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Micromagnetics of ferromagnetic/antiferromagnetic nanocomposite materials.
II. Mesoscopic modeling
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In the second part of this publication we present simulation results for two three-dimensional models of
Heusler-type alloys obtained by the mesoscopic micromagnetic approach. In the first model we simulate the
magnetization reversal of a single ferromagnetic (FM) inclusion within a monocrystalline antiferromagnetic
(AFM) matrix, revealing the evolution of the complex magnetization distribution within this inclusion when the
external field is changed. The main result of this “monocrystalline” model is the absence of any hysteretic
behavior by the magnetization reversal of the FM inclusion. Hence, this model is unable to reproduce the
basic experimental result for the corresponding nanocomposite—hysteresis in the magnetization reversal of FM
inclusions with a vertical shift of the corresponding loops. To explain this latter feature, in the second model we
introduce a polycrystalline AFM matrix, with exchange interactions between AFM crystallites and between the
FM inclusion and these crystallites. We show that within this model we can not only reproduce the hysteretic
character of the remagnetization process, but also achieve a semiquantitative agreement with the experimentally
observed hysteresis loop, assuming that the concentration of FM inclusions strongly fluctuates. These findings
demonstrate the reliability of our enhanced micromagnetic model and set the basis for its applications in future
studies of Heusler alloys and FM/AFM nanocomposites.
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I. INTRODUCTION

In the previous paper [1], starting with the atomistic mod-
eling of quasi one-dimensional (1D) systems, we developed a
mesoscopic micromagnetic approach for simulating materials
composed of ferromagnetic (FM) inclusions in an antiferro-
magnetic (AFM) matrix. The need for this development is
based on the discovery of strong ferromagnetism of Ni2MnIn
Heusler-type precipitates that are embedded in an AFM NiMn
matrix [2–4]. The sizes of the FM inclusions are in the range
from 5 to 50 nm, and the magnetization curve exhibits a num-
ber of interesting features: a vertical shift of the extracted
hysteresis loop of the FM precipitates suggests a strong ex-
change coupling to the AFM matrix and the shape of the
loop, especially its abrupt jump near zero field, followed by
a smooth magnetization change at much higher fields, sug-
gests that there exist at least two different subsystems of FM
inclusions.

In the following we present a mesoscopic micromagnetic
analysis of the above-described Heusler system with the aim
to obtain a detailed and quantitative understanding of its re-
magnetization processes. In the first part [1] we presented
atomistic and mesoscopic approaches to the micromagnetic
modeling of Heusler alloys, providing all necessary prerequi-
sites for three-dimensional (3D) mesoscopic calculations. In
the present (second) part we discuss simulation results of the
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full 3D models and provide a quantitative comparison of these
results to experimental data.

More specifically, in Sec. II we simulate a single FM in-
clusion in a monocrystalline AFM matrix. This model, which
does not reproduce the experimentally observed hysteresis, is
then extended in Sec. III to include FM inclusions in a poly-
crystalline AFM matrix. Based on these results, we provide
in Sec. IV a quantitative comparison between the experimen-
tally observed magnetization loop of Heusler-type precipitates
and our simulation results, demonstrating the validity of our
model.

II. 3D MESOSCOPIC MODEL: A SINGLE FM INCLUSION
IN A MONOCRYSTALLINE AFM MATRIX

The results obtained using the quasi-1D model presented in
the first part [1] provide the framework for the next step of our
study—application of our mesoscopic model to a 3D system.
The need for mesoscopic simulations is based on two factors:
(i) the typical grain sizes in a nanocomposite (up to tens of
nanometers) result in system sizes that are too large to be sim-
ulated using the atomistic approach, and, as we demonstrate
further, (ii) the collective nature of the magnetization-reversal
process of precipitates in the polycrystalline AFM also re-
quires simulation of systems with large sizes. Our simulations
of the magnetization reversal in 3D FM/AFM structures rely
on a polyhedron-based finite-element micromagnetic algo-
rithm, which we have designed specifically for the modeling
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FIG. 1. Simulated magnetization-reversal curves of a spherical FM inclusion (with varying size dFM) as a function of the exchange coupling
κ with the monocrystalline AFM matrix (see insets). Curves of the same color represent results for different finite-element polyhedron
discretizations of the system.

of magnetic nanocomposites. A detailed description of this
approach can be found in Refs. [5,6].

The primary structure of interest in this section is a spher-
ical FM inclusion surrounded by a monocrystalline AFM
matrix (see Fig. 1, middle panel). In these simulations a cubic
modeling volume with a side length of 150 nm was discretized
into approximately 1.5 × 105 mesh elements, each about 3 nm
in size. This discretization allows us to study the details of
the magnetization distribution of relatively small particles. Pa-
rameters of magnetic materials for both phases were presented
in the first part [1]. We conducted simulations by varying
the particle diameter dFM of the FM inclusion between 10
and 50 nm and by adjusting the exchange coupling on the
FM/AFM interphase boundary by varying the corresponding
exchange weakening coefficient κ between 0 (complete de-
coupling) and 1 (perfect exchange coupling).

The absence of magnetodipolar fields produced by the
AFM phase (on a mesoscopic scale) and the negligibly small
influence of the magnetodipolar field produced by the FM
crystallites on the AFM matrix (in contrast to the exchange
interaction) prompt us to propose a hybrid environment for
micromagnetic simulations of this system. We simulate the
AFM phase utilizing periodic boundary conditions to account
for the only nonlocal interaction relevant for a mesoscopic
AFM—the exchange interaction. By contrast, the long-range
magnetodipolar interaction inside the FM crystallite is cal-
culated using open boundary conditions. In this procedure
the magnetodipolar interaction between the FM inclusions is
neglected, which can be justified by its minor role compared
to the magnetodipolar interaction of mesh elements inside the
same FM inclusion. Hence we have to compute the magne-
todipolar field only within the FM inclusion, which largely
reduces the computation time for the most time-consuming
part of any micromagnetic simulation—the calculation of the
magnetodipolar energy (the FM inclusion occupies a rela-
tively small volume fraction of our system). This acceleration
allows us to significantly extend the parameter set for our
study. An interfacial Dzyaloshinskii-Moriya interaction can
be straightforwardly added to our simulation methodology,
which very likely will result in a reduced remanent magne-
tization (see Ref. [7] for further details).

Simulation results for this model presented in Fig. 1
show magnetization-reversal curves for three FM inclusion
diameters dFM = 10, 30, and 50 nm and various exchange

weakening coefficients κ . As earlier demonstrated with the
quasi-1D system, a large exchange coupling at the FM/AFM
interface results in a high coercivity of the FM phase, reaching
100 kOe for a 10-nm-sized spherical inclusion. The exchange
interaction at the FM/AFM boundary is the only mechanism
connecting the phases in this one-particle model, so that when
the coupling is reduced, the coercivity decreases dramatically,
becoming negligible as expected for a soft FM material.

Details of the remagnetization process in such a system
are demonstrated in Fig. 2 for the example of a 50-nm-sized
particle with a perfect exchange coupling (κ = 1) with the
AFM phase. Figure 2(a) shows the magnetization-reversal
curve of the system, and Fig. 2(b) displays the z component
of the magnetic moments (i.e., the component parallel to the
external field direction) as a function of the distance d from
the center of the FM particle in several external fields. For
the AFM phase, only the spin-direction components of one

FIG. 2. (a) Magnetization-reversal curve of a 50-nm-sized spher-
ical FM inclusion that is perfectly exchange coupled (κ = 1.0) to a
monocrystalline AFM matrix. (b) Corresponding z components of
magnetic moments (for one sublattice in the case of the AFM) as
a function of the distance d from the center of the FM inclusion.
(c) Field evolution of the magnetization distribution in the FM in-
clusion (embedded in the AFM matrix). The outermost red and blue
shells of arrows belong to the matrix.
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sublattice are displayed. A notable feature of this process is
a relatively swift magnetization rotation of the central part
of the FM particle, attributable to the weak anisotropy of
the FM material. At Hz = −20 kOe, the majority of magnetic
moments are already reversed, while the remaining ones, par-
ticularly those located in the vicinity of the interface region,
form a 3D “shell” around the reversed inclusion kernel. The
field evolution of the magnetization distribution within the
FM inclusion is represented in more detail in Fig. 2(c), which
shows a vertical cut through the particle. Here, the formation
of a shell region (where the magnetic moments are strongly
coupled to the AFM matrix) and the rotation of the central
part can be clearly observed.

Strong exchange coupling at the interface also results in the
deviation of the AFM moments from their initial direction, as
depicted in Fig. 2(b). Therefore the so-called AFM domain
wall is formed in the matrix [Fig. 2(c) illustrates only the
AFM layer closest to the FM inclusion]. We note that the
experimental observation of AFM domain structures presents
a significant experimental difficulty due to the absence of
magnetodipolar fields of this material at the mesoscopic scale.
Thus, for AFM materials containing also FM particles, there
emerges an opportunity to draw conclusions about the state of
the magnetic moments of the AFM based on the magnetiza-
tion distribution in the FM inclusions. Such spatial variations
in the orientation of the AFM can be experimentally stud-
ied by means of the small-angle neutron-scattering technique
[8–10].

The key feature of these simulation results is that hys-
teretic behavior does not occur in this model, irrespective
of the size of the FM inclusion or the degree of exchange
weakening at the FM/AFM boundary. As it can be seen both
in Figs. 1 and 2(a), the magnetization of the FM inclusion
follows exactly the same path for an external field (Hz) sweep-
ing from +∞ to −∞ and from −∞ to +∞, indicating that
the remagnetization process is fully reversible. This feature
is due to the inability of a relatively small FM inclusion to
irreversibly switch the monocrystalline AFM matrix, which
has a relatively high magnetocrystalline anisotropy (see [1]).
We emphasize that neither our relatively simple model nor any
more sophisticated core-shell model of a FM precipitate cou-
pled to the AFM matrix could explain the hysteretic behavior
and the nearly perfect symmetry of experimental hysteresis
loops observed in [3]. The reason for this discrepancy is the
fact (see above) that in such models the orientation of the
AFM matrix remains nearly the same in negative and positive
external fields, whereas the orientations of the magnetization
within the FM inclusion are nearly opposite. This feature
renders the energy minima of the complete system in high
positive and high negative fields nonequivalent. Therefore
there is a need for the further improvement of our model in
order to explain the experimentally observed hysteresis.

III. EXTENDED MODEL: FM INCLUSIONS IN A
POLYCRYSTALLINE AFM MATRIX

The reason for the absence of any hysteretic behavior for a
FM inclusion embedded into a monocrystalline AFM matrix
is the inability of such an inclusion to reverse the whole AFM
matrix, even when the surface of the FM is perfectly exchange

coupled to the surrounding AFM. This inability is due to two
system features: (i) small concentration of FM inclusions (and
only the FM fraction of the system responds to the external
field), and (ii) the very large anisotropy of the AFM material.
The concentration of FM inclusions can be a subject of de-
bate, especially when the distribution of these inclusions is
strongly inhomogeneous. However, we have found that for
any reasonable local concentration of the FM phase, these
inclusions are not able to reverse the orientation of the entire
monocrystalline AFM matrix with the nominal anisotropy of
NiMn (discussed in the first part [1]). Taking into account
that in experiment a clear hysteresis is observed, we should
look for the physical explanation of the much smaller effective
anisotropy of the AFM.

In order to suggest a corresponding explanation, we re-
member that an analogous phenomenon is well known in the
physics of ferromagnetism: the effective (volume-averaged)
anisotropy Keff of a polycrystalline ferromagnet is usually
much smaller than the magnetic anisotropy of the same mate-
rial in its monocrystalline state. The reason for this behavior is
explained quantitatively by the Herzer model [11]. The model
takes into account that the anisotropy axes of the constituting
grains in a polycrystal are usually randomly oriented, leading
to random directions of the anisotropy field in each crystallite
(grain). For exchange-coupled grains—a normal case for a
high-quality FM material—the exchange interactions between
them lead to the self-averaging of the anisotropy field, result-
ing in a strong decrease of the volume-averaged anisotropy
constant. The effect is obviously stronger in materials with a
smaller average grain size 〈d〉. In fact, the effective anisotropy
constant decreases rapidly as Keff ∼ 〈d〉6 [11].

Following this paradigm, we have assumed that the AFM
matrix of the system studied in Ref. [2] is polycrystalline
and that the FM inclusions that are are embedded between
different AFM grains exhibit a random orientation of their
anisotropy planes and anisotropy axes within these planes.
We have implemented the corresponding model using a cu-
bic simulation volume with a side length of 500 nm divided
into ∼1.5 × 105 crystallites, each with a size of ∼10 nm (for
both phases). The crystallites possess a polyhedron shape, the
simulation volume contains no porosity, and periodic bound-
ary conditions are implemented. Details of the microstructure
generation, the discrete realization of the energy contribu-
tions, and the energy-minimization procedure can be found
in Refs. [5,6,12].

Magnetization reversal is simulated within the framework
of the Stoner-Wohlfarth model, i.e., under the assumption
of a uniform magnetization of individual crystallites. The
exchange coupling between the crystallites is governed by
site-dependent exchange weakening coefficients 0 � κ � 1,
similar to the previous model. There are three kinds of cou-
plings between the crystallites in such a two-phase system:
(i) FM/AFM coupling with κ = κFM−AFM (as in the previous
model), (ii) coupling between different AFM crystallites with
κAFM, and (iii) coupling between FM inclusions with κFM−FM.
In all of the following simulations, we have set κFM−AFM =
κFM−FM = κAFM = 1.0, implying a strong exchange coupling
between the corresponding phases. No magnetodipolar inter-
action between the crystallites is considered at the current
stage.
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FIG. 3. Simulation results for a polycrystalline FM/AFM many-particle system. Shown are magnetization-reversal curves for various
volume concentrations cFM of the FM phase (blue lines—FM phase; red dashed lines—one sublattice of the AFM phase). Both exchange
couplings (FM/AFM and AFM/AFM) are perfect. The sizes of the FM inclusions and the AFM crystallites are both 10 nm.

According to measurements [3], the total volume frac-
tion of the precipitates in the sample is about 0.24 %, which
initially motivated us to develop the one-particle model de-
scribed in Sec. II. However, recent experimental observations
of this class of Heusler alloys [13] have revealed strong spatial
variations in the volume fraction of the FM phase. This finding
prompted us to study the dependence of the magnetization
reversal in a nanocomposite system on the volume fraction
cFM of the FM phase.

Figure 3 illustrates this dependence over the range of cFM

between 2% and 50%. As stated above, the exchange coupling
between all the different crystallites is assumed to be strong.
The magnetization reversal of a nanocomposite with a low
FM volume fraction (cFM = 2%) is essentially the same as
for the single-particle model with the monocrystalline AFM
matrix: the magnetization rotation in the system is entirely
reversible (Fig. 3, leftmost panel) because such a low num-
ber of FM crystallites can only influence a small portion of
AFM crystallites. This influence leads only to a slight de-
viation of the AFM magnetization curve from its maximum
value. The situation changes qualitatively already at cFM =
3%, where hystereses are observed for both FM and AFM
phases, indicating the complete magnetization rotation of the
nanocomposite at an external field of ∼ − 30 kOe. Further
increase of the FM volume fraction results in a decreasing
coercivity owing to the intensified interaction between the
phases, until the coercivity vanishes when the volume frac-
tions of AFM and FM are equal.

The results shown in Fig. 3 demonstrate that the integration
of spatial fluctuations of the density of FM inclusions and
the polycrystallinity of the AFM matrix into our model has
solved the problem of a lacking hysteretic behavior, even for
small FM crystallites with a uniform magnetization. Collec-
tive interactions within the polycrystalline FM/AFM system
lead to the magnetization hysteresis over a broad range of
FM volume fractions. Similar simulations involving larger
crystallites, which include the influence of the magnetodipolar
interaction that becomes significant beyond a certain FM in-
clusion size [compare Fig. 2(c)], are beyond the scope of this
paper and will be reported in a separate publication.

IV. MODEL WITH SEVERAL FRACTIONS OF FM
INCLUSIONS: EXPLANATION OF EXPERIMENTAL

HYSTERESIS LOOPS

The results of the previous section form the basis to
explain the experimentally observed hysteresis loop for a

Heusler-type alloy (Ni2MnIn precipitates embedded in an
AFM NiMn matrix [3], see the red curve in the inset of Fig. 4).
This magnetization curve clearly exhibits the characteristics
of a multiphase FM subsystem, i.e., a subsystem consisting of
several distinct fractions of FM inclusions: (i) a vertical shift
of the loop, (ii) a significant drop in the magnetization at zero
field, and (iii) a broad hysteresis itself, which is typical for a
system of FM particles. Here we note that all of these features
are present in the simulated magnetization-reversal curves of
nanocomposites with various FM volume fractions (Fig. 3).
Therefore in order to show that all these features can be ex-
plained by our model, we have constructed a hysteresis curve
from the already obtained results. An alternative way would
be to conduct simulations by generating multiple systems
with different spatial fluctuations of the FM inclusions density
and then collect statistically significant characteristics of such
ensembles. However, this approach would require much more
computational effort, leading to essentially the same result as
described below.

An example for a hysteresis obtained from a superposition
of loops shown in Fig. 3 is displayed in Fig. 4. Here we
demonstrate a composite loop (FM phase, blue curve), which
was obtained from simulation results for systems with cFM =
2%, 3%, and 50% and with assigned weights of, respectively,
0.1 : 0.5 : 0.4. This way we have successfully modeled the
experimental behavior of the FM phase under the assumption

FIG. 4. Composite hysteresis loop (blue line—FM phase) com-
bined from the corresponding dependencies of systems with cFM =
2%, 3%, 50% (see Fig. 3). The figure in the subpanel is adapted from
Ref. [3] and shows the experimentally obtained magnetization loop
of the FM phase in a Heusler-type alloy.
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FIG. 5. Evolution of the magnetization distribution in an FM/AFM polycrystalline nanocomposite with κAFM = 1 and cFM = 3%. Left
panel: warm colors—AFM phases; cold colors—FM phases. Right panel: color-coded representation of the direction of magnetic moments
(upper row—FM inclusions; lower row—AFM matrix).

of a narrow distribution of FM grain sizes (all particles have a
diameter of ∼10 nm) and a multimodal FM density distri-
bution. This superposition not only allows us to explain all
qualitative aspects of the experimental magnetization curve
mentioned above, but also allows us to semiquantitatively
replicate the almost horizontal plateau from −5 T to 0 T
and the gradual magnetization reversal up to the maximum
available field of 15 T.

The fine details of the remagnetization process in such
polycrystalline nanocomposites can be revealed by analyzing
the evolution of the magnetization distribution. This evolution
is shown in Fig. 5 for a system with κAFM = 1 and cFM =
3%. By relating the displayed images to the corresponding
magnetization-reversal curve, we observe that both FM and
AFM phases are fully magnetized at −10.5 kOe, as can be
seen from Fig. 3 for cFM = 3%. (In the case of the AFM
phase, we mean the direction of the magnetic moments of
one sublattice, with the moments of the other sublattice being
antiparallel.) At an intermediate field of −17.5 kOe, a wide
range of magnetization directions within the FM crystallites
can be seen, while the state of the AFM matrix can be de-
scribed by the onset of domain formation. A large negative
field of −30 kOe nearly completely rotates all FM inclusions,
but a clear AFM domain structure is visible. These domains
are still predominantly orientated in the initial direction, i.e.,
opposite to the negative external magnetic field. At the final

stage, the magnetic moments of all crystallites are completely
reversed.

V. CONCLUSION

We have implemented a micromagnetic simulation
methodology that allows to compute the magnetic response
of a polycrystalline system containing ferromagnetic (FM)
inclusions in an antiferromagnetic (AFM) matrix. Using this
mesoscopic simulation technique, the details of the remag-
netization process in a system composed of FM crystallites
embedded in an AFM matrix were revealed by simulating
hysteresis curves as functions of the ferromagnetic grain size
and the exchange weakening on the FM/AFM boundary. It
was explicitly shown that a one-particle model employing a
monocrystalline AFM matrix is incapable of explaining the
experimental hysteresis results obtained on Heusler alloys.
Only the inclusion of (i) the polycrystallinity of the AFM
matrix and (ii) strong spatial fluctuations of the density of FM
particles into the model explains all the qualitative features of
experimental observations on these highly nontrivial systems.
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