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Micromagnetics of ferromagnetic/antiferromagnetic nanocomposite materials.
I. Towards a mesoscopic approach

Sergey Erokhin ,1,* Dmitry Berkov ,1 and Andreas Michels 2

1General Numerics Research Lab, Kahlaische Strasse 4, D-07745 Jena, Germany
2Department of Physics and Materials Science, University of Luxembourg, 162A Avenue de la Faiencerie,

L-1511 Luxembourg, Grand Duchy of Luxembourg

(Received 2 October 2023; accepted 6 December 2023; published 20 December 2023)

In the first of two articles, we present here a mesoscopic micromagnetic approach for simulating materials
composed of ferromagnetic and antiferromagnetic phases. Starting with the atomistic modeling of quasi-
one-dimensional systems, we explicitly show how the material parameters for the mesoscopic model of an
antiferromagnet can be derived. The comparison between magnetization profiles obtained in atomistic and meso-
scopic calculations (using a Heusler alloy as an example) proves the validity of our method. This approach opens
up the possibility to recover the details of the magnetization distribution in ferromagnetic/antiferromagnetic
materials with the resolution of a few nanometers covering length scales up to several hundreds of nanometers.
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I. INTRODUCTION

The discovery of strong ferromagnetism of Ni2MnIn pre-
cipitates embedded in an antiferromagnetic (AFM) NiMn
matrix [1] revealed that Heusler-based materials, which have
potential applications in the areas of magnetic shape memory,
magnetocaloric, and giant magnetoresistance, might possess
an extremely large coercivity at room temperature. Indeed, in
[2] it was demonstrated that the coercive field of such precip-
itates exceeds 5 T, which is remarkable for a rare-earth-free
ferromagnetic (FM) material.

Detailed structural and magnetic characterization of the
samples, including annealing-time and annealing-temperature
studies of the segregation process [3] and FM resonance mea-
surements [4], supported earlier presumptions of the existence
of 5–50 nm-sized inclusions that possess FM-like properties.
The most significant experimentally observed feature was a
vertical shift of the extracted hysteresis loop of ferromagnetic
precipitates [2], suggesting a strong exchange coupling of the
precipitates to the AFM matrix. Additionally, the shape of
the extracted magnetization loop, especially its abrupt mag-
netization jump near zero field, suggested that the system
is composed of at least two different magnetic phases. We
emphasize that the described functional properties are not the
unique prerogative of this compound: similar FM properties
are observed in other Heusler alloys, too, and are reported for
Ni50Mn50−xSbx in [5] and for Ni50Mn50−xSnx in [6].

The aim of this computational research is the develop-
ment of a comprehensive mesoscopic micromagnetic model
for materials consisting of FM and AFM phases, such as
Heusler-type alloys. Mesoscopic calculations are needed due
to two reasons: first, the sizes of the FM crystallites are
relatively large (in these materials up to 50 nm), rendering
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simulations in frames of an atomistic model not feasible due
to their enormous computational effort; second, investigations
of collective phenomena in such systems are highly desir-
able. At the same time, initial simulations at the atomic level
are nevertheless necessary, because experimentally measured
mesoscopic material parameters for both AFM and FM phases
are lacking. Our model, which integrates both atomistic and
mesoscopic simulations, enables a micromagnetic analysis of
the system and furnishes a detailed quantitative account of the
corresponding remagnetization processes. The crucial aspect
of our study is the comparison of results obtained using our
model with the previously cited experimental data.

This two-part article is organized as follows: The present
(first) part explains the atomistic and mesoscopic approaches
to the micromagnetic model of Heusler alloys and provides
all the necessary prerequisites for the three-dimensional (3D)
mesoscopic calculations. The second part [7] contains the
results of this full 3D model and a quantitative compari-
son to the experimentally measured hysteresis loop of the
material under study. As a first step, we conduct a thor-
ough literature search of lattice constants, total magnetic
moments, anisotropy constants, and Curie temperatures of
the constituent materials provided by experimental studies
and density functional theory (DFT) calculations (Sec. II).
Next, we map those parameters on a simplified atomic lat-
tice structure and choose the model to describe the exchange
interaction between the different magnetic phases (Sec. III).
In order to have the possibility to validate our results and
present them in the most convenient form of magnetization
profiles, we restrict ourselves at this stage to simulations of
quasi-1D structures (Sec. IV). This methodology allows us to
determine all the required mesoscopic parameters by compar-
ing the magnetization distributions obtained by mesoscopic
and atomistic calculations (Sec. V). The developed approach
is then generalized to 3D systems, comprising FM precipitates
in an AFM matrix.
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TABLE I. Lattice parameter a, total magnetic moment μtot , and
Curie temperature TC of of Ni2MnIn determined experimentally with
corresponding references.

a (Å) μtot (μB/f.u.) TC (K) Ref.

6.071 4.1 290 [8]
6.072 4.1 300 [9]
6.07 4.2 310 [10,13]

In the second part [7] we employ mesoscopic micromag-
netic modeling to simulate a single FM inclusion in an AFM
matrix, allowing us to reveal the details of the magnetization
distribution inside both FM and AFM constituents of this sys-
tem. We explicitly demonstrate that the model where the AFM
matrix is treated as being monocrystalline is qualitatively
incorrect, because it does not lead to a hysteretic magnetiza-
tion reversal process, in strong contradiction to experimental
observations. To resolve this issue, we introduce a model
where the AFM matrix is polycrystalline, taking into ac-
count magnetic interactions between its different crystallites,
thus obtaining the AFM/FM polycrystalline nanocomposite.
Finally, we provide a quantitative comparison between the ex-
perimentally observed magnetization loop and our simulation
results, demonstrating the validity of our model.

II. STRUCTURAL AND MAGNETIC PARAMETERS

To find out which parameters are known reliably enough to
be used in atomistic simulations, we have performed a thor-
ough search in the literature devoted to experimental results
and DFT calculations of FM and AFM phases. Experimental
data obtained by x-ray diffraction demonstrate that Ni2MnIn
has a crystal structure of L21 type (cubic austenitic state)
with a lattice parameter a that is slightly above 6 Å [8,9].
A detailed study of the structural and magnetic properties
[10], including cumulative experimental results from various
scientific groups, allows to conclude that this FM material has
a low Curie temperature of TC = 310 K and a total magnetic
moment of μtot = 4.1μB/f.u. (μB = Bohr magneton); cor-
responding parameters (required for the modeling) are listed
in Table I. For structural and magnetic parameters of other
Heusler alloys with compositions different from that studied
here, Ni50Mn34In16 and Ni50Mn35In15, but demonstrating sim-
ilar magnetic properties, see Refs. [11] and [12], respectively.

First-principles calculations for this material (see Table II)
provide the value of the lattice parameter a, which is close
to the experimental data. Unfortunately, the calculated total

TABLE II. Lattice parameter a and total magnetic moment μtot

of Ni2MnIn obtained by first-principles calculations.

a (Å) μtot (μB/f.u.) Ref.

– 3.7 [14]
6.0624 4.22 [15]
6.053 4.33 [16]
6.072 4.13 [17]
– 4.3 [18]

TABLE III. Experimental parameters of NiMn: lattice parame-
ters a and c, atomic magnetic moment μ of Mn sublattices, and Néel
temperature TN.

a (Å) c (Å) μ
(+,−)
Mn (μB) TN (K) Ref.

3.174 3.524 4.0 1140 [19]
3.74 3.52 3.8 ± 0.3 1072 ± 40 [20]

magnetic moment substantially depends on the particular DFT
methodology. Therefore we have relied on experimental data
for μtot in our simulations of this FM material.

The tetragonal structure of AFM NiMn has been deter-
mined by x-ray and neutron diffraction experiments [19,20].
In these studies it was also found that the magnetic mo-
ment of Ni atoms in this structure is almost zero, while the
atomic magnetic moment on the Mn sublattices is about 4μB.
Magnetic measurements [20] revealed a Néel temperature of
TN = 1070 K, which is extremely high compared to typical
antiferromagnets (525 K for NiO and 293 K for CoO). Exper-
imentally obtained lattice parameters, magnetic moments, and
Néel temperatures for NiMn are collected in Table III.We also
note that this AFM material is the subject of recent investiga-
tions, including the characterization of exchange-bias systems
based on NiMn films [21,22] and NiMn/CoFe multilayers
used in microwave applications [23].

First-principles calculations [24–27] (see Table IV) yielded
values for the magnetic moment of Mn atoms which are
considerably smaller compared to the corresponding experi-
mental results; hence we have used the latter values for our
atomistic simulations (see Table III).

We are not aware of any experimental data for anisotropy
constants of the AFM phase (only the anisotropy type is
known). Taking into account that these constants are essential
for atomistic simulations, we have searched for ab initio calcu-
lations of corresponding values. Unfortunately, this approach
faces significant challenges for ab initio theories based on the
local spin-density formalism. In accordance with experiment,
ab initio studies have found that the preferred orientation
of magnetic moments is perpendicular to the tetragonal axis
of the elementary cell, but the value of even the first-order
anisotropy coefficient strongly differs in dependence on the
specific ab initio method: −1.7 × 106 erg/cm3 in [26] versus
−9.65 × 106 erg/cm3 in [24]. Determination of the next-order
(in-plane) magnetic anisotropy energy [26] predicted an orien-
tation of magnetic moments along the edges of the tetragonal
cell, resulting in the in-plane anisotropy value to be only
8% of its out-of-plane counterpart. It was pointed out by the

TABLE IV. Magnetic moment μ of Mn sublattices and Néel
temperature TN of NiMn obtained by first-principles calculations
(LSDA: local spin-density approximation; GGCs: generalized gra-
dient corrections).

μ
(+,−)
Mn (μB) TN (K) Ref.

3.29 – [24]
3.2 1187 [25]
3.2 (LSDA), 3.4 (GGCs) – [26]
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FIG. 1. Part of the simulated atomistic structures containing
the AFM/FM interfaces: red and yellow spheres represent atoms
belonging to different AFM sublattices; blue—atoms of the soft fer-
romagnet (FM inclusions). Colored planes show the planes occupied
by atoms of the same type. (a) Structure with an averaged zero
interphase exchange between FM and AFM phases due to the equal
fractions of atoms belonging to different sublattices of the AFM
phase on the interface boundary. (b) Structure with the maximal
interphase exchange coupling on both sides of a FM inclusion. The
quasi-1D structure used in actual simulations consists of ∼20 000
atoms arranged on a simple cubic lattice.

authors that the latter value is at the limit of accuracy of such
a calculation. We have decided to use the values obtained
in [26], as a more advanced method utilizing generalized
gradient corrections is used in this study. Experimental and
theoretical investigations of anisotropy in the FM phase are
absent. However, a large magnetization drop at zero field seen
in the hysteresis of the FM phase [2] suggests a very low
anisotropy coefficient value for this phase.

First-principles calculations were also used to study the
exchange stiffness in monocrystalline NiMn [27] and the cor-
responding intergrain exchange coupling for thin films [28].
The latter study demonstrated that this coupling remains sig-
nificant even in the presence of relatively large spatial shifts
of neighboring atomic planes.

III. ATOMIC LATTICE STRUCTURE AND MAPPING
OF MAGNETIC PARAMETERS

Simulations of a real AFM/FM interface are not feasible,
because there are too many unknown structural parameters
related to the corresponding interfacial disorder. For this rea-
son we have mapped the atomistic parameters described in
the previous section onto a simple cubic lattice. Examples
of generated structures are presented in Fig. 1, where the
colored spheres indicate the positions of atoms belonging to
the different phases or sublattices. Red and yellow spheres
represent atoms belonging to the different sublattices of the
AFM, blue spheres—atoms of the soft FM phase. The aim
of this figure is to illustrate that even for a simple cubic
lattice there exist several possibilities to arrange the atoms at
the AFM/FM interface, which will change the corresponding
exchange interaction.

Note that in our model we do not explicitly introduce a
pinned intermediate layer between the FM precipitates and
the AFM matrix, as done in Ref. [1], to explain the vertical
shift of the hysteresis loop. The reasons are twofold: first, the
parameters of such a layer would be completely unknown,

TABLE V. Mesoscopic magnetic parameters used in the
simulations.

Ni2MnIn (FM) NiMn (AFM)

Ms (G) 720 ± 716
Anisotropy symmetry Cubic Tetragonal
K (erg/cm3) K1 = 1.0 × 104 K1 = −1.7 × 106

K ′
2 = 0.136 × 106

TC(N) (K) 310 1070

increasing the number of adjustable parameters of our model;
second, such a layer is not necessary to explain neither the
high coercivity of the system nor the vertical shift of the
magnetization loop, as it will be shown in the next sections.
Therefore the atomic magnetic moments of the FM phase are
directly coupled with the moments of the AFM phase via
exchange-coupling coefficients between the atoms of different
phases.

The following atomistic results are obtained using a sys-
tem of atoms arranged on a cubic lattice with dimensions of
Nx × Ny × Nz = 333 × 8 × 8. Its length L = 100 nm is cho-
sen in such a way that it can easily incorporate a domain
wall (e.g., Bloch and Néel types) appearing in both AFM and
FM phases. Periodic boundary conditions in all directions are
applied. At the current stage, the magnetodipolar interaction
is not included, because we expect that the major contribution
to the system energy comes from the exchange interaction
(both within the FM and AFM phases, and from the interphase
exchange coupling) and the strong intrinsic anisotropy of the
AFM matrix. If necessary, the magnetodipolar interaction can
be added and evaluated using the lattice-Ewald method.

Atomistic magnetic parameters (magnetic moment μs and
anisotropy coefficient k) found in the literature for both phases
(see Sec. II) were mapped to the corresponding mesoscopic
values using the data presented in Sec. II and the standard
relations

μs = MsVa

nat
= Msa3

nat
, k = KVa

nat
= Ka3

nat
. (1)

Here nat is the number of atoms per unit cell, and Va denotes
the unit-cell volume. For our case of a simple cubic lattice,
we have nat = 1 and Va = a3. An elementary cell size of a =
0.3 nm has been chosen, close to the corresponding parameter
of materials under consideration.

The anisotropy energy density of the tetragonal magne-
tocrystalline anisotropy of the AFM phase has the following
form (see Fig. 2):

εa = K1 sin2 θ + K2 sin4 θ + K ′
2 sin4 θ cos 4φ, (2)

where θ and φ are the polar and azimuthal angles. For an
easy-plane anisotropy type, K1 < 0 and K2 = 0. The constant
K ′

2 defines the basal-plane anisotropy of the fourth order. As
can be seen from comparison of the constants K1 and K ′

2 (see
Table V) and from Fig. 2, for our AFM material the anisotropy
energy is dominated by the easy-plane anisotropy and slightly
disturbed by the fourfold symmetry in the x-y plane. For the
FM phase, the standard cubic anisotropy type was chosen. As
the exact value of the anisotropy constant K1 of the FM phase
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FIG. 2. Tetragonal anisotropy surface (left) and its fourfold sym-
metry in the x-y plane (right) obtained for parameters of a NiMn
AFM.

is unknown, we have chosen a small value for this parameter,
typical for a soft FM material. Table V contains the values
of magnetization and anisotropy constants used as input in
our mesoscopic simulations and critical temperatures used to
calculate the interatomic exchange coefficients for atomistic
modeling.

To determine the interatomic exchange constants Ji j , we
have used the mean-field expression

Ji j = 3kBTC

z
, (3)

which establishes the connection between these constants and
the Curie temperature TC of the ferromagnetic material; here,
kB is the Boltzmann constant and z is the number of nearest
neighbors in the atomic lattice (we omit the correction factor
in this expression whose value is usually close to unity). For
our choice of the elementary cell geometry (simple cubic
lattice), z = 6 for both FM and AFM phases. The exchange
constant for the AFM material obeys the same expression but
with the Néel temperature TN instead of TC in Eq. (3) and the
minus sign before the whole expression used due to the AFM
exchange between sublattices.

Finally, the interatomic exchange coupling JAFM↔FM be-
tween FM and AFM phases is determined in our model by
the equation

JAFM↔FM = κ
JFM + |JAFM|

2
, (4)

where JFM and JAFM are the exchange constants of the FM and
AFM phases, and the dimensionless coefficient 0 � κ � 1
accounts for the possible weakening of the exchange due to in-
terphase boundary imperfections, like lattices distortions and
mismatches. Note that for the quasi-1D atomistic simulations
shown below we have used the geometry shown in Fig. 1,
where only one of two AFM sublattices is exchange coupled
to the FM phase.

FIG. 3. Magnetization curve of an uniaxial AFM with parame-
ters taken from Table V. Black solid line—result of the numerical
modeling using our atomistic approach. Blue arrows indicate critical
field values obtained analytically [29], spin-flop field Hsf and AFM
disruption field Hex.

As a test for our atomistic simulations, we have compared
numerically computed magnetization curves for a homoge-
neous uniaxial AFM with the corresponding critical fields
derived analytically (see [29] for details). For the parameters
of the uniaxial AFM listed in Table V, this analytical theory
predicts an AFM disruption field of Hex = 660 kOe and a
spin-flop field of Hsf = 9.2 × 104 kOe. Figure 3 shows that
both values are perfectly reproduced in our simulations. We
note that these values are important for the further modeling:
they show that if the external field does not exceed 660 kOe
(66 T), the nearest-neighbor magnetic moments in the cubic
AFM remain in the perfect antiparallel configuration. All
the following results have been obtained in external fields
satisfying this condition.

In order to validate our method for FM materials, a
standard calculation of the Bloch-wall profile was carried
out using the well-known material parameters of Co. First,
following the scheme explained above, the saturation mag-
netization Ms = 1440 G, the first-order anisotropy coefficient
K1 = 4.1 × 106 erg/cm3, and the exchange coefficient calcu-
lated using TC = 1360 K were mapped onto a simple cubic
lattice. In the starting magnetization configuration, atomic
magnetic moments were arranged according to the magneti-
zation profile shown in Fig. 4 with the thin blue line, while the
moments at both ends were fixed in opposite directions. The
energy minimization procedure in the absence of an external
field produces a magnetization profile along the x direction
of the sample, which can be compared to the known ana-
lytical solution for a uniaxial anisotropy. If the anisotropy
axis is in the z direction, the corresponding expression has
the form Mz/Ms = − tanh [

√
K1/A(x − L/2)], where A is the

mesoscopic exchange-stiffness constant. Plotting this expres-
sion with the standard exchange stiffness for Co, A = 3.1 ×
10−6 erg/cm, we obtain a remarkable agreement between the
analytical result and the atomistic simulations, as shown in
Fig. 4(a). For illustrative purposes and for further compari-
son with the corresponding wall profile in NiMn, the same
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FIG. 4. Magnetization profiles of Bloch walls obtained in atom-
istic simulations of the FM phase for the cases of (a) uniaxial and
(b) cubic anisotropy. Solid blue lines represent the mz component of
the unit magnetization vector field m, solid green lines encode the my

component. Red line is the analytical solution for the Bloch wall in
a uniaxial material (see main text). Thin blue and green lines are ini-
tial magnetization profiles (before applying the energy minimization
procedure). Materials parameters for Co were assumed.

parameters were used to obtain the Bloch wall in a FM with a
cubic anisotropy [Fig. 4(b)].

The same procedure as described above was applied to the
AFM NiMn with a tetragonal magnetocrystalline anisotropy
and the y-z plane chosen as the easy anisotropy plane. Fig-
ure 5 displays the magnetization profiles of the two AFM
sublattices, which is qualitatively the same as for the cu-
bic FM shown in Fig. 4(b). For a relatively small in-plane
anisotropy constant, we obtain here a tanh-like Bloch-wall
magnetization profile that is too close to the initial approx-
imation (sin-like in this instance). For this reason we had
to perform additional calculations with an enlarged mag-
netic anisotropy constant with the result shown in Fig. 5(b).
This enlargement ensures only the accuracy in the determi-
nation of the exchange-stiffness constant. In the subsequent
calculations the anisotropy constant from Table V is used.

IV. QUASI-ONE-DIMENSIONAL MODEL:
ATOMISTIC SIMULATION RESULTS

At this point, all the necessary parameters for the atom-
istic micromagnetic simulations in frames of our model are
defined. In the following we present selected results ob-
tained using the quasi-1D model described above and discuss
hysteresis loops and magnetization distributions at particular
external fields.

In our study we have varied three parameters of the model,
whose variations may lead to strong changes in the magneti-

FIG. 5. (a) Magnetization profiles of Bloch walls obtained in
atomistic simulations using two AFM sublattices (red and yellow
lines) in NiMn with magnetic parameters taken from Table V.
(b) The same as in (a), but with the magnetic anisotropy coeffi-
cients increased by one order of magnitude. Thin lines are initial
magnetization profiles.

zation reversal process: the size dFM of the FM inclusion, the
exchange weakening κ on the AFM/FM boundary, and the
orientation of the AFM anisotropy axes with respect to the ex-
ternal field direction, along which the z axis of our coordinate
system was directed. Therefore the parameter space of our
simulations is as follows (with cFM the FM volume fraction):

(i) size of the FM inclusion: dFM = 3 . . . 50 nm
(cFM = 3% . . . 50%),
(ii) exchange weakening: κ = 0.0 . . . 1.0, and
(iii) anisotropy-plane orientation of the AFM phase: easy-

plane anisotropies in the x-z, y-z, or x-y coordinate planes.
Figures 6 and 7 display the results of the atomistic mod-

eling. Hysteresis loops for different combinations of the
parameters listed above are shown. The change of the hys-
teresis loops under the variation of the exchange weakening
κ between the AFM and FM phases is presented in Fig. 6 for
the example of a FM inclusion with a size of dFM = 12.6 nm.
Without the coupling between the phases (κ = 0), the FM
inclusion reverses its magnetization at a very small negative
external field due to the weak magnetocrystalline anisotropy
of the FM phase. When the coupling strength increases, the
coercive field increases up to 5 kOe for this size, while for
much smaller inclusions the coercivity achieves 20 kOe (data
not shown). If the coupling strength is constant (Fig. 7), the
coercivity decreases for larger inclusion sizes. Independent of
the inclusion size, the magnetization reversal follows the same
scenario: an abrupt magnetization rotation of a significant
fraction of magnetic moments of the FM phase, followed by
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FIG. 6. Remagnetization curves of the FM phase for various
exchange couplings κ between the FM inclusion (thickness: dFM =
12.6 nm) and the AFM matrix with an y-z easy-plane anisotropy.

the gradual remagnetization of remaining moments at higher
fields.

The orientation of the anisotropy axes in the AFM phase
with respect to the external field (see Fig. 1) defines the type of
domain wall that is responsible for the magnetization reversal
in the FM phase. For instance, an x-z easy-plane anisotropy in
the AFM results in Néel-type walls in the FM inclusion, while
a y-z easy plane leads to Bloch-type walls. The third case of
an x-y easy plane demonstrates significant deviations from the
perfectly aligned state already at positive fields, because in
this geometry the magnetic moments are initially magnetized
in the direction that is perpendicular to the easy plane (the
magnetization reversal curve in this case is symmetric with a
zero coercivity). The considerations presented above are valid
for coupled AFM/FM systems (i.e., with κ > 0).

In the following we discuss in Figs. 8 and 9 the details
of the remagnetization processes for small and large FM
inclusions. Figure 8 shows the magnetization distribution at
the coercive field of the system with dFM = 12.6 nm. The
FM inclusion is almost in a single-domain state, and already
a strongly reduced exchange coupling (κ = 0.05) is suffi-
cient to deflect the magnetic moments on both sides of the
AFM/FM boundary. However, the coupling strength is not

-30 -20 -10 0 10
-0.5

-0.25

0

0.25

0.5

 3.0 nm
 6.6 nm
12.6 nm
18.6 nm
24.6 nm
30.6 nm
36.6 nm
49.6 nm

FIG. 7. Remagnetization curves of the FM phase for various
sizes dFM of a FM inclusion in an AFM matrix with an y-z easy-plane
anisotropy. Exchange weakening between the phases is κ = 0.2.

FIG. 8. Magnetization profiles for the quasi-1D model at the co-
ercive field for a structure with dFM = 12.6 nm. Red and yellow lines
represent the mz profiles of different AFM sublattices; blue line—mz

of the soft FM inclusion. In the upper image, the exchange weaken-
ing is κ = 0.05, in the lower image κ = 1.0 (perfect coupling).

FIG. 9. The same as in Fig. 8, but for a structure with
dFM = 36.6 nm.

FIG. 10. Test fit using atomistic and mesoscopic parameters
of Co. Red line—analytical solution for uniaxial anisotropy; blue
circles—atomistic simulation result; green crosses—result of the
mesoscopic simulation using the exchange-stiffness constant Aex

shown in the inset, which was obtained by fitting the mesoscopic
profile to the atomistic one.
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FIG. 11. Results of the fitting of domain-wall profiles for the
determination of the mesoscopic exchange coupling. (a) AFM ma-
terial: red and yellow circles—atomistic simulation results for Bloch
walls in two AFM sublattices; green crosses—mesoscopic fit using
the exchange stiffness Bex shown in the inset. (b) FM phase: blue
circles—atomistic result; green crosses—mesoscopic fit using dif-
ferent spatial regions, indicating the pinning of the domain wall at
the center.

large enough as to eliminate the discontinuity in the magne-
tization distribution between the two phases. On the contrary,
the magnetization profile in a system with perfect coupling
(κ = 1.0) is continuous (lower panel in Fig. 8).

An inclusion with dFM = 36.6 nm, being almost three
times larger than dFM = 12.6 nm, can easily incorporate a

FIG. 12. Comparison of atomistic and mesoscopic magnetization profiles at different external field values (see insets) (κ = 1; dFM =
30 nm). Atomistic approach: red and yellow lines correspond to the AFM sublattices; blue lines—FM phase. Mesoscopic approach: magenta
line—AFM; green line—FM. Note that there is no analog of the yellow line in the mesoscopic approach.

significantly inhomogeneous magnetization configuration in
spite of the weak coupling (Fig. 9). The strongly coupled
system (κ = 1.0) demonstrates how the magnetization state in
the FM phase might significantly influence the distribution of
magnetic moments in the AFM state. From the experimental
point of view, such a magnetization profile is expected to
give rise to a strong small-angle neutron scattering (SANS)
signal [30]. Therefore, using SANS, it should be possible to
obtain some (indirect) information on the magnetization state
of magnetic moments belonging to the AFM phase in the
neighborhood of the FM inclusion.

V. TOWARDS THE MESOSCOPIC APPROACH

The typical sizes of simulated structures in atomistic sim-
ulations (especially in 3D) are limited to several hundreds of
interatomic distances in each spatial direction. Therefore, for
the modeling of the remagnetization process in 3D systems
with sizes of hundreds of nanometers, the transition to the
mesoscopic length scale is mandatory. In our case this is
mainly based on the approximation of the local, mutually
antiparallel magnetic configuration of AFM sublattices. To ex-
tend this method to study more complicated cases (e.g., helical
structures) of AFM materials, it is first necessary to conduct
a detailed analysis of the magnetic configurations obtained in
atomistic simulations. Identifying structural elements within
these configurations that are sufficiently large and stable for
application in the mesoscopic approach is still, in our view, an
unresolved challenge. This question may very well become
the focus of our future studies. In this section we describe
the steps necessary to introduce and validate the mesoscopic
AFM/FM model.

First, in order to implement a mesoscopic model for an
AFM, it is necessary to introduce an effective vector that
describes the direction of the magnetic moments in the AFM
sublattices with a spatial resolution of a few nanometers (anal-
ogous to the standard procedure in micromagnetics). This
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vector coincides with the magnetization direction of one of
the sublattices and is antiparallel to the moments of the sec-
ond sublattice (under the above-described limitation of the
external field magnitude). In the following discussion, we will
refer to this vector as a descriptor of the spatial distribution of
magnetization in the AFM phase.

Second, in analogy to conventional micromagnetics, we
have to define the size of finite elements having a constant
“magnetization” (usually a few nanometers, 3.5 nm in our
case) and all the interaction coefficients, both within one phase
and between the different phases. The mesoscopic satura-
tion magnetization and anisotropy coefficient for a FM and
for both sublattices of an AFM can be derived from their
atomistic counterparts using Eqs. (1). In order to obtain the
mesoscopic exchange-stiffness constant Aex and its analog
for the AFM phase Bex, it is necessary to employ a spe-
cial fitting procedure due to the (weakly) nonlocal nature of
the exchange interaction. This procedure consists of finding
such an exchange-stiffness constant for which the mesoscopi-
cally simulated Bloch-wall profile coincides with its atomistic
counterpart.

As a test calculation (see Fig. 10), we have used the
magnetic materials parameters of Co, obtaining again for
the exchange-stiffness constant the textbook value of 3.1 ×
10−6 erg/cm. Figure 11 presents the results of the fit-
tings for AFM and FM phases, giving the values Bex =
2.9 × 10−6 erg/cm for the AFM phase and Aex = 0.6 ×
10−6 erg/cm for FM phase. In the latter case an enlarged
anisotropy constant was used in order to increase the accuracy
of the fit (see the discussion related to Fig. 5). We have also
pinned the domain wall at the center of the simulated region
(x = 50 nm) to keep the magnetization profile symmetric.

Next we have compared the magnetization profiles ob-
tained by the atomistic and mesoscopic modeling for the
system containing a FM inclusion within the AFM phase. This
comparison is of special importance, because it allows us to
draw the conclusion about the reliability of the mesoscopic
approach for the following simulations. Corresponding plots
are shown in Fig. 12. We note that atomistic and mesoscopic
calculations were performed independently, using only the
magnetic materials parameters corresponding to the respective
spatial scale. As a result, we achieved an excellent match be-
tween atomistic and mesoscopic approaches that allows us to
study the magnetization distribution in AFM/FM composites
at a length scale of the order of hundreds of nanometers, while
resolving its details at the nanometer scale.

Special attention deserves the relation between the
exchange-weakening coefficients κ present in both the atom-

FIG. 13. Comparison of the remagnetization curves of the FM
phase for (a) atomistic and (b) mesoscopic simulations and for differ-
ent values of the exchange weakening κ on the AFM/FM interface
(see legend in the left panel). Note that while the curves for large
couplings (κ � 0.5) are quite similar, the behavior for small (but
nonzero) κ is very different.

istic and mesoscopic methods. This relation is highly nontriv-
ial, because these coefficients lead in different approaches to
the weakening of the exchange coupling between two very
different “building blocks” of corresponding models. We have
revealed this relation by comparing remagnetization curves
obtained by both methods. The result is presented in Fig. 13,
where the same values for the exchange-weakening coefficient
0 � κ � 1 for the two approaches have been used.

VI. CONCLUSION

In the first of two articles, we have presented a combined
atomistic/mesoscopic approach for micromagnetic simula-
tions of systems containing coupled ferromagnetic (FM) and
antiferromagnetic (AFM) phases. The reliability of the atom-
istic simulations was tested using single-phase FM and AFM
materials, where we have simulated Bloch-wall magnetiza-
tion profiles and compared them with analytical results for
the same system. Further, the developed methodology was
validated by comparing the results of mesoscopic simula-
tions with the corresponding ones of atomistic modeling for
quasi-one-dimensional systems, being either single phase or
consisting of a FM inclusion within an AFM phase. In the
second part [7] we will extend our simulation methodology
to polycrystalline systems and show that the experimentally
found large coercivity of ∼5 T for a Heusler-type alloy [2]
can be naturally explained by the pinning of the FM phase via
the extremely hard AFM.
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