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In 1992, Kennedy and Tasaki constructed a nonlocal unitary transformation that maps between a Z2 × Z2

spontaneously symmetry breaking phase and the Haldane gap phase, which is a prototypical symmetry-protected
topological (SPT) phase in modern framework, on an open spin chain. In this work, we propose a way to define
it on a closed chain by sacrificing unitarity. The operator realizing such a nonunitary transformation satisfies
noninvertible fusion rule and implements a generalized gauging of the Z2 × Z2 global symmetry. These findings
connect the Kennedy-Tasaki transformation to numerous other concepts developed for SPT phases and opens a
way to construct SPT phases systematically using the duality mapping.
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I. INTRODUCTION

Symmetry-protected topological (SPT) phases are one
of the central issues in contemporary quantum many-body
physics. While the concept of SPT phases was established
[1–4] after the discovery of topological insulators [5,6]—the
free electron version of SPT phases, a prototypical example
of the bosonic SPT phases [7]—the Haldane gap phase was
found much earlier. Although Haldane’s initial prediction was
only that the Heisenberg antiferromagnetic chains with integer
spins are “massive” (with a nonzero excitation gap and ex-
ponentially decaying correlation functions), it was gradually
recognized that the Haldane gap phase has various exotic
properties.

Affleck, Kennedy, Lieb, and Tasaki [8] constructed exact
ground-state wave functions for a certain generalized Heisen-
berg antiferromagnetic chains, which are now called AKLT
states/models. We can naturally see from its construction that
the AKLT model on an open chain exhibits free fractionalized
edge spins [9]. Moreover, although there is no long-range
order in the conventional sense that can be detected by cor-
relation functions of local operators, the AKLT state can be
characterized by a nonlocal string order parameter [10]. It
was also confirmed numerically that these properties are not
specific to the AKLT model but are characteristics of the
Haldane gap phase including the ground state of the standard
Heisenberg antiferromagnetic chain with S = 1.

Kennedy and Tasaki [11,12] demonstrated that these two
apparently unrelated features of the S = 1 Haldane gap phase
can be understood as consequences of the spontaneous break-
ing of a hidden Z2 × Z2 symmetry. That is, they showed
that many S = 1 spin Hamiltonians with short-range inter-
actions on an open chain are mapped to Hamiltonians with
short-range interactions by a nonlocal unitary transformation
now called Kennedy-Tasaki (KT) transformation. While the
Kennedy-Tasaki transformation was introduced specifically
for S = 1 chains in a complicated way in the original liter-
ature, a simple compact expression, which is valid for any

integer spin, was found as

UKT =
∏
i> j

exp
(
iπSz

i Sx
j

)
(1)

by one of the authors of the present work [13]. It maps the
spin operators as follows:

UKTSx
jUKT

† = Sx
j e

iπ
∑

k< j Sx
k , (2)

UKTSz
jUKT

† = eiπ
∑

k> j Sz
k Sz

j, (3)

UKTSy
jUKT

† = eiπ
∑

k> j Sz
k Sy

j e
iπ

∑
k< j Sx

k . (4)

While the local spin operators are mapped to nonlocal opera-
tors, many of the spin chain Hamiltonians of interest are sums
of local (i.e., defined over a short range) quadratic forms of
spin operators and thus are mapped to another Hamiltonian
with short-range interactions by the Kennedy-Tasaki trans-
formation. The Hamiltonian obtained in this way generally
possesses a dihedral symmetry of global spin rotations (π -
rotation about x, y, and z axes), which is isomorphic to the
Z2 × Z2. A spontaneous breaking of this “hidden” Z2 × Z2

symmetry implies the long-range string order in the original
system, as well as a fourfold ground-state degeneracy of the
open chain signaling the existence of the fractional S = 1/2
edge spins [9].

It is remarkable that the recognition of the “Haldane gap
phase” as a nontrivial phase, which cannot be characterized by
any local order parameter but is distinct from a trivial phase,
was established by early 1990s even though the clear concept
of the SPT phases was missing. In fact, in the early days,
the Haldane gap phase was sometimes called “topological”
or “topological ordered” without a clear definition [14]. To
be specific, what was lacking at that time was the recognition
that a certain symmetry is required for the Haldane gap phase
to be distinct from the trivial phase. In retrospect, however,
the global Z2 × Z2 symmetry could have been identified as a
symmetry protecting the Haldane gap phase, since it is the

2469-9950/2023/108(21)/214429(19) 214429-1 ©2023 American Physical Society

https://orcid.org/0000-0002-8205-6889
https://orcid.org/0000-0002-0365-8225
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.214429&domain=pdf&date_stamp=2023-12-22
https://doi.org/10.1103/PhysRevB.108.214429


LI, OSHIKAWA, AND ZHENG PHYSICAL REVIEW B 108, 214429 (2023)

condition for the Kennedy-Tasaki transformation to give a
Hamiltonian with short-range interactions [3].

A comment is in order on the terminology. Although the
Kennedy-Tasaki transformation (1) is a highly nonlocal trans-
formation, the symmetry operators

Rα = eiπ
∑

j Sα
j (α = x, y, z), (5)

implementing the Z2 × Z2 transformation are invariant under
the Kennedy-Tasaki transformation:

UKTRαU †
KT = Rα, (6)

because the eigenvalues of eiπSα
j are ±1 and eiπSα

j = e−iπSα
j ,

for α = x, y, z [3]. In this sense, the Z2 × Z2 symmetry is
not exactly “hidden,” since it is (a subset of) the symmetry of
the original Hamiltonian with the open boundary condition.
However, it is certainly appropriate that the SPT phase corre-
sponds to the hidden (spontaneous) breaking of the symmetry,
because the symmetry is not spontaneously broken in the SPT
phase before applying the Kennedy-Tasaki transformation.

Since the discovery of the concept of the SPT phases, sig-
nificant progress has been made on many fronts. In particular,
systematic classifications in general dimensions have been
studied, uncovering the deep relation to topological quantum
field theory and algebraic topology [4,15–19]. Given the his-
tory, it would be worthwhile to revisit the Kennedy-Tasaki
transformation, which played a significant role in understand-
ing the Haldane gap phase in the early 1990s, from the modern
perspective. It is indeed the goal of the present paper.

It must be mentioned that various properties, general-
izations, and applications of the vanilla Kennedy-Tasaki
transformation have been explored. The hidden symmetry
breaking order in models of spin-1/2 and higher integer spin
was studied in Refs. [20–23]. The relation between the hid-
den symmetry breaking order and SPT order with a broad
class of symmetry, such as ZN × ZN , was discussed in Refs.
[24–26]. Moreover, the Kennedy-Tasaki transformation can
disentangle the twofold degeneracy entanglement spectrum of
spin-1 Heisenberg chain [27,28]. Besides, the phase diagram
of a (1 + 1)-dimensional model, which is defined by inter-
polating between the spin-1 bilinear-biquadratic chain and its
Kennedy-Tasaki dual, was discussed in Ref. [29].

However, most of the discussions of the (generalized)
Kennedy-Tasaki transformation so far focused on open bound-
ary conditions; to the best of the authors’ knowledge, the
Kennedy-Tasaki transformation on closed chains has not been
explored. In fact, there are several apparent difficulties in
defining on closed chains.

(1) The highly nonlocal unitary operator (1) depends on
the ordering of the sites. On an open chain, the ordering is well
defined. However, for the closed chain, there is no consistent
ordering. The site i to the left of another site j can also be
viewed as to the right of j by going around the ring.

(2) An SPT phase on a closed chain only has a single
nondegenerate ground state. However, an symmetry sponta-
neously broken (SSB) phase has multiple degenerate ground
states. Hence the two Hamiltonians on a closed chain cannot
be mapped to each other via a unitary transformation.

Nevertheless, there are several reasons to consider this
transformation beyond on open chains. First, it is theoretically

demanding that a physically well-defined operation should
be applicable to all boundary conditions. Second, twisting
the boundary condition on a closed chain is useful to char-
acterize the SPT phases. In order to exploit the twisted
boundary conditions as a probe, it is desirable to construct
the Kennedy-Tasaki transformation on closed chains. Third,
although Kennedy-Tasaki transformation has a rather compact
expression (1), its physical interpretation is not quite clear.
This is perhaps one of the reasons why this intriguing trans-
formation has not been generalized beyond the Haldane gap
phase (Z2 × Z2-protected SPT phase in one dimension). As
we will find later in this work, by investigating the transforma-
tion on a closed chain, we are able to find a more transparent
physical interpretation from a modern viewpoint: It is simply
gauging the Z2 × Z2 symmetry with certain twist.

In this work, we propose that the Kennedy-Tasaki transfor-
mation can be defined on closed chains by sacrificing unitarity
or by expanding the Hilbert space by including “twist” sectors
corresponding to different boundary conditions. We make two
attempts to define the Kennedy-Tasaki transformation on a
ring.

(1) The first attempt is to define the Kennedy-Tasaki trans-
formation for spin-1 system by naively implementing (2), (3),
and (4) on a ring.

(2) The second attempt is to propose a nonunitary trans-
formation NKT acting on a ring where each unit cell
contains two spin- 1

2 ’s. For convenience, we also call NKT the
Kennedy-Tasaki transformation. Similar generalizations of
the Kennedy-Tasaki transformation to the spin- 1

2 systems with
open boundary condition were constructed earlier [20,21].
Our construction is also inspired by the recent work [30–32].
We will show that NKT satisfies the desired properties: It maps
an Z2 × Z2 SSB phase to an Z2 × Z2 SPT phase both on a
closed and open chain.

The Kennedy-Tasaki transformation from the two attempts
will be shown to be equivalent on a ring. In particular,
the transformations for both spin-1 and two spin- 1

2 systems
are nonunitary transformations and satisfy the noninvertible
fusion rules, which is a generalization of the famous Kramers-
Wannier duality transformation. Such duality transformations
have been extensively discussed in recent years, both in (1 +
1)-dimensional [33–41] and in higher dimensions [42–54].
When the system is invariant under the duality transformation,
the operator NKT becomes a noninvertible symmetry of the
system.

Although the two attempts can be shown to be equivalent,
the construction in the second attempt is more convenient to
manipulate because the degrees of freedom charged under
two Z2’s are decoupled. The first and the second spin-
1
2 are charged under separate Z2’s, respectively. Moreover,
the decoupling between degrees of freedom admits a more
convenient interpretation of twisted gauging, similarly to
the Kramers-Wannier duality transformation which imple-
ments gauging of the Z2 global symmetry. This interpretation
also facilitates the construction of new models with in-
teresting topological features. In an upcoming work [55],
we will apply the Kennedy-Tasaki transformation to sys-
tematically construct a series of gapless SPT phases that
have been recently explored in Refs. [56–60] and uncover
new ones.

214429-2



NONINVERTIBLE DUALITY TRANSFORMATION BETWEEN … PHYSICAL REVIEW B 108, 214429 (2023)

This paper is organized as follows. In Sec. II, we system-
atically review the Kramers-Wannier (KW) transformation
on closed and open chains, respectively, as a preparation
for a more complicated Kennedy-Tasaki transformation. The
Kramers-Wannier transformation on a closed chain is well
known to be nonunitary and the operators implementing the
Kramers-Wannier transformation satisfy the noninvertible fu-
sion rule. However, on an open chain with the free boundary
condition, the Kramers-Wannier transformation can be de-
fined as a unitary transformation, as pointed out in Ref. [61].
In Sec. III, we define the Kennedy-Tasaki transformation for
spin-1 systems on a ring and find that it is nonunitary and
obeys the noninvertible fusion rule. In Sec. IV, we moti-
vate that the Kennedy-Tasaki transformation implements a
twisted gauging via field theory formulation. In Sec. V, we
define the Kennedy-Tasaki transformation for spin- 1

2 systems
on a ring and explore nice properties in parallel with the
Kramers-Wannier transformations. These properties coincide
with those in Sec. III. In Sec. VI, we place the Kennedy-Tasaki
transformation for spin- 1

2 systems on an interval and find that
it becomes a unitary operator. In Sec. VII, we explain how to
construct the typical representative model of SPT—the cluster
model, using the Kennedy-Tasaki transformation. Finally in
Sec. VIII, we prove the equivalence between the Kennedy-
Tasaki transformations for spin-1 and spin- 1

2 systems.

II. KRAMERS-WANNIER TRANSFORMATION

To prepare for the reformulation of the Kennedy-Tasaki
transformation, we first discuss the Kramers-Wannier trans-
formation. While the Kramers-Wannier transformation has
been known for many years, here we shall formulate it
precisely, with an emphasis on modern concepts such as
noninvertible fusion rules and mapping between symmetry
and twist sectors. This is not only because it is a precursor
of the Kennedy-Tasaki transformation as a nonlocal duality
mapping; we will reformulate the Kennedy-Tasaki transfor-
mation based on the Kramers-Wannier transformation in later
sections.

The Kramers-Wannier transformation was initially con-
ceived as a duality mapping between a higher temperature and
a lower temperature of the two-dimensional classical Ising
model [62]. The simple assumption of the existence of the
single phase transition between the disordered and ordered
phases, combined with the Kramers-Wannier transformation,
determines the critical temperature on the square lattice
uniquely. As a typical example of the general correspon-
dence between classical statistical systems in two dimensions
and quantum many-body systems in one spatial dimen-
sion, the quantum transverse-field Ising chain defined by the
Hamiltonian

Hh
Ising = −

∑
i

(
σ z

i−1σ
z
i + hσ x

i

)
(7)

is a counterpart of the two-dimensional classical Ising model.
The Kramers-Wannier transformation can be also defined for
the quantum spin model (7) in one spatial dimension [63].
(In fact, the Kramers-Wannier transformation is applicable to
more general systems and not limited to the particular model,
as we will see later.) However, there are subtleties related to

the boundary conditions of the system, as we will discuss
below.

Recently, the Kramers-Wannier transformation has been
also reformulated from the modern viewpoint. The transverse-
field Ising chain (7) has a global Z2 symmetry, which is
generated by the simultaneous flip of spin at every site. This
is a typical example of an “on-site symmetry” because the
symmetry generator is a product of single-site operators. Nat-
urally, such a symmetry can be gauged by introducing local
gauge transformation (local spin flips). The Kramers-Wannier
transformation may be identified with such a “gauging” oper-
ation of the Z2 symmetry [34–39] .

In terms of field theory, the gauging is understood as a
topological manipulation corresponding to an insertion of a
line defect N in (1 + 1)-dimensional space-time to obtain the
new system T /Z2 from a given system T with the global
Z2 symmetry. The defect satisfies the fusion rule of “Ising-
category,”

N † × N = 1 + U,

Û × N = N × U = N , (8)

U × U = 1,

where U and Û are the topological line defects that generate
the Z2 symmetry in T and the Z2 symmetry in T /Z2. This
fusion rule implies that N lacks its inverse; the Kramers-
Wannier transformation is thus “noninvertible.” While this
statement may look rather abstract, in the following we will
define the Kramers-Wannier transformation carefully on the
lattice, with a particular emphasis on subtleties concerning the
symmetry and twist sectors. Our discussion leads to a more
precise version of the fusion rule and elucidates its physical
meaning. The prior knowledge of the fusion rule (8) is not
necessary to follow the discussion in this section.

A. Kramers-Wannier transformation on a closed chain

Let us consider a spin chain with L sites. Each site supports
one spin- 1

2 spanning a two-dimensional local Hilbert space
|si〉, where si = 0, 1 and i = 1, . . . , L. The state can be acted
on by spin measurement and spin flip Pauli operators in the
standard way,

σ z
i |si〉 = (−1)si |si〉, σ x

i |si〉 = |1 − si〉. (9)

We also assume that the spin system has an on-site Z2 global
symmetry, generated by

U =
L∏

i=1

σ x
i , (10)

which flips the spins on every site simultaneously. The states
can be organized into eigenstates of U as Z2 even state with
the eigenvalue of U to be (−1)u = 1, i.e., u = 0, and Z2 odd
state with the eigenvalue of U to be (−1)u = −1, i.e., u =
1. Moreover, one can also use the Z2 symmetry to twist the
boundary condition of the spins as

|si+L〉 = (
σ x

i

)t |si〉 = |si + t〉, (11)

and hence the spins obey either a periodic boundary condition
(PBC), i.e., t = 0, or a twisted boundary condition, i.e., t = 1.
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In summary, one can organize the Hilbert space into four
symmetry-twist sectors, labeled by (u, t ) ∈ {0, 1}2.

It is also useful to define a set of “dual” spin- 1
2 ’s on the

links between sites. We use half-integers to label the posi-
tion of links, and dual spins are labeled by ŝi− 1

2
’s, where

i = 1, . . . , L. They also span local Hilbert spaces on the links
|̂si− 1

2
〉. The states are acted on by Pauli operators τ z

i− 1
2

and

τ x
i− 1

2
, similarly to (9),

τ z
i− 1

2

∣∣̂si− 1
2

〉 = (−1)̂
s

i− 1
2

∣∣̂si− 1
2

〉
, τ x

i− 1
2

∣∣̂si− 1
2

〉 = ∣∣1 − ŝi− 1
2

〉
.

(12)

The dual on-site Z2 global symmetry acting on the links,
generated by

Û =
L∏

i=1

τ x
i− 1

2
. (13)

Likewise, the dual Hilbert space can also be organized into
four sectors labeled by (̂u, t̂ ) ∈ {0, 1}2. Note that the spins
and the dual spins do not exist as independent degrees of
freedom simultaneously; rather, one determines the other by
the Kramers-Wannier transformation.

Following Ref. [36], the Kramers-Wannier transformation
would be defined as the operator N acting on the Hilbert
space, in terms of the matrix elements,〈{̂

si− 1
2

}∣∣N |{si}〉 ∼ 1

2L/2
(−1)

∑
j s j (̂s j− 1

2
+̂s

j+ 1
2

)
, (14)

∼ 1

2L/2
(−1)

∑
j (s j−1+s j )̂s j− 1

2 , (15)

on an infinite chain, where the above two expressions are
equivalent. However, on the finite ring, the summation should
be limited to L sites (or dual sites), and the boundary condi-
tions should be carefully examined.

Let us start from the expression (14) and limit the sum-
mation to

∑L
j=1. The last term in the sum contains sL̂sL+1/2.

If we are to define the dual spins ŝ on the half-integer
sites 1/2, 3/2, . . . , L − 1/2, then ŝL+ 1

2
should be replaced by

ŝ1/2 + t̂ (modulo 2) using the boundary condition t̂ = 0, 1 for
the dual spin. Then the Kramers-Wannier transformation on
the ring seems to be given by〈{̂

si− 1
2

}∣∣N |{si}〉 ∼ 1

2L/2
(−1)

∑L
j=1 s ĵ s j− 1

2
+∑L−1

j=1 s ĵ s j+ 1
2
+sL ŝ 1

2
+̂tsL

.

(16)

On the other hand, starting from Eq. (15) and limiting the sum-
mation to

∑L
j=1, we find the “boundary term” s0̂s 1

2
. Replacing

s0 with sL + t , we find〈{̂
si− 1

2

}∣∣N |{si}〉 ∼ 1

2L/2
(−1)

∑L
j=1 s ĵ s j− 1

2
+∑L−1

j=1 s ĵ s j+ 1
2
+sL ŝ 1

2
+t̂ s 1

2 .

(17)

In this way, we can “derive” two different (and inequivalent)
expressions for the Kramers-Wannier transformation on the
ring.

It turns out that the correct expression for the Kramers-
Wannier transformation on the ring includes both boundary

factors appearing in Eqs. (16) and (17) and is given as〈{̂
si− 1

2

}∣∣N |{si}〉 = 1

2L/2
(−1)

∑L
j=1 s ĵ s j− 1

2
+∑L−1

j=1 s ĵ s j+ 1
2
+t̂ s 1

2
+̂tsL

.

(18)

We will confirm that this is the appropriate definition of the
Kramers-Wannier transformation by explicit calculations. In
particular, the boundary terms can be fixed by matching how
the symmetry-twist sectors are mapped from gauging Z2, as in
Ref. [64]. The above expression can be also written as either〈{̂

si− 1
2

}∣∣N |{si}〉 = 1

2L/2
(−1)

∑L
j=1(s j−1+s j )̂s j− 1

2
+̂tsL

, (19)

where s0 = sL + t is understood, or〈{̂
si− 1

2

}∣∣N |{si}〉 = 1

2L/2
(−1)

∑L
j=1 s j (̂s j− 1

2
+̂s

j+ 1
2

)+t̂ s 1
2 , (20)

where ŝL+ 1
2

= ŝ 1
2
+ t̂ is understood. Equations (18), (19), and

(20) are equivalent, while they contain an extra factor com-
pared to the naive versions (16) or (17).

The operator N acts on the Hilbert space of the entire
system at a certain “time slice.” Thus it corresponds to a defect
line parallel to the spatial axis in the (1 + 1)-dimensional
space-time. We remark that by exchanging the role of space
and time, the operator N can be interpreted as a defect in the
Hilbert space. This point of view was more often adopted in
the recent discussions of noninvertible defects and their fusion
rules [42,45,48]. We will only work with operator N acting on
the Hilbert space in this work. Moreover, the N operator de-
fined this way is independent of the underlying Hamiltonian.
Instead one can use [H,N ]|{si}〉 = 0 to constrain the possible
Hamiltonians which are self-dual under the Kramers-Wannier
transformation.

B. Fusion rules

We proceed to discuss the fusion rule involving N and U .
Since we have defined the duality and symmetry defects as
operators N and U , the “fusion” is simply given as a product
of the operators. We start from a general state of the original
spins,

|ψ〉 =
∑
{si}

ψ{si}|{si}〉, (21)

where ψ{si} is the wave function of the spin variables.
Let us first consider N × U ,

N × U |ψ〉
= N

∑
{si}

ψ{1−si}|{si}〉

= 1

2L/2

∑
{̂s

i− 1
2
},{si}

ψ{1−si}(−1)
∑L

j=1(s j−1+s j )̂s j− 1
2
+̂tsL |{̂si− 1

2
}〉

= 1

2L/2

∑
{̂s

i− 1
2
},{si}

ψ{si}(−1)
∑L

j=1(s j−1+s j )̂s j− 1
2
+̂t (1−sL )|{̂si− 1

2
}〉

= (−1)̂tN |ψ〉. (22)
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FIG. 1. Shrink the U operator inwards and expanding U out-
wards yield opposite signs. This means that N |ψ〉 for Z2 odd |ψ〉
vanishes in the untwisted sector.

This implies the fusion rule

N × U = (−1)̂tN . (23)

This fusion rule is slightly different from the standard fusion
rule in the Ising fusion category (8) by the additional factor
(−1)̂t . Such a factor can be traced back to the additional term
t̂ sL in (18). Here we would like to argue that (−1)̂t makes
sense.

The fusion rule (23) implies that the spin-flip parity u of
the original spins is linked to the boundary condition t̂ of the
dual spins. That is, for any parity eigenstate

U |�〉 = (−1)u|�〉, (24)

it follows from Eq. (23) that

(−1)̂t (N |�〉) = (−1)u(N |�〉), (25)

namely

t̂ = u. (26)

It is useful to see (23) in a diagrammatic way. Let us justify
this in the Ising CFT. In the Ising CFT, there are three local
primary operators, the trivial operator, the energy operator ε,
and the spin operator σ . The spin operator is Z2 odd, while the
energy operator is Z2 even. Let us first prepare a Z2 odd state
|σ 〉 in the untwisted sector by acting σ on the vacuum state
|0〉. In the radial quantization picture, the state is represented
by placing σ at the origin. Let us have U and N on the state by
wrapping U and N subsequently around σ . We then shrink the
U operator in two different ways as shown in Fig. 1. Shrinking
U inward means acting U on |σ 〉, and we obtain a minus sign
since σ is Z2 odd. One can also expand the U outwards. By
applying the F-move several times [34,36,37,65–68], and one
finds that U can be absorbed by N . Hence the N |ψ〉 vanishes
in the untwisted sector.

How about the N |ψ〉 in the twisted sector? We thus need
to consider the configuration as shown in Fig. 2, where the
state after acting by N is in the twisted sector. Since in the
radial quantization the radial direction is the time, there should
be a Z2 defect line along the time/radial direction outside of
the N . We again deform the U operator in two ways, either
shrinking inwards or expanding outwards. Shrinking inwards
again yields a nontrivial sign since σ is Z2 odd. However, by
using the F-moves, expanding U outwards also yields a minus

FIG. 2. Shrink the U operator inwards and expanding U out-
wards yield the same minus sign. This is consistent with the fact
that N |ψ〉 for Z2 odd |ψ〉 is in general nonvanishing in the twisted
sector.

sign, which comes from FN
U,N ,U = −1. Hence two ways of

deforming U does not lead to any constraint, and indeed
N |ψ〉 is in general nonvanishing. Similar discussions can be
applied when we insert a Z2 even local operator at the origin,
and the conclusions for the untwisted and twisted sectors are
exchanged.

The above discussion shows that the standard fusion
rule N × U = N holds only when the state after Kramers-
Wannier is in the untwisted sector. When we work within the
twisted sector, the fusion rule is modified by a minus sign.

We next compute the fusion rule N † × N . To do so, we
note that so far N is only defined on the Hilbert space on sites
spanned by |{s j}〉 but not on the Hilbert space on links. The
latter can be defined in a similar way,

N †
∣∣{̂s j− 1

2

}〉 = 1

2L/2

∑
{s j}

(−1)
∑L

j=1 (̂s
j− 1

2
+̂s

j+ 1
2

)s j+̂s 1
2

t |{s j}〉. (27)

Then N † × N proceeds as

N † × N |ψ〉

= 1

2L/2

∑
{̂s

i− 1
2
},{si}

ψ{si}(−1)
∑L

j=1(s j−1+s j )̂s j− 1
2
+̂tsLN

∣∣{̂si− 1
2

}〉
= 1

2L

∑
{̂s

i− 1
2
},{si},{s′

i}
ψ{si}(−1)

∑L
j=1(s j−1+s j )̂s j− 1

2
+̂tsL

× (−1)
∑L

k=1 (̂s
k− 1

2
+̂s

k+ 1
2

)s′
k+̂s 1

2
t ′
|{s′

j}〉

= 1

2L

∑
{̂s

i− 1
2
},{si},{s′

i}
ψ{si}(−1)

∑L
j=1(s j−1+s j+s′

j−1+s′
j )̂s j− 1

2

× (−1)̂t (sL+s′
L )|{s′

j}〉
=

∑
{si},{s′

i}
ψ{si}δs j−1+s j+s′

j−1+s′
j
(−1)̂t (sL+s′

L )|{s′
j}〉. (28)
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FIG. 3. The left is the standard fusion rule, where the state in
the middle belongs to the untwisted sector. The right is the modified
fusion rule, where the state in the middle belongs to the twisted
sector.

Solving the constraints for s j−1 + s j + s′
j−1 + s′

j = 0 for ev-
ery j yields to solutions, s′

j = s j for all j, or s′
j = s j + 1 for

all j, which subsequently implies t = t ′. In other words,

N † × N |ψ〉 =
∑
{si}

ψ{si}|{s j}〉 +
∑
{si}

ψ{1−si}(−1)̂t |{s j}〉

= (1 + (−1)̂tU )|ψ〉. (29)

This implies the fusion rule

N † × N = 1 + (−1)̂tU . (30)

The fusion rule (30) again differs from the standard one N † ×
N = 1 + U by a factor (−1)̂t . This means that the standard
fusion rule (8) holds only when the state in the intermediate
state (after applying one Kramers-Wannier transformation) is
in the untwisted sector. Indeed, this is as expected, because if
the intermediate state is in the twisted sector, then there is a U
connecting the two N ’s. See Fig. 3.

C. Mapping between symmetry-twist sectors

We have already shown in Eq. (26) that the spatial twist
(boundary condition) t̂ of the dual spins is linked to the spin-
flip parity u of the original spins via the Kramers-Wannier
transformation.

Let us also clarify the relation between the spin-flip parity
û of the dual spins and the spatial twist t of the original spins.
We assume |ψ〉 is with in the sector labeled by (u, t ), i.e.,

ψ{1−si} = (−1)uψ{si}, si+L = si + t . (31)

To determine the symmetry-twist sectors under Kramers-
Wannier transformation, we first compute the resulting
state using the representation (19) of the Kramers-Wannier

TABLE I. Symmetry-twist sectors of the theories before and af-
ter the Kramers-Wannier transformation. The Z2 even twisted sector
is exchanged with the Z2 odd untwisted sector.

transformation as g

N |ψ〉 =
∑
{̂s

i− 1
2
}
ψ̂{̂s

i− 1
2
}
∣∣{̂si− 1

2

}〉
,

ψ̂{̂s
i− 1

2
} = 1

2L/2

∑
{si}

ψ{si}(−1)
∑L

j=1(s j−1+s j )̂s j− 1
2
+̂tsL

. (32)

The symmetry sector û is determined by ψ̂{1−̂s
i− 1

2
} =

(−1)̂uψ̂{̂s
i− 1

2
}. From (32), we find

ψ̂{1−̂s
i− 1

2
} = 1

2L/2

∑
{si}

ψ{si}(−1)
∑L

j=1(s j−1+s j )(1−̂s
j− 1

2
)+̂tsL

= 1

2L/2

∑
{si}

ψ{si}(−1)
∑L

j=1(s j−1+s j )̂s j− 1
2
+̂tsL

× (−1)
∑L

j=1 s j−1+s j = (−1)t ψ̂{̂s
i− 1

2
}. (33)

This shows that the dual Z2 symmetry after Kramers-Wannier
transformation is determined by the twist before this transfor-
mation,

û = t . (34)

Combining (34) and (26), we find that given a state |ψ〉 in
the symmetry-twist sector (u, t ), under the Kramers-Wannier
transformation, the resulting state N |ψ〉 is in the symmetry-
twist sector (̂u, t̂ ) = (t, u). The above results of the sector
mapping under Kramers-Wannier transformation are summa-
rized in Table I.

From the sector mapping, it is also obvious that the
Kramers-Wannier transformation is not unitary, consistent
with the observation in Sec. II D. For instance, Kramers-
Wannier transformation annihilates a Z2 odd untwisted state
if one is within the untwisted sector after this transformation.
(Note that we should fix one boundary condition (or twist
sector) to discuss a transformation.) Hence the probability
is in general not conserved under Kramers-Wannier transfor-
mation, and this again shows that the N is nonunitary. The
nonunitarity will further be reflected by the noninvertibility in
its fusion rule.

D. (Non-)unitarity of Kramers-Wannier transformation

Now let us examine the unitarity of the Kramers-Wannier
transformation as defined in Eq. (18). For this purpose, we
evaluate N †N , which should be equal to the identity operator
if N were unitary. It can be evaluated explicitly, in the same
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way as the fusion rule (30). As a result, we find

N †N = 1 + (−1)̂tU . (35)

The fact that the right-hand side is not identical to identity
implies that N is not unitary for a given t̂ . In fact, N anni-
hilates the odd spin-flip parity sector (u = 1) if t̂ = 0, or the
even spin-flip parity sector (u = 0) if t̂ = 1. Therefore N is
not invertible.

On the other hand, we can take a different viewpoint [69].
If we regard the spatial twists t, t̂ as extra degrees of freedom
associated to the original and dual spin systems, or, equiva-
lently, regard the twisted and untwisted sectors as different
Hilbert spaces, then the Kramers-Wannier transformation just
shuffles among the different sectors as in Table I and is uni-
tary. Mathematically, t̂ can then be regarded as an extra dual
spin, and thus a summation over t̂ = 0, 1 should be taken in
the intermediate dual spin state, resulting in N †N = 1 from
Eq. (35).

E. Kramers-Wannier transformation and Z2 gauging

As mentioned earlier in this section, the Kramers-Wannier
transformation amounts to gauging the nonanomalous [70]
Z2 global symmetry. We start with the partition function of
theory X with a nonanomalous Z2 global symmetry whose
background field is A, i.e., ZX [X2, A]. Gauging Z2 yields
another theory X /Z2, whose partition function is

ZX /Z2 [X2, Â] = 1

|H0(X2,Z2)|
∑

a∈H1(X2,Z2 )

ZX [X2, a](−1)
∫

X2
aÂ

,

(36)
where Â is the background gauge field for the dual Z2 sym-
metry of X /Z2.

The mapping between the symmetry and twist sectors has
been discussed in Refs. [64,71,72]. Let us briefly review the
results. We first place the system on a torus, X2 = T 2. The
gauge fields can thus be replaced by their holonomies A →
{Wt ,Wx},

ZX /Z2 [Ŵt ,Ŵx] = 1

2

∑
wt ,wx=0,1

ZX [wt ,wx](−1)wtŴx+wxŴt .

(37)
The partition functions in different symmetry and twist sectors
labeled by (u, t ) are given by

Z (u,t )
X = 1

2

∑
wt =0,1

ZX [wt , t](−1)uwt
(38)

and the converse relation is

ZX [wt ,wx] =
∑

u=0,1

Z (u,wx )
X (−1)uwt . (39)

The symmetry and twist sectors for X /Z2 are likewisely de-
fined. Combining (37), (38), and (39), we find

Z (̂u,̂t )
X /Z2

= 1

2

∑
ŵt =0,1

ZX /Z2 [ŵt , t̂](−1)̂uŵt

= 1

4

∑
ŵt =0,1

∑
wt ,wx=0,1

ZX [wt ,wx](−1)wt t̂+wxŵt +ûŵt

= 1

4

∑
ŵt =0,1

∑
wt ,wx=0,1

∑
u=0,1

Z (u,wx )
X (−1)uwt +wt t̂+wxŵt +ûŵt

=
∑

wx=0,1

∑
u=0,1

Z (u,wx )
X δu,̂tδwx ,̂u = Z (̂t ,̂u)

X . (40)

This is precisely the mapping between symmetry and twist
sectors (̂u, t̂ ) = (t, u) derived using the Kramers-Wannier
transformation on the lattice.

The fusion rule of the topological interface between X and
X /Z2 can also be derived, following Refs. [42,43,45,48]. We
will not repeat the derivation here and refer the interested
readers to these references, e.g., Sec. 2 of Ref. [43]. One
remark is that in deriving the fusion rule between the duality
interfaces N † × N , one does not turn on the Z2 defects U
in the vicinity of the locus of N , and hence the fusion rule
corresponds to the left panel of Fig. 3. This point has already
been emphasized in Ref. [48].

F. Kramers-Wannier transformation on the transverse
field Ising Hamiltonian

The Hamiltonian is a sum over local interactions given by
the Pauli operators. Let us first consider how the Pauli opera-
tors are mapped under Kramers-Wannier transformation. It is
straightforward to check that

τ x
i− 1

2
N |ψ〉 = Nσ z

i−1σ
z
i |ψ〉, τ z

i− 1
2
τ z

i+ 1
2
N |ψ〉 = Nσ x

i |ψ〉,
(41)

where i = 1, . . . , L. Now let us consider the transverse Ising
chain (7). When the system is defined on a ring, the Hamilto-
nian is more precisely specified as

Hh
Ising = −

L∑
i=1

(
σ z

i−1σ
z
i + hσ x

i

)
, (42)

with the identification of site 0 with site L as in Eq. (11).
Note that the boundary conditions are already encoded
into the Hilbert spaces. For example, σ z

0 |s0〉 = (−1)s0 |s0〉 =
(−1)sL+t |s0〉. Hence effectively σ z

0 = (−1)tσ z
L , and one should

replace the term σ z
0σ z

1 by (−1)Lσ z
Lσ z

1 , which is a more
common convention used in the literature (for example
Refs. [73,74]). Using the above map (41), the Kramers-
Wannier dual Hamiltonian of the transverse Ising chain (42)
is

Ĥh
Ising = −

L∑
i=1

(
τ x

i− 1
2
+ hτ z

i− 1
2
τ z

i+ 1
2

)
. (43)

By shifting the spins on the links to the sites (which is simply
a relabeling), one finds that

Hh
Ising = hĤ1/h

Ising. (44)

Given the duality mapping of the Hamiltonian, we can see
why the Kramers-Wannier transformation must be noninvert-
ible and why the unitarity can be restored by expanding the
Hilbert space by including the twisted sector. Let us consider
the ordered phase h � 1 of the Ising model of the original
spins. The ground states are twofold degenerate, correspond-
ing to the spontaneous magnetization “up” and “down.” The
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Kramers-Wannier transformation maps this model to the Ising
model of the dual spins in the disordered phase, where the
ground state is unique. As a consequence, the Kramers-
Wannier transformation must map the two ground states to
one and thus is nonunitary and noninvertible. In our construc-
tion, the two-to-one mapping is achieved by projecting out one
of the spin-flip parity sectors.

On the other hand, the Ising model in the disordered
phase is insensitive to the boundary condition. Therefore, the
ground-state energy under the twisted boundary condition is
asymptotically degenerate with that under the periodic bound-
ary condition. If we expand the Hilbert space by including the
twisted sector, then the ground states are twofold degenerate.
In contrast, when the Ising model is in the ordered phase, the
twisted boundary condition introduces a domain wall with a
nonzero energy. As a consequence, the ground-state energy in
the twisted sector is higher than that in the untwisted sector
(periodic boundary condition). Thus the ground-state degen-
eracy remains 2 (coming from the spontaneous breaking of
the spin-flip symmetry) even if the Hilbert space is expanded.
The Kramers-Wannier transformation between the extended
Hilbert spaces can be invertible (and unitary). Of course the
present argument which focuses on the ground state alone
does not prove the invertibility or unitarity, but it gives a
physical perspective on the unitarity we have shown by an
explicit calculation in Sec. II D.

G. Kramers-Wannier transformation on an interval:
A unitary transformation

We proceed to discuss the Kramers-Wannier transforma-
tion on an open chain. Although the operator N implementing
the Kramers-Wannier transformation is nonunitary and satis-
fies the noninvertible fusion rule, the N under certain open
boundary conditions is unitary [61].

Suppose the open chain contains sites i = 1, . . . , L, and the
dual spins live on half-integer links i − 1

2 for i = 1, . . . , L. We
begin by modifying (18) such that only the terms that are fully
supported will be kept in the exponent, i.e., free boundary
condition. Concretely,

N |{si}〉 = 1

2L/2

∑
{̂s

i− 1
2
}
(−1)

∑L
j=2 s j−1̂s

j− 1
2
+∑L

j=1 s ĵ s j− 1
2

∣∣{̂si− 1
2

}〉
.

(45)

Note that we also dropped the term t̂ SL because the twisted
boundary condition is well defined only on closed chains.

We can immediately check that N is a unitary transfor-
mation by directly checking 〈{si}|N †N |{s′

i}〉. To see this, we
compute

〈{si}|N †N |{s′
i}〉

= 1

2L

∑
{̂s

i− 1
2
},{̂s′

i− 1
2
}
〈{̂si− 1

2

}∣∣(−1)
∑L

j=2 s j−1̂s
j− 1

2
+∑L

j=1 s ĵ s j− 1
2

× (−1)
∑L

j=2 s′
j−1̂s′

j− 1
2
+∑L

j=1 s′
ĵ s

′
j− 1

2

∣∣{̂s′
i− 1

2

}〉

= 1

2L

∑
{̂s

i− 1
2
}
(−1)

∑L
j=2(s j−1+s′

j−1 )̂s
j− 1

2
+∑L

j=1(s j+s′
j )̂s j− 1

2

=
L∏

i=1

δsi,s′
i
. (46)

This shows that N †N = I , and hence N is a unitary operator.
It should be contrasted to the nonunitarity of N on the closed
chain.

It is useful to find the mapping between Pauli operators.
Our goal is to solve Oz

j ({σ x,z
k }) satisfying

τ x
j− 1

2
N |ψ〉 = NOx

j

({
σ x,z

k

})|ψ〉,
(47)

τ z
j− 1

2
N |ψ〉 = NOz

j

({
σ x,z

k

})|ψ〉,
for any |ψ〉. The calculation is straightforward, and the
result is

Ox
j

({
σ x,z

k

}) =
{

σ z
j−1σ

z
j , j = 2, . . . , L

σ z
1 , j = 1

,

Oz
j

({
σ x,z

k

}) =
L∏

k= j

σ x
k . (48)

As a consistency check, the commutation relations between
τ x,z

j− 1
2

match those between Ox,z
j ({σ x,z

k }). These maps will be-

come useful in Sec. VIII.
Let us now discuss the Kramers-Wannier transformation of

the Ising model Hamiltonian on an open chain, which was also
discussed in Ref. [33]. Because of the mapping, the standard
Ising model defined on the open chain is not exactly self-dual;
Eqs. (7) is not mapped to Eq. (43) by the Kramers-Wannier
transformation on the open chain. More precisely, we find

Hh
open Ising = −σ z

1 −
L∑

i=2

σ z
i−1σ

z
i − h

L∑
i=1

σ x
i (49)

is dual to

Ĥh
open Ising = −

L∑
i=1

τ x
i− 1

2
− h

L−1∑
i=1

τ z
i− 1

2
τ z

i+ 1
2
− hτ z

L− 1
2
. (50)

Note the existence of the longitudinal magnetic fields (cou-
pled to the z component of the spin) at the boundary in either
side. The boundary longitudinal magnetic field breaks the
spin-flip symmetry explicitly. As a consequence, the ground
state is unique (chosen by the boundary longitudinal magnetic
field) even in the ordered phase. This resolves the obstacle
to the unitarity of the Kramers-Wannier transformation dis-
cussed in Sec. II D, as the mapping of the ground states now
becomes one to one.

Alternatively, to maintain the spin-flip symmetry of the
original spins, we can omit the boundary longitudinal field
−σ z

1 in Eq. (49). In this case, the ground state in the ordered
phase h < 1 is twofold degenerate, reflecting the spontaneous
symmetry breaking. The dual Hamiltonian lacks the trans-
verse field −τ x

1
2

at the end of the chain. The edge spin at 1/2

is still coupled to the neighboring one by the Ising coupling
τ z

1
2

τ z
3
2

. Therefore, in the ordered phase of the dual spins (which
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corresponds to the disordered phase of the original spins), the
end spin is polarized and the ground state is unique (since
the spin-flip symmetry is explicitly broken by the boundary
longitudinal field at the other end L − 1

2 ). On the other hand,
in the disordered phase of the dual spins (which corresponds
to the ordered phase of the original spins), the end spin at
1/2 has no favored direction; this implies the presence of
the spin-1/2 “edge mode” and the ground states are twofold
degenerate. As a result, the Kramers-Wannier transformation
does preserve the number of the ground states: one-to-one
mapping in the disordered phase (of the original spins) and
two-to-two in the ordered phase. This means that Kramers-
Wannier transformation can be unitary, as it was indeed shown
by the explicit calculations.

The fact that the spontaneous symmetry breaking of the
global symmetry of the original spin system corresponds to
the edge state in the dual spin system can be also read off from
the mapping (48). The global spin-flip operator U = ∏L

j=1 σ x
j

is mapped to the single spin operator τ z
1
2

at the end of the dual

spin chain.
The Kramers-Wannier duality between the spontaneous

breaking of the global symmetry and the edge state is rem-
iniscent of the Kennedy-Tasaki transformation. However,
there are important differences. While the Kramers-Wannier
transformation on an open chain maps the global symmetry
generator to the local operator at the end of the chain as we
have seen above, the Kennedy-Tasaki transformation on an
open chain preserves the global symmetry generators as in
Eq. (6). Nevertheless, they are deeply related, as we will see
in the following sections.

III. KENNEDY-TASAKI TRANSFORMATION ON A RING
OF SPIN-1 PER UNIT CELL

As we have discussed in the Introduction, the Kennedy-
Tasaki transformation as a unitary transformation has been
discussed exclusively for open boundary conditions. The
transformation (1) appears to be ill defined for the periodic
boundary conditions, as it depends on the ordering of the sites.
Furthermore, the SPT phase with a unique ground state should
be mapped to the phase breaking the Z2 × Z2 symmetry with
four degenerate ground states, which seems impossible with a
unitary transformation. However, as we have seen in Secs. II C
and II D, the latter problem could be resolved by matching the
symmetry sector and the boundary condition in the case of
Kramers-Wannier transformation.

To formulate the Kennedy-Tasaki transformation (1) on a
ring, we have to overcome two apparent difficulties mentioned
in the Introduction: (1) the lack of natural ordering on a ring
and (2) the mismatch of ground-state degeneracy. The second
difficulty has been briefly mentioned above, and we have seen
a resolution in the case of the Kramers-Wannier transforma-
tion. We will come back to this later.

How to address the ordering problem on a ring? The key
observation is that although it seems hard to define the unitary
operator UKT on a ring, the transformation on spin-1 operators
(2), (3), and (4) have a natural definition on the ring. Note
that the Kennedy-Tasaki transformation simply addresses a
string operator that generates the Zx

2 × Zz
2 symmetry to the

spins, similarly to both Kramers-Wannier and Jordan-Wigner
transformations [59,64,72,75]. We thus define the Kennedy-
Tasaki transformation on a ring by specifying how the spin-1
operators map:

S′x
j = Sx

j e
iπ

∑ j−1
k=1 Sx

k ,

S′z
j = eiπ

∑L
k= j+1 Sz

k Sz
j = Rzeiπ

∑ j
k=1 Sz

k Sz
j,

S′y
j = eiπ

∑L
k= j+1 Sz

k Sy
j e

iπ
∑ j−1

k=1 Sx
k . (51)

where j = 1, . . . , L. When j = 1, the string eiπ
∑ j−1

k=1 Sx
k = 1

is trivial; when j = L, the string eiπ
∑L

k= j+1 Sz
k = 1 is trivial.

Indeed, the commutation relations among S′x,y,z
j are still those

of the standard spin-1 operators.

Mapping between symmetry sectors

We proceed to discuss how the symmetry sectors and
boundary conditions transform under the map (51). First
symmetry operators Rα = eiπ

∑L
j=1 Sα

j are invariant under the
transformation,

R′α = Rα, α = x, y, z, (52)

as we have shown in Eq. (6). Denoting the eigenvalue of Rα

as (−1)uα , we thus have

u′
x = ux mod 2, u′

z = uz mod 2. (53)

Mapping between boundary conditions

The boundary condition is specified by

Sx
j+L = (−1)tz Sx

j , Sz
j+L = (−1)tx Sz

j . (54)

Note that under Zx
2 generated by Rx, the Sz

j flips sign, hence the
boundary condition for Sz

j is labeled by tx. Then the boundary
condition for the S′x,z

j can be determined from (51) via

S′x
j+L = Sx

j+Leiπ
∑ j+L−1

k=1 Sx
k = (−1)tz Sx

j e
iπ

∑ j−1
k=1 Sx

k Rx

= (−1)tz+ux Sx
j ,

S′z
j+L = RzSz

j+Leiπ
∑ j+L

k=1 Sx
k

= (−1)tx RzSz
je

iπ
∑ j

k=1 Sz
k Rz = (−1)tx+uz Sz

j, (55)

which implies

t ′
z = tz + ux mod 2, t ′

x = tx + uz mod 2. (56)

Although the generalization of the Kennedy-Tasaki transfor-
mation from the open chain to the closed chain as in (51)
looks naive, the mapping between the symmetry and twist
sectors (53) and (56) match precisely with mapping induced
by the twisted gauging to be discussed in Sec. V B. The above
relations are also very much reminiscent of the similar, well-
known relation for the Jordan-Wigner transformation on a ring
[64,75].

In condensed matter literatures, the boundary condition is
more conventionally specified by modifying one term in the
Hamiltonian that crosses the boundary. It is useful to derive
(56) from this conventional point of view. For example, let us
consider the Heisenberg Hamiltonian under Zx

2 × Zz
2 twisted
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boundary condition,

H =
L−1∑
i=1

(
JxSx

j S
x
j+1 + JySy

j S
y
j+1 + JzS

z
jS

z
j+1

)
+ (−1)tz JxSx

LSx
1 + (−1)tz+tx JySy

LSy
1 + (−1)tx JzS

z
LSz

1.

(57)

Under Kennedy-Tasaki transformation, the above Hamilto-
nian is mapped to

HKT =
L−1∑
i=1

(
JxeiπSx

j Sx
j S

x
j+1 + JyeiπSx

j Sy
j S

y
j+1eiπSz

j+1

+ JzS
z
jS

z
j+1eiπSz

j+1
) + (−1)tz+ux JxeiπSx

L Sx
LSx

1

+ (−1)tz+tx+ux+uz JyeiπSx
L Sy

LSy
1eiπSz

1

+ (−1)tx+uz JzS
z
LSz

1eiπSz
1 , (58)

from which we again read off the mapping between the bound-
ary conditions and the symmetry sectors as in (53) and (56).

This also resolves the issue of the ground-state degeneracy
for the Kennedy-Tasaki transformation on the ring. Similarly
to the discussion on the Kramers-Wannier transformation in
Sec. II D, spontaneous breaking of the Z2 × Z2 symmetry
implies a fourfold ground-state degeneracy under the periodic
boundary condition, with one ground state in each of the
four symmetry sectors uz, ux = 0, 1. Since a twisted bound-
ary condition introduces a domain wall with positive energy,
the twisted sectors tz = 1 or tx = 1 do not contribute ground
states in the extended Hilbert space. On the other hand, the
Kennedy-Tasaki dual of the symmetry-broken phase is the
Haldane SPT phase, which does not have a long-range order
and thus is insensitive to the boundary conditions. As a con-
sequence, the ground states in each of the four twist sectors
t ′
z, t ′

x = 0, 1 are degenerate, resulting in the fourfold ground-

state degeneracy (in the extended Hilbert space). Therefore,
in the extended Hilbert space, the Kennedy-Tasaki transfor-
mation induces a four-to-four mapping of the ground states
and thus can be unitary. This is analogous to the unitarity of
the Kramers-Wannier mapping in the extended Hilbert space,
as discussed in Sec. II D and in Ref. [69]. If we focus on the
untwisted Hilbert space only (i.e., PBC), then the Kennedy-
Tasaki transformation is nonunitary.

IV. FIELD-THEORY FORMULATION OF THE
KENNEDY-TASAKI TRANSFORMATION

In the previous section, we have observed that the
Kennedy-Tasaki transformation can be defined on a ring by
sacrificing unitarity. Moreover, the unitarity can be restored by
including twisted sectors. In order to obtain deeper insights,
let us formulate the Kennedy-Tasaki transformation in terms
of field theory.

Let us denote the partition function of an arbitrary QFT X
with nonanomalous Z2 × Z2 symmetry as ZX [A1, A2], where
Ai is the background field for the ith Z2. When X is in the
trivial phase, the fixed point partition function is

ZTri[A1, A2] = 1. (59)

When X is in the Z2 × Z2 SSB phase, the fixed point partition
function is

ZSSB[A1, A2] = δ(A1)δ(A2). (60)

When X is in the Z2 × Z2 SPT phase, the fixed point partition
function is [76,77]

ZSPT[A1, A2] = (−1)
∫

A1A2 . (61)

To see how these theories are related, we define the following
topological manipulations:

S : ZS12X [A1, A2] := 1

|H0(X2,Z2)|2
∑

a1,a2∈H1(X2,Z2 )

ZX [a1, a2](−1)
∫

X2
a1A2+a2A1 T : ZT12X [A1, A2] := ZX [A1, A2](−1)

∫
X2

A1A2 .(62)

The first topological manipulation S is gauging the Z2 × Z2[78] It is also possible to discuss one of the two Z2’s. However, for
our purpose we will not consider them in this work. The second one is stacking a Z2 × Z2 SPT. With the above operations, we
are able to fit the three theories (59), (60), and (61) into the following web:

(63)

The only combination of the topological manipulations that
exchanges SPT and SSB while preserving the trivial phase is

ST S = T ST . (64)

The two expressions are related by the identity of SL(2,Z2),
i.e., (ST )3 = 1. However, it will become clear that when
formulating the topological manipulations on an open chain,
there are subtle differences between ST S and T ST , and ST S
turns out to be simpler which is what we will use. The above
discussion strongly suggests that the Kennedy-Tasaki trans-
formation should simply be the ST S transformation.

In the following sections, we will implement ST S transfor-
mation, which was conceived in field theory, on spin chains.
For this purpose, it is convenient to consider spin chains
with two spin- 1

2 ’s per unit cell rather than the spin-1 chains
discussed in the original literature on the Kennedy-Tasaki
transformation. The implementation on the spin- 1

2 models
is also useful in elucidating the deep connection between
the Kramers-Wannier and Kennedy-Tasaki transformations.
We will also discuss the relation between the Kennedy-
Tasaki transformation for the spin- 1

2 models and the original
Kennedy-Tasaki transformation for the spin-1 chains.
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TABLE II. Mapping between sectors under the Kennedy-Tasaki,
i.e., ST S, transformation. The rows are labeled by (uσ , uτ ), and the
columns are labeled by (tσ , tτ ). The cells without an arrow map to
themselves. The two cells connected by an arrow are mapped to each
other.

V. KENNEDY-TASAKI TRANSFORMATION ON A RING OF
TWO SPIN- 1

2 ’S PER UNIT CELL

In this section, we discuss the Kennedy-Tasaki transfor-
mation implementing ST S on a ring. Parallel to the study of
Kramers-Wannier transformation, we study the fusion rules,
mapping between symmetry and twist sectors, mapping be-
tween local operators, etc.

A. Noninvertible Kennedy-Tasaki transformation

Let us consider a spin chain with L sites and L links.
Each site supports one spin- 1

2 , spanning a two-dimensional
local Hilbert space |sσ

i 〉, where sσ
i = 0, 1 and i = 1, . . . , L.

Moreover, each link also supports one spin- 1
2 spanning a

two-dimensional local Hilbert space |sτ

i− 1
2
〉, where sτ

i− 1
2

= 0, 1

for i = 1, . . . , L. Hence each unit cell contains two spin- 1
2 ’s

[79]. This should be distinguished from the situation in Sec. II
where each unit cell only supports one spin- 1

2 , and they either
live on sites or on links but not both. The local states can be
acted on by Pauli operators,

σ z
i

∣∣sσ
i

〉 = (−1)sσ
i
∣∣sσ

i

〉
, σ x

i

∣∣sσ
i

〉 = ∣∣1 − sσ
i

〉
τ z

i− 1
2

∣∣sτ

i− 1
2

〉 = (−1)
sτ

i− 1
2

∣∣sτ

i− 1
2

〉
, τ x

i− 1
2

∣∣sτ

i− 1
2

〉 = ∣∣1 − sτ

i− 1
2

〉
.

(65)

The Z2 × Z2 symmetry is generated by Uσ and Uτ , respec-
tively, where

Uσ =
L∏

i=1

σ x
i , Uτ =

L∏
i=1

τ x
i− 1

2
. (66)

The symmetry and twist sectors are labeled by (uσ , uτ , tσ , tτ ).
Here uσ , uτ are the eigenvalues of Uσ ,Uτ , respectively, and
tσ , tτ label the boundary conditions sσ

i+L = sσ
i + tσ , sτ

i− 1
2 +L

=
sτ

i− 1
2
+ tτ .

After the Kramers-Wannier transformation, i.e., S transfor-
mation which gauges Z2 × Z2, the spins on sites and the spins
on links are exchanged, and we denote the resulting spins as
ŝσ

i− 1
2

and ŝτ
i . Likewise, the dual spins can also be organized

into 16 symmetry and twist sectors as (̂uσ , ûτ , t̂σ , t̂τ ). Follow-
ing the definition (18), the Kramers-Wannier transformation
for both Z2’s is

N
∣∣{sσ

i , sτ

i− 1
2

}〉 = 1

2L

∑
{̂sσ

j− 1
2
,̂sτ

j }
(−1)

∑L
j=1 sσ

j (̂sσ

j− 1
2
+̂sσ

j+ 1
2

)+tσ ŝσ
1
2
+̂sτ

j (sτ

j− 1
2
+sτ

j+ 1
2

)+̂tτ sτ
1
2

∣∣{̂sσ

j− 1
2
, ŝτ

j

}〉
. (67)

The T transformation amounts to stacking a Z2 × Z2 SPT, and the operator implementing such stacking has been discussed in
Refs. [56,59,80], under the name of domain wall decoration UDW. The UDW acts on the basis state as

UDW|{̂sσ

i− 1
2
, ŝτ

i }〉 = (−1)
∑L

j=1 ŝτ
j (̂sσ

j− 1
2
+̂sσ

j+ 1
2

)+̂tτ ŝσ
1
2 |{̂sσ

i− 1
2
, ŝτ

i }〉. (68)

This is a unitary operator. In the above we only defined how UDW acts on the dual spins, but the action on the original spins can
also be similarly defined. By definition, the ST S transformation is defined to be the product NKT = N †UDWN . When acting on
an arbitrary basis state, we find the Kennedy-Tasaki transformation,

NKT

∣∣{sσ
i , sτ

i− 1
2

}〉 = 1

2L+1

∑
{s′σ

i ,s′τ
i− 1

2
}
(−1)

∑L
j=1(sσ

j +s′σ
j )(sτ

j− 1
2
+sτ

j+ 1
2
+s′τ

j− 1
2
+s′τ

j+ 1
2

)+(sτ
1
2
+s′τ

1
2

)(tσ +t ′
σ )

× [1 + (−1)tσ +t ′
σ +̂tτ ][1 + (−1)tτ +t ′

τ +̂tσ ]
∣∣{s′σ

i , s′τ
i− 1

2

}〉
, (69)

where t̂τ , t̂σ label the twist sectors in the intermediate state after one Kramers-Wannier transformation. Since they only appear in
the projectors in the second line, it means that the twist sectors in the intermediate state are completely determined by the twist
sectors of the initial and final states, and hence (69) simplifies to

NKT

∣∣{sσ
i , sτ

i− 1
2

}〉 = 1

2L−1

∑{
s′σ

i ,s′τ
i− 1

2

}(−1)
∑L

j=1(sσ
j +s′σ

j )(sτ

j− 1
2
+sτ

j+ 1
2
+s′τ

j− 1
2
+s′τ

j+ 1
2

)+(sτ
1
2
+s′τ

1
2

)(tσ +t ′
σ )∣∣{s′σ

i , s′τ
i− 1

2

}〉
.

(70)
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B. Mapping between symmetry-twist sectors

Let us consider how the symmetry-twist sectors are
mapped under the Kennedy-Tasaki transformation (70). We
again start with the general state |ψ〉. Assume |ψ〉 is in the
sector labeled by (uσ , uτ , tσ , tτ ), i.e.,

ψ{
sσ

i +1,sτ

i− 1
2

} = (−1)uσ ψ{
sσ

i ,sτ

i− 1
2

}, ψ{sσ
i ,sτ

i− 1
2
+1} = (−1)uτ ψ{

sσ
i ,sτ

i− 1
2

}
sσ

i+L = sσ
i + tσ , sτ

i− 1
2 +L

= sτ

i− 1
2
+ tτ . (71)

Let us determine the symmetry-twist sectors of the state
NKT|ψ〉 under the Kennedy-Tasaki transformation. To see
this, we compute

NKT|ψ〉 =
∑{

s′σ
i ,s′τ

i− 1
2

}ψ ′
{s′σ

i ,s′τ
i− 1

2
}
∣∣{s′σ

i , s′τ
i− 1

2

}〉
,

(72)

where

ψ ′{
s′σ

i ,s′τ
i− 1

2

} = 1

2L+1

∑
{sσ

i ,sτ

i− 1
2
}
ψ{sσ

i ,sτ

i− 1
2
}(−1)

∑L
j=1(sσ

j +s′σ
j )(sτ

j− 1
2
+sτ

j+ 1
2
+s′τ

j− 1
2
+s′τ

j+ 1
2

)+(sτ
1
2
+s′τ

1
2

)(tσ +t ′
σ )

. (73)

To see u′
σ and u′

τ , we compute ψ ′{s′σ
i +1,s′τ

i− 1
2
} and ψ ′{s′σ

i ,s′τ
i− 1

2
+1},

respectively. For ψ ′{s′σ
i +1,s′τ

i− 1
2
}, shifting s′σ

i by one amounts to

multiplying the wave function by (−1)tτ +t ′
τ , and hence we

arrive at

u′
σ = tτ + t ′

τ . (74)

For ψ ′{s′σ
i ,s′τ

i− 1
2
+1}, shifting s′τ

i− 1
2

by one amounts to multiplying

the wave function by (−1)tσ +t ′
σ , and hence we arrive at

u′
τ = tσ + t ′

σ . (75)

On the other hand, shifting s′σ
i by one can be undone by shift-

ing sσ
i by one, because they always come in the combination

s′σ
i + sσ

i . Hence we also have

u′
σ = uσ , u′

τ = uτ . (76)

Thus the mapping between the symmetry and twist sectors is

(u′
σ , u′

τ , t ′
σ , t ′

τ ) = (uσ , uτ , uτ + tσ , uσ + tτ ). (77)

This map is represented in Table II. These mappings among
symmetry/twist sectors are exactly of the same form as (53)

and (56) for the original Kennedy-Tasaki transformation for
the S = 1 chain.

C. Noninvertible fusion rules

We proceed to discuss the fusion rule involving NKT, Uσ ,
and Uτ . We first consider the fusion rule NKT × Uσ . This has
already been discussed in the previous subsection. We first
note that by definition of (66),

NKT

∣∣{sσ
i + 1, sτ

i− 1
2

}〉 = NKTUσ

∣∣{sσ
i , sτ

i− 1
2

}〉
. (78)

On the other hand, by the definition of the NKT (70), shifting
sσ

i by 1 amounts to multiplying

(−1)
∑L

j=1 sτ

j− 1
2
+sτ

j+ 1
2
+s′τ

j− 1
2
+s′τ

j+ 1
2 = (−1)tτ +t ′

τ . (79)

Hence,

NKTUσ

∣∣{sσ
i , sτ

i− 1
2

}〉 = (−1)tτ +t ′
τNKT

∣∣{sσ
i , sτ

i− 1
2

}〉
. (80)

This justifies the fusion rule

NKT × Uσ = (−1)tτ +t ′
τNKT. (81)

By a similar calculation, we also find that

NKT × Uτ = (−1)tσ +t ′
σNKT. (82)

We further compute the fusion rule NKT × NKT. By defini-
tion, we have

NKT × NKT

∣∣{sσ
i , sτ

i− 1
2

}〉 = 1

4L−1

∑
{s′σ

i ,s′τ
i− 1

2
,s′′σ

i ,s′′τ
i− 1

2
}
(−1)

∑L
j=1(sσ

j +s′σ
j )(sτ

j− 1
2
+sτ

j+ 1
2
+s′τ

j− 1
2
+s′τ

j+ 1
2

)+(sτ
1
2
+s′τ

1
2

)(tσ +t ′
σ )

× (−1)
∑L

j=1(s′′σ
j +s′σ

j )(s′′τ
j− 1

2
+s′′τ

j+ 1
2
+s′τ

j− 1
2
+s′τ

j+ 1
2

)+(s′′τ
1
2

+s′τ
1
2

)(t ′′
σ +t ′

σ )∣∣{s′′σ
i , s′′τ

i− 1
2

}〉
. (83)

We first sum over s′σ
j which enforces sτ

j− 1
2
+ sτ

j+ 1
2
+ s′′τ

j− 1
2
+ s′′τ

j+ 1
2

= 0 mod 2. Solving this enforces sτ

j− 1
2
+ s′′τ

j− 1
2

to be a constant

cτ . In particular, this constraints tτ = t ′′
τ . We further sum over s′τ

j− 1
2

which enforces sσ
j + s′′σ

j to be a constant cσ . In particular,

this constraints tσ = t ′′
σ . Finally, summing over cτ , cσ ∈ Z2, we find

NKT × NKT

∣∣{sσ
i , sτ

i− 1
2

}〉 = 4[1 + (−1)tσ +t ′
σ Uτ ][1 + (−1)tτ +t ′

τ Uσ ]
∣∣{sσ

i , sτ

i− 1
2

}〉
, (84)
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which implies the fusion rule

NKT × NKT = 4[1 + (−1)tσ +t ′
σ Uτ ][1 + (−1)tτ +t ′

τ Uσ ]. (85)

The same comments in Sec. II B also apply here. The non-
trivial signs mean that the presence of additional Z2 × Z2

operators terminating on NKT’s modifies the fusion rule. Usu-
ally when we refer to the fusion rule, we assume Z2 × Z2

operators are all turned off nearby NKT’s, and hence tσ,τ =
t ′
σ,τ = 0. After this simplification, the fusion rule (85) is al-

most identical to the standard fusion rule of the Z2 × Z2

Tambara-Yamagami (TY) fusion category. The only differ-
ence is the phase 4 on the right-hand side. It means that
our NKT is stacking of the duality defect in the Z2 × Z2 TY
category by a (0 + 1)-dimensional Z2 TQFT, i.e., two-level
quantum mechanics. Hence our NKT is a nonsimple operator
but a sum of two simple operators. Such a simple operator
turns out to implement the T ST (rather than ST S) transfor-
mation [81].

The most important information from the fusion rule (85) is
that NKT is a noninvertible operator satisfying the noninvert-
ible fusion rule, and hence the Kennedy-Tasaki transformation
associated with ST S is a nonunitary transformation. In

particular, NKT annihilates any state that is odd under any
one of the Z2’s, i.e., has eigenvalue −1 under Uτ or Uσ ,
under the periodic boundary condition (tσ,τ = t ′

σ,τ = 0). As
we discussed in Sec. III for the S = 1 chain, we may also
interpret NKT as an unitary operator acting on an extended
Hilbert space.

Despite the disadvantage that the operator NKT being non-
simple, we still prefer ST S over T ST in our definition, for
which the reason will become clear once we formulate the
Kennedy-Tasaki transformation for spin- 1

2 system on an open
chain.

D. Kennedy-Tasaki and Z2 × Z2 twisted gauging

We have derived the map between symmetry and
twist sectors under the Kennedy-Tasaki transformation im-
plementing ST S on the lattice. In this subsection, we
derive the sector mapping using the partition function
and the definition of gauging. We start with the parti-
tion function of theory X with a nonanomalous Z2 × Z2

global symmetry whose background fields are A1, A2, i.e.,
ZX [A1, A2]. The ST S transformation acts on the partition
function as

ZST SX [A′
1, A′

2] = 1

|H0(X2,Z2)|4
∑

a1,a2 ,̂a1 ,̂a2

ZX [a1, a2](−1)
∫

X2
a1â2+a2 â1+â1â2+A′

1â2+A′
2 â1

= |H1(X2,Z2)|
|H0(X2,Z2)|4

∑
a1,a2

ZX [a1, a2](−1)
∫

X2
a1a2+A′

1a2+A′
2a1+A′

1A′
2 , (86)

where a1 and a2 (̂a1 and â2) are dynamical gauge field of Z2 × Z2 in first (second) S transformation. H0(X2,Z2) and H1(X2,Z2)
are first and second cohomology on manifold X2 with Z2 coefficient.

To define the symmetry and twist sectors, we formulate the theory on the torus, and summing over gauge fields reduces to
summing over holonomies around the two noncontractible cycles,

ZST SX
[
W ′t

1 ,W ′t
2 ,W ′x

1 ,W ′x
2

] = 1

4

∑
wt

1,w
t
2,w

x
1,w

x
2

ZX
[
wt

1,w
t
2,w

x
1,w

x
2

]
(−1)w

t
1w

x
2+wx

1w
t
2 (−1)w

t
1W ′x

2 +wx
1W ′t

2 +wt
2W ′x

1 +wx
2W ′t

1 +W ′x
1 W ′t

2 +W ′t
1 W ′x

2 . (87)

The partition function in terms of the holonomies and in terms
of the symmetry-twist sectors are related via

Z (uσ ,uτ ,tσ ,tτ )
X = 1

4

∑
wt

1,w
t
2

ZX [wt
1,w

t
2, tσ , tτ ](−1)uσ wt

1+uτ w
t
2 (88)

and the inverse relation is

ZX [wt
1,w

t
2,w

x
1,w

x
2] =

∑
uσ ,uτ

Z
(uσ ,uτ ,w

x
1,w

x
2 )

X (−1)uσ wt
1+uτ w

t
2 .

(89)
Combining the above relations, we find the desired relation,

Z (u′
σ ,u′

τ ,t
′
σ ,t ′

τ )
ST SX = Z (u′

σ ,u′
τ ,u

′
τ +t ′

σ ,u′
σ +t ′

τ )
X := Z (uσ ,uτ ,tσ ,tτ )

X . (90)

This means that (u′
σ , u′

τ , u′
τ + t ′

σ , u′
σ + t ′

τ ) = (uσ , uτ , tσ , tτ )
which is equivalent to (77) as well as (53) and (56) for the
spin-1 system.

The fusion rule can also be reproduced from the partition
function approach. The fusion rules for the defect implement-
ing T ST have been worked out in Ref. [42]. The similar
calculation for ST S can be worked out as well. We will not
repeat the exercise here.

VI. KENNEDY-TASAKI TRANSFORMATION ON AN
INTERVAL WITH TWO SPIN- 1

2 ’S PER UNIT CELL:
A UNITARY TRANSFORMATION

We proceed to discuss the Kennedy-Tasaki transformation
for spin- 1

2 system on an open chain. While similar transfor-
mations on an open chain were discussed earlier [20,21], our
construction clarifies its connection to various modern con-
cepts related to SPT phases. Similarly to the Kramers-Wannier
transformation, we will find that although the operator NKT

implementing ST S is nonunitary and satisfies noninvertible
fusion rule, the NKT under the free open boundary condition
is a unitary operator.
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Suppose the open chain contains sites at coordinate
i and links at coordinate i − 1

2 , with i = 1, . . . , L.
We begin by modifying (70) such that only the

terms that are fully supported on the chain will be
kept in the exponent, i.e., free boundary condition.
Concretely,

N open
KT

∣∣{sσ
i , sτ

i− 1
2

}〉 = 1

2L

∑{
s′σ

i ,s′τ
i− 1

2

}(−1)
∑L

j=1(sσ
j +s′σ

j )(sτ

j− 1
2
+s′τ

j− 1
2

)
(−1)

∑L−1
j=1 (sσ

j +s′σ
j )(sτ

j+ 1
2
+s′τ

j+ 1
2

)∣∣{s′σ
i , s′τ

i− 1
2

}〉
. (91)

We use the superscript to distinguish N open
KT defined on an

interval from the NKT defined on a ring. To check that it is
a unitary transformation, we simply consider the overlap,

〈{
sσ

i , sτ

i− 1
2

}∣∣N open†
KT N open

KT

∣∣{s′σ
i , s′τ

i− 1
2
}〉 =

L∏
j=1

δsσ
j ,s

′σ
j
δsτ

j− 1
2
,s′τ

j− 1
2

.

(92)

Hence N open
KT is unitary and invertible, whose inverse is

N open†
KT .
Let us examine the Kennedy-Tasaki transformation of spin

operators on the open chain. We can immediately see that the
x component of the spin operators σ x

j , τ
x
j− 1

2
are invariant under

the Kennedy-Tasaki transformation:

N open
KT σ x

j N
open
KT

† = σ x
j , (93)

N open
KT τ x

j− 1
2
N open

KT
† = τ x

j− 1
2
, (94)

since they are mapped to diagonal operators in τ z, σ z basis
by the Kramers-Wannier transformation N . Since these di-
agonal operators commute with UDW, they are mapped back
to the original operators by N †. On the other hand, using the
Kramers-Wannier transformation (48) of the spin operators on
the open chain, and the transformation [56] by UDW,

UDWτ x
j− 1

2
U †

DW =
⎧⎨⎩

σ z
j−1τ

x
j− 1

2
σ z

j ( j = 2, 3, . . . , L),

τ x
1
2
σ z

1 ( j = 1),
(95)

UDWσ x
j U †

DW =
⎧⎨⎩

τ z
j− 1

2

σ x
j τ

z
j+ 1

2

( j = 1, 2, . . . , L − 1),

τ z
L− 1

2

σ x
L ( j = L),

(96)

and that σ z, τ z are unchanged by UDW as mentioned above,
we find

N open
KT σ z

jN
open
KT

† =
⎛⎝ j∏

k=1

τ x
k− 1

2

⎞⎠σ z
j , (97)

N open
KT τ z

j− 1
2
N open

KT
† = τ z

j− 1
2

⎛⎝ L∏
k= j

σ x
k

⎞⎠. (98)

As a consequence of Eq. (93), the symmetry generators
(66) are also invariant. This feature that the symmetry is pre-
served under the Kennedy-Tasaki transformation, as it is the
case in the original Kennedy-Tasaki transformation for spin-1
systems, is particularly convenient, and holds for ST S but not
for T ST . For T ST on an open chain, the symmetry operator

will be mapped to a local operator, which is not the case for
the original Kennedy-Tasaki transformation. This is the main
reason we prefer ST S over T ST .

VII. GAPPED SPT IN SPIN- 1
2 SYSTEM FROM

KENNEDY-TASAKI TRANSFORMATION

The Kennedy-Tasaki transformation was designed to map
a Z2 × Z2 SSB phase to a Z2 × Z2 SPT phase. It is straight-
forward to check at the level of partition function that ST S
transformation relates the two, as shown in Sec. IV. We
will review how the SPT phase can be generated from the
Kennedy-Tasaki transformation for the spin- 1

2 system.
The Hamiltonian for the Z2 × Z2 SSB phase is

HSSB = −
L∑

i=1

(
σ z

i−1σ
z
i + τ z

i− 1
2
τ z

i+ 1
2

)
, (99)

where the degrees of freedom charged under two Z2’s are de-
coupled. Now we apply the Kennedy-Tasaki transformation.

On an open chain of sites 1, 2, . . . , L, the Hamiltonian
reads

Hopen
SSB = −

L∑
i=2

σ z
i−1σ

z
i −

L−1∑
i=1

τ z
i− 1

2
τ z

i+ 1
2
. (100)

Using Eqs. (97) and (98), we find

Hopen
SPT = N open

KT Hopen
SSB N open

KT
†

= −
L∑

j=2

σ z
j−1τ

x
j− 1

2
σ z

j −
L−1∑
j=1

τ z
j− 1

2
σ x

j τ
z
j+ 1

2
. (101)

On the ring, the Kennedy-Tasaki dual of the SSB Hamiltonian
(99) is given by

HSPT = −
L∑

j=1

(
σ z

j−1τ
x
j− 1

2
σ z

j + τ z
j− 1

2
σ x

j τ
z
j+ 1

2

)
, (102)

with the boundary conditions as discussed in Sec. V.
The resulting Hamiltonian is precisely the cluster model

describing the Z2 × Z2 gapped SPT [82]. For the sake of
completeness, here we review how the edge states arise in the
cluster model defined on an open chain (101) [83]. The Hamil-
tonian (101) is a sum of commuting projectors. Thus, within
the ground-state subspace, all the projectors have eigenvalue
one:

σ z
j−1τ

x
j− 1

2
σ z

j ∼ 1 ( j = 2, 3, . . . , L), (103)

τ z
j− 1

2
σ x

j τ
z
j+ 1

2
∼ 1 ( j = 1, 2, . . . , L − 1). (104)
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Using these relations, the symmetry generators (66) of the
Z2 × Z2 symmetry can be rewritten (within the ground-state
subspace) as Uσ,τ ∼ U L

σ,τ ⊗ U R
σ,τ , where

U L
σ = τ z

1
2
, (105)

U R
σ = τ z

L− 1
2
σ x

L , (106)

U L
τ = τ x

1
2
σ z

1 , (107)

U R
τ = σ z

L. (108)

Thus, within the ground-space subspace, symmetry generators
effectively act only at the localized regions near the ends of
the chain. Since the localized symmetry generators at each
end anticommute (U a

σ U a
τ = −U a

τ U a
σ for a = L, R), there must

be a localized edge state producing twofold degeneracy, at
each end.

VIII. EQUIVALENCE BETWEEN KENNEDY-TASAKI
TRANSFORMATIONS IN SPIN-1 AND SPIN- 1

2 SYSTEMS

Finally, we discuss the relation between our Kennedy-
Tasaki transformation NKT in (91) for spin- 1

2 systems and the
original Kennedy-Tasaki transformation for spin-1 systems,
both on a ring and on an interval.

(1) On a ring, the Kennedy-Tasaki transformation for spin-
1
2 system NKT and that for spin-1 system as defined in (51) are
equivalent.

(2) On an interval, the Kennedy-Tasaki transformation for
spin- 1

2 system N open
KT and the original nonlocal unitary oper-

ator UKT for spin-1 systems are almost equivalent, up to a
symmetry sector dependent sign. This sign is potentially due
to the choice of boundary conditions.

A. Relating the Hilbert space of spin-1 and two spin- 1
2 ’s

The Hilbert space for each spin-1 is three dimensional,
whose basis states are denoted as |+〉, |0〉, and |−〉. The
Hilbert space for two spin- 1

2 ’s is four dimensional, whose
basis stats are denoted as |↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉. To make
a connection with the two basis, we start with the spin-1 basis
and bring in another spin-0 state to make a four-dimensional
Hilbert space. The basis states are mapped as follows:

spin-1 :

⎧⎪⎪⎨⎪⎪⎩
|+〉 = |↑↑〉
|0〉 = 1√

2
(|↑↓〉 + |↓↑〉)

|−〉 = |↓↓〉
;

spin-0 :
1√
2

(|↑↓〉 − |↓↑〉) (109)

where the spin-0 state is the additional state not belonging to
the original Hilbert space. In terms of Pauli operators, we have

Sx
i = 1

2

(
σ x

i + τ x
i− 1

2

)
, Sz

i = 1
2

(
σ z

i + τ z
i− 1

2

)
. (110)

The symmetry generators of Z2 × Z2 are Rx,z defined in
Eq. (5), which correspond to π rotations around the x and
z axes, respectively. In terms of spin- 1

2 variables, the two

symmetry generators are given by

Rx = e
iπ
2

∑L
j=1(σ x

j +τ x
j− 1

2
) = (−1)L

L∏
j=1

σ x
j τ

x
j− 1

2
,

Rz = e
iπ
2

∑L
j=1(σ z

j +τ z

j− 1
2

) = (−1)L
L∏

j=1

σ z
j τ

z
j− 1

2
.

(111)

We would like to further identify Rx = Uσ , Rz = Uτ where
Uσ,τ are defined in (66). To achieve this, we need to perform
a basis rotation such that the Pauli operators are mapped as
follows: ⎛⎜⎜⎜⎝

σ x
i

σ z
i

τ x
i− 1

2

τ z
i− 1

2

⎞⎟⎟⎟⎠ →

⎛⎜⎜⎜⎜⎝
−σ x

i τ z
i− 1

2

σ z
i

τ z
i− 1

2−σ z
i τ x

i− 1
2

⎞⎟⎟⎟⎟⎠. (112)

In terms of the rotated Pauli operators, the above Z2 × Z2

symmetry generators are indeed standard ones,
∏L

j=1 σ x
j and∏L

j=1 τ x
j− 1

2
.

B. Equivalence on a ring

We proceed to show that when defined on a ring, the
Kennedy-Tasaki transformation for spin- 1

2 systems, i.e., NKT,
is equivalent to that for spin-1 systems, which was defined in
Sec. III.

Recall that for spin-1 systems on a ring, we defined the
Kennedy-Tasaki transformation via specifying how the spin
operators transform, as shown in (51). To compare it with NKT

defined in (70), we first derive how the spin- 1
2 Pauli operators

transform on a ring. This can be achieved by showing the
following identities hold when acting on arbitrary basis states
|{sσ

i , sτ

i− 1
2
}〉:

NKTσ z
i = (−1)tσ +t ′

σ

i∏
j=1

τ ′x
j− 1

2
σ ′z

i NKT,

NKTτ z
i− 1

2
= (−1)tτ +t ′

τ

L∏
j=i

σ ′x
j τ ′z

i− 1
2
NKT,

NKTσ x
i = σ ′x

i NKT,

NKTτ x
i = τ ′x

i NKT. (113)

In brief, we have σ z
i = (−1)tσ +t ′

σ

∏i
j=1 τ ′x

j− 1
2
σ ′z

i , τ z
i− 1

2

=
(−1)tτ +t ′

τ

∏L
j=i σ

′x
j τ ′z

i− 1
2

, σ x
i = σ ′x

i and τ x
i = τ ′x

i . Let us check

how (110) and (112) together with (51) reproduces (113).
We first note that combination of (110) and (112) gives
Sx

j = 1
2τ z

j− 1
2

(1 − σ x
j ) and Sz

j = 1
2σ z

j (1 − τ x
j− 1

2
). We then start

with (51),

1

2
τ z

j− 1
2

(
1 − σ x

j

) = Sx
j

(51)= eiπ
∑ j−1

k=1 S′x
k S′x

j

= e
iπ

∑ j−1
k=1

1
2 τ ′z

k− 1
2

(1−σ ′x
k ) 1

2
τ ′z

j− 1
2

(
1 − σ ′x

j

)
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=
⎛⎝ j−1∏

k=1

σ ′x
k

⎞⎠1

2
τ ′z

j− 1
2

(
1 − σ ′x

j

)

= U ′
σ

⎛⎝ L∏
k= j

σ ′x
k

⎞⎠1

2
τ ′z

j− 1
2

(
1 − σ ′x

j

)

= (−1)u′
σ

⎛⎝ L∏
k= j

σ ′x
k

⎞⎠1

2
τ ′z

j− 1
2

(
1 − σ ′x

j

)
. (114)

Comparing the first and the last expression, and using the
relation tτ + t ′

τ = u′
σ , this is nothing but the second identity

in (113). Similarly, we can also get

1

2
σ z

j

(
1 − τ x

j− 1
2

) = Sz
j

(51)= eiπ
∑L

k= j+1 S′z
k S′z

j

= e
iπ

∑L
k= j+1

1
2 σ ′z

k (1−τ ′x
k− 1

2
) 1

2
σ ′z

j

(
1 − τ ′x

j− 1
2

)
=

⎛⎝ L∏
k= j+1

τ ′x
k− 1

2

⎞⎠1

2
σ ′z

j

(
1 − τ ′x

j− 1
2

)

= U ′
τ

⎛⎝ j−1∏
k=1

τ ′x
k− 1

2

⎞⎠1

2
σ ′z

j

(
1 − τ ′x

j− 1
2

)

= (−1)u′
τ

⎛⎝ j−1∏
k=1

τ ′x
k− 1

2

⎞⎠1

2
σ ′z

j

(
1 − τ ′x

j− 1
2

)
,

(115)

which, on using u′
τ = tσ + t ′

σ , reproduces the first equality in
(113). This establishes that on introducing the fourth spin-0
state, the Kennedy-Tasaki transformation for spin-1 systems
on a ring is equivalent to that for spin- 1

2 systems.

C. Almost equivalence on an interval

We finally proceed to show that N open
KT and UKT are almost

equivalent up to a sign depending on the symmetry sectors on
an interval. Since on a closed chain they are equivalent, this
subtle sign may potentially come from the different choice
of boundary conditions. Below, we first recast the N open

KT as a
unitary operator in terms of Pauli operators and then compare
it with UKT via the map (110) and (112).

1. Recasting N open
KT as an explicit unitary operator

The Kennedy-Tasaki transformation (91) was defined via
specifying how NKT acts on the Hilbert space. It is useful
to write down the operator NKT in terms of Pauli operators
explicitly.

As a first step, it is useful to note that NKT is the composi-
tion of N †UDWN , which implements ST S. Here N † = N−1

on an open chain implementing Kramers-Wannier transforma-
tions. Note that the two S’s in ST S act on different Hilbert
spaces, the second acts on the original one, and the first acts
on the dual one. On a closed chain S is self-conjugate, hence
we do not distinguish S† and S. However, on an open chain S†

and S are different (dispite S is unitary), and correspondingly
N † and N are also different. For simplicity, on the open chain,
we still write the operation as ST S but should keep in mind
that it is implemented by the operator N †UDWN .

We can check N open
KT = N †UDWN explicitly. We first have

N
∣∣{sσ

j , sτ

j− 1
2

}〉 = 1

2L

∑
{̂sσ

j− 1
2
,̂sτ

j }
(−1)

∑L
j=2(sσ

j−1+sσ
j )̂sσ

j− 1
2
+sσ

1 ŝσ
1
2 (−1)

∑L−1
j=1 (sτ

j− 1
2
+sτ

j+ 1
2

)̂sτ
j +sτ

L− 1
2

ŝτ
L
∣∣{̂sσ

j− 1
2
, ŝτ

j

}〉
. (116)

Its Hermitian conjugate is

N †
∣∣{̂sσ

j− 1
2
, ŝτ

j

}〉 = 1

2L

∑
{sσ

j ,s
τ

j− 1
2
}
(−1)

∑L
j=2(sσ

j−1+sσ
j )̂sσ

j− 1
2
+sσ

1 ŝσ
1
2 (−1)

∑L−1
j=1 (sτ

j− 1
2
+sτ

j+ 1
2

)̂sτ
j +sτ

L− 1
2

ŝτ
L
∣∣{sσ

j , sτ

j− 1
2

}〉
. (117)

Then we can consider the product,

N †UDWN
∣∣{sσ

j , sτ

j− 1
2

}〉 = 1

4L

∑
{̂sσ

j− 1
2
,̂sτ

j },{s′σ
j ,s′τ

j− 1
2
}
(−1)

∑L
j=2(sσ

j−1+sσ
j )̂sσ

j− 1
2
+sσ

1 ŝσ
1
2 (−1)

∑L−1
j=1 (sτ

j− 1
2
+sτ

j+ 1
2

)̂sτ
j +sτ

L− 1
2

ŝτ
L

× (−1)
∑L−1

j=1 ŝτ
j (̂sσ

j− 1
2
+̂sσ

j+ 1
2

)+̂sσ

L− 1
2

ŝτ
L (−1)

∑L
j=2(s′σ

j−1+s′σ
j )̂sσ

j− 1
2
+s′σ

1 ŝσ
1
2 (−1)

∑L−1
j=1 (s′τ

j− 1
2
+s′τ

j+ 1
2

)̂sτ
j +s′τ

L− 1
2

ŝτ
L
∣∣{s′σ

j , s′τ
j− 1

2

}〉
.

(118)

Summing over ŝτ
j for any j yields ŝσ

j− 1
2

= sτ

j− 1
2
+ s′σ

j− 1
2

for any j. Substituting the solution into the above equation, we find

that

N †UDWN
∣∣{sσ

j , sτ

j− 1
2

}〉 = 1

2L

∑
{s′σ

i ,s′τ
i− 1

2
}
(−1)

∑L
j=1(sσ

j +s′σ
j )(sτ

j− 1
2
+s′τ

j− 1
2

)
(−1)

∑L−1
j=1 (sσ

j +s′σ
j )(sτ

j+ 1
2
+s′τ

j+ 1
2

)∣∣{s′σ
i , s′τ

i− 1
2

}〉
, (119)

which is precisely the definition of N open
KT on an open chain in (91).

214429-16



NONINVERTIBLE DUALITY TRANSFORMATION BETWEEN … PHYSICAL REVIEW B 108, 214429 (2023)

Having known that N open
KT = N †UDWN , it is now clear how to find the Pauli operator representation of N open

KT . We first consider
how the operators are mapped under the Kramers-Wannier transformation N ,

σ̂ x
j− 1

2
N =

⎧⎨⎩Nσ z
1 , j = 1

Nσ z
j−1σ

z
j , j = 2, . . . , L

, σ̂ z
j− 1

2
N = N

L∏
k= j

σ x
k

τ̂ x
j N =

⎧⎨⎩
N τ z

j− 1
2

τ z
j+ 1

2

, j = 1, . . . , L − 1

N τ z
L− 1

2

, j = L
, τ̂ z

jN = N
j∏

k=1

τ x
k− 1

2
.

(120)

Since N is unitary according to Sec. II G, the above formula gives N †σ̂ x,z
j− 1

2

N and N †τ̂ x,z
j N . We then apply the above

transformation to UDW, and we get

N †UDWN = N †(−1)
1
4

∑L
j=1(1−σ̂ z

j− 1
2

)(1−τ̂ z
j )+ 1

4

∑L−1
j=1 (1−σ̂ z

j+ 1
2

)(1−τ̂ z
j )
N

= N †(−1)
1
4

∑L−1
j=1 (1−σ̂ z

j− 1
2
σ̂ z

j+ 1
2

)(1−τ̂ z
j )+ 1

4 (1−σ̂ z

L− 1
2

)(1−τ̂ z
L )
N

= (−1)
1
4

∑L−1
j=1 (1−σ x

j )(1−∏ j
k=1 τ x

k− 1
2

)+ 1
4 (1−σ x

L )(1−∏L
k=1 τ x

k− 1
2

)

= (−1)
1
4

∑L−1
j=1 (1−σ x

j )(1−(
∏

k> j τ x
k− 1

2
)(

∏L
k=1 τ x

k− 1
2

))
(−1)

1
4 (1−σ x

L )(1−∏L
k=1 τ x

k− 1
2

)

= (−1)
1
4

∑L−1
j=1 (1−σ x

j )(1−∏
k> j τ x

k− 1
2

)
(−1)

1
4

∑L
j=1(1−σ x

j )(1−∏L
k=1 τ x

k− 1
2

)

=
⎡⎣L−1∏

j=1

∏
k> j

(−1)
1
4 (1−σ x

j )(1−τ x
k− 1

2
)

⎤⎦(−1)
1
4 (1−∏L

j=1 σ x
j )(1−∏L

k=1 τ x
k− 1

2
)
. (121)

In the second equality, we used (−1)
1
4 (1−σ̂ z

j− 1
2
+1−σ̂ z

j+ 1
2

)(1−τ̂ z
j ) = (−1)

1
4 (1−σ̂ z

j− 1
2
σ̂ z

j+ 1
2
)(1−τ̂ z

j ). Indeed, when τ̂ z
j = 1, both sides are

trivial. When τ̂ z
j = −1, both sides are 1 if (σ̂ z

j− 1
2

, σ̂ z
j+ 1

2

) = (1, 1), (−1,−1) but are −1 if (σ̂ z
j− 1

2

, σ̂ z
j+ 1

2

) = (1,−1), (−1, 1). The

same trick is also applied to the fifth and last equality. The final expression is the NKT in terms of Pauli operators,

N open
KT =

⎡⎣L−1∏
j=1

∏
k> j

(−1)
1
4 (1−σ x

j )(1−τ x
k− 1

2
)

⎤⎦(−1)
1
4 (1−Uσ )(1−Uτ ). (122)

We note that this unitary operator is highly nonlocal.

2. Comparing UKT and N open
KT

We finally proceed to relate UKT and N open
KT on an interval,

defined for spin-1 and spin- 1
2 systems, respectively. Using

(110), the original Kennedy-Tasaki unitary operator UKT be-
comes

UKT =
∏
i> j

e
iπ
4 (σ z

i +τ z

i− 1
2

)(σ x
j +τ x

j− 1
2

)
. (123)

Further applying (112), the UKT becomes

UKT =
∏
i> j

e
iπ
4 σ z

i τ z

j− 1
2

(1−τ x
i− 1

2
)(1−σ x

j ) =
∏
i> j

e
iπ
4 (1−τ x

i− 1
2

)(1−σ x
j )
.

(124)
In the second equality above, we used the fact that the value of
σ z

i τ z
j− 1

2

= ±1, which only provides a sign, does not influence

the exponent mod 2π . This is precisely the first factor of NKT

in (122). Hence we have found that

N open
KT = UKT(−1)

1
4 (1−Uσ )(1−Uτ ). (125)

From (125), we find that the relation between N open
KT and UKT

depends on the symmetry sectors, labeled by the eigenvalues

(−1)uσ,τ of Uσ,τ . Concretely,

N open
KT =

{
UKT, (uσ , uτ ) = (0, 0), (0, 1), (1, 0)

−UKT, (uσ , uτ ) = (1, 1).
(126)

This completes the proof.
To summarize, we managed to define the Kennedy-Tasaki

transformation on a ring for both spin-1 and spin- 1
2 systems

and have shown their equivalence. Both of them are nonuni-
tary transformations and satisfy noninvertible fusion rules,
and we showed that the latter implements ST S transformation.
We also showed that when formulating them on an interval,
the transformation N open

KT for spin- 1
2 systems and the original

Kennedy-Tasaki transformation UKT for spin-1 systems are
almost equivalent. Both of them are nonlocal and unitary
transformations.
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