Potts model also has a S4 symmetry
[41]. To conclude, the three-spin model at its critical point
has the same low-energy degeneracies and the same emergent
symmetry as the four-state Potts model.

We then studied the energy level spacing statistics in a
particular symmetry sector of a system with open boundary
conditions to determine if the three-spin model is integrable.
We find that the level spacing statistics has the form of the
Gaussian orthogonal ensemble, and hence the model is nonin-
tegrable. Next, we find that the model has an exponentially
large number of mid-spectrum zero-energy states which is
consistent with an index theorem; the number of states grows
at least as fast as 2L/2. Further, we find that the zero-energy
states are of two types which we call type-I and type-II. The
type-I states are special because they are simultaneous zero-
energy eigenstates of the two parts of the Hamiltonian (the
three-spin interaction and the transverse field); hence their
wave functions do not change with h in spite of the energy
level spacing in their neighborhood being exponentially small
in system size. These states thus violate the ETH and qualify
as quantum many-body scars. We have presented the analyt-
ical forms of some of the type-I states which show that their
number grows at least linearly with the system size. However
we do not know the form of the growth more precisely (linear,
exponential, or some other dependence). Finally, we have
studied the infinite-temperature autocorrelation functions for
both σ x and σ z at sites close to one end of a large system with
open boundary conditions. We find that far from the critical
point, at either h � 1 or h � 1, some of the autocorrelators
show an anomalous behavior in that they show pronounced
oscillations and decay very slowly with time. The time scale
of decay is much larger than the inverse of the energy scales
in the Hamiltonian; this is unexpected since the model is
nonintegrable. We provide a qualitative understanding of the
oscillations using perturbation theory. However, the reason for

a large decay time is not yet understood analytically. Further-
more, the autocorrelator for σ z at the end site shows persistent
oscillations at short and intermediate time scales even when h
is close to the critical point while the other autocorrelators de-
cay quickly to zero. An analytic understanding of this feature
is lacking as of now.

So far as experimental realizations of our three-spin model
are concerned, it is known that optical lattices of two atomic
species can be a suitable platform to generate a variety of
spin-1/2 Hamiltonians. In particular, it has been shown that
in a one-dimensional system of triangles formed by an optical
lattice, the two-spin interactions can be made to vanish by
varying the tunneling and collisional couplings [13]. This
gives rise to an effective Hamiltonian with three-spin inter-
actions of the form σ z

j σ
z
j+1σ

z
j+2. Furthermore, a local field

magnetic field �B can be applied which can be tuned by apply-
ing appropriately detuned laser fields which generate a term
of the form Bσ x

j in the Hamiltonian. It may also be feasible to
realize effective Hamiltonians with two- and three-spin terms
which are generated by ion-laser interactions in trapped-ion
systems [78]. A three-spin NMR quantum simulator based
on a diethylfluoromalonate molecule has been used to ex-
perimentally realize a system with two- and three-spin Ising
interactions [79]. Turning to studies of the scar states, it may
be possible to initialize a system in a state which is close to
the simplest scar states of the form shown in Figs. 11(b) and
13(b) since these involve preparing only neighboring sites to
be in spin-singlet or spin-triplet states, and to then study the
time-evolution of such a state.
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APPENDIX A: BINDER CUMULANT

Here we present another quantity that shows that the criti-
cal behavior of the three-spin model is different to that of the
TFIM. The Binder cumulant U2 is defined as [55–57]

U2 = C + D
〈m4〉
〈m2〉2

, (A1)
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FIG. 18. Plot of Binder cumulant U2 defined in Eq. (A1) as a
function of the field h for the three-spin model. The plots for different
system sizes cross each other close to hc. We observe a negative
dip close to hc, the magnitude of which increases with the system
size. This is in contrast to the TFIM where the Binder cumulant is a
monotonic function as shown in the inset.

where the order parameter m and the normalization constants
C, D are defined appropriately for a given model so that U2

has the values 0 and 1 in the thermodynamic limit in the
disordered and the ordered phase respectively. For the two-
spin TFIM, we have m2 = ( 1

L

∑L
i σ z

i )2 with C = 3/2 and D =
−1/2. For our three-spin model, the order parameter is de-
fined as in the Eq. (27) with C = 5/2 and D = −3/2 [80]. For
the AT model, m2 = m2

σ + m2
τ , where mσ = (1/L)

∑L
i=1 σ z

i

and mτ = (1/L)
∑L

i=1 τ z
i , for which C = 2 and D = −1 [80].

Furthermore, 〈O〉 in Eq. (A1) denotes 〈ψ0|O|ψ0〉, where |ψ0〉
equals the ground state at a finite size L, and O equals either
m2 or m4.

We plot the Binder cumulant for the ground state of H3 in
Fig. 18 as a function of the transverse field h using results
from ED. As expected they cross close to the critical point
for different system sizes. More interestingly, for our model,
there is a negative dip in U2 close to the critical point for
L � 18. The dip increases in magnitude as we go to larger
system sizes, however it does not increase faster than L; thus
the phase transition close to hc is still continuous in nature
[58–60]. However this is starkly different from the monotonic
behavior of U2 for the two-spin case as can be seen in the inset
of Fig. 18.

We now show results for the computation of U2 for longer
chains, but with open boundaries, using DMRG both for the
three-spin model as well as for the AT model at three values
of λ respectively (see Fig. 19). As expected, all the panels
show a crossing of U2 for different L in the neighborhood
of the critical point hc = 1. However, only the upper two
panels [see Fig. 19(a) for the three-spin model and Fig. 19(b)
for the AT model at λ = 1] show a pseudo-first-order be-
havior, i.e., nonmonotonic behavior of U2 as a function of
h with increasing L and the corresponding negative dip at
sufficiently large L. The behavior of the negative dips is
shown more clearly in the insets of both these figures. Fig-
ure 19(c) shows the behavior of U2 for the AT model at
λ = 0 which is equivalent to two decoupled copies of the

(a)

(c)

(b)

(d)

FIG. 19. Behavior of the Binder cumulant U2 as a function of h for various system sizes L obtained from DMRG on open chains for (a) the
three-spin model, and for the AT model at couplings (b) λ = 1.0, (c) 0, and (d) 0.8267. The insets in (a) and (b) show the development of the
negative dips in U2 in a clearer manner.
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(a) (d)(c)(b)

FIG. 20. (a) Expectation value of the operator 〈ψn|X |ψn〉 plotted as a function of the energy En, where ψn is the n-th energy eigenstate, for
h = 1. We see that for a system size L = 13 which is not a multiple of three, the curve falls exactly a straight line with a slope of −0.5. (b) The
same plot for a system size L = 12 which is a multiple of three. We see that there is a scattering of the date points as the system no longer has
exact self-duality. (c) Ãzz

l=1(ω) at h = 1 for a system with L = 14. (d) The same quantity at h = 5.

TFIM. As expected here, U2 does not show any nonmono-
tonic behavior and stays bounded between 0 and 1. More
interestingly, the AT model at the coupling λ = 0.8267, which
corresponds to ν = 0.7233, does not show any sign of non-
monotonicity or negative dips as well from the available data
with L � 210.

APPENDIX B: EXPECTATION VALUES OF LOCAL
OPERATORS AND DUALITY FOR FINITE SYSTEMS

In this Appendix, we will study the expectation values of
local operators in all the eigenstates of the Hamiltonian, and
we will see that something striking occurs when the system
has an exact self-duality. Let us write the Hamiltonian in
Eq. (2) in the form shown in Eq. (12). It is then interesting to
plot the expectation value of, say, X in the different eigenstates
of H versus the energies of those states. If the system is inte-
grable, we might expect to see a fragmented kind of pattern
corresponding to the different conserved sectors, while for a
nonintegrable system, we would not expect to see any special
pattern.

It turns out that something interesting happens at the criti-
cal point h = 1. We have discussed in Sec. III that the system
with L sites and PBC is self-dual only if L is not a multiple of
3. We therefore expect, from Eq. (15), that a plot of 〈ψn|X |ψn〉
versus En (where n denotes the eigenstate number) should be
a perfect straight line with slope equal to −1/2 if L is not a
multiple of 3. But if L is a multiple of 3, the self-duality does
not hold and the plot is not expected to be a perfect straight
line; we expect several points to lie away from the straight

line. This is exactly what we see in Figs. 20(a) and 20(b). We
see a perfect straight line for a system size L = 13 where there
is exact self-duality but a scattering of points when L = 12
where the self-duality is not exact.

APPENDIX C: FOURIER TRANSFORM
OF THE AUTOCORRELATOR Azz FOR h � 1

Here we present the plots for Ãzz
l=1(ω) for h = 1 and 5,

which are obtained by taking the Fourier transform of Azz
l=1(t )

at those values of h over a large interval τ . More precisely,

Ãzz
l=1(ω) = 1

τ

∫ τ0+τ

τ0

dt e−iωt Azz
l=1(t ), (C1)

where the starting time τ0 is chosen carefully to eliminate
the initial decay so that it can capture the oscillatory nature
of the correlator. The time interval τ is taken to be large
enough to contain a certain number of complete oscillations
which provides a better resolution in the frequency space.
Since the oscillations persisted more for larger h, the values
of τ also was taken to be different for different values of
h. In our case, τ was chosen to be 15 for h = 1 and 20
for h = 5. The well-defined peaks denote the frequencies of
oscillations of the autocorrelator shown in Fig. 17. Moreover,
the decays of the oscillations lead to a finite width around
the peak of the Fourier transform which goes roughly as 1/h.
This is clear from the figure, as the width is much smaller for
h = 5 [Fig. 20(d)] than for h = 1 [Fig. 20(c)]. The small peak
around ω = 0 for h = 1 is because of the initial high value
of the autocorrelator which adds to a constant value while
performing the Fourier transform over a time interval.
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