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Dynamically encircling an exceptional point by microwave fields in synthetic antiferromagnets
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The impact of dynamically encircling an exceptional point (EP) on the low-energy spin excitations in anti-
parity-time (anti-PT ) symmetric synthetic antiferromagnets is investigated by adopting the quantum adiabatic
theorem and numerical simulations. Under adiabatic conditions, the dynamic evolution of the encircling EPs
is found to converge toward a low-dissipation state. When the evolution begins from a phase with broken
anti-PT symmetry, the chiral mode switching occurs. On the other hand, a phase with preserved anti-PT
symmetry evolves during the encircling EPs through different magnon states into the same low-dissipation
final state. Despite adhering to the adiabatic conditions for evolution parameters, nonadiabatic transitions are
still observed in the antiferromagnetic system and can be effectively described by changes in the dynamical and
topological aspects of the final magnon state. The results, as validated using full-edged numerical micromagnetic
simulations, demonstrate the ability to explore non-Hermitian state transfer in flexible magnetic systems.
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I. INTRODUCTION

Over the past few decades, non-Hermitian systems ex-
hibiting parity-time (PT ) symmetry have attracted great
attention due to their unique and interesting properties
[1–19]. Extensive theoretical studies on non-Hermitian sys-
tems have demonstrated that the topological characteristics
of an exceptional point (EP) [20,21] are usually responsible
for PT -symmetry-related phenomena, such as chiral mode
switching during adiabatically encircling EPs [22–25]. In ad-
dition to nonreciprocal time evolution, enhanced sensitivity
near EPs has been reported [26]. It was shown that, due to
symmetry breaking, gain or loss can be observed when cross-
ing the EPs. However, the requirement for passive external
gain to counterbalance losses was strongly limiting in the wide
use of the non-Hermitian PT -symmetric systems.

Our earlier investigation of the low-energy spin dynamics
(i.e., spin waves with magnons as quanta of excitations) in
synthetic antiferromagnetic (SyAFM) systems, which consist
of two ferromagnetic (FM) layers coupled AFM through the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, have
revealed an intrinsic anti-PT symmetry that circumvents the
need for passive construction [26]. The anti-PT symmetry
[27–34], considered a plausible variant of PT symmetry, is
often represented by the Hamiltonian HAPT = ±iHPT [35],
which represents both the shared properties and distinctions.
In this paper, taking advantage of the inherent properties of
SyAFMs, we investigate the dynamics of quasistatic evolution
around EPs in the parameter space.

Magnetic systems exchange energy with the external en-
vironment, resulting in nonunitary magnetic dynamics [36].
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In such a case, the Hamiltonian governing magnons is in-
herently non-Hermitian and leads to complex dynamics that
requires additional parameters for quantifying properties. By
investigating the evolution of magnon states in SyAFM sys-
tems and considering both dynamical and topological aspects
while quasistatically controlling system parameters encircling
the EP using microwave fields, we demonstrate the value
of adiabatic predictions in determining a lower dissipation
final state. Moreover, this approach allows us to distinguish
distinct dynamical processes in the non-Hermitian SyAFM
system based on the evolution of different initial states and
evolution directions. For topological property evaluation, we
will determine whether the evolution path encircles the EP and
define its encircling direction by the vorticity of the evolution.
Moreover, the vorticity will be shown as an evidence of the
chiral mode switching during the magnon state evolution.

Like PT -symmetric systems, the evolution of magnon
states in SyAFM systems is highly sensitive to the initial
conditions and exhibits a chiral response at the EP. Nona-
diabatic transitions (NATs) and chiral mode transfer occur
during adiabatic encircling of the EP when starting from the
anti-PT -symmetry-broken (APTB) phase, while nonchiral
dynamics governs the evolution from the anti-PT -symmetry-
preserved (APT) phase. To describe non-Hermitian state
transfer qualitatively, we introduce a ratio of final magnon
states between upper and lower sublattices of SyAFMs fol-
lowing the chiral and state evolutions in the APTB and
APT phases, respectively. The occurrence of NAT processes
can be identified by comparing amplitude norms of different
magnon states. The amplitude norms are closely related to
the trajectory of evolution, as the state evolution primarily
arises due to the accumulation of kinetic phases. Micro-
magnetic simulations are employed to evidence the NAT
and topological chiral mode transfer through dynamically
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encircling the EP in SyAFMs subjected to microwave fields.
The proposed approach provides a straightforward and prac-
tical method for manipulating quantum states in SyAFM
systems.

II. ANTI-PT SYMMETRIC SPIN DYNAMICS

For a symmetric SyAFM system composed of two identical
FM layers interacting against each other, the spin dynamics
can be described by the Landau-Lifshitz-Gilbert (LLG) equa-
tion [37]:

∂t mi = −γ mi × [
Heff

i + α∂t mi
]
, (1)

where mi (with i = 1, 2) denotes the magnetization of the
two FM sublayers, γ is the gyromagnetic ratio, and α is the
Gilbert damping constant. The effective magnetic field acting
locally on sublattice mi can be written as follows: Heff

i =
A∇2mi + Kzm

z
i êz − Jmī + H (1̄ = 2, 2̄ = 1) [38], where A is

the Heisenberg exchange coupling constant in each mi layer,
Kz > 0 is the effective uniaxial anisotropy along the easy z
axis (out-of-plane direction), J > 0 is the (AFM) RKKY in-
teraction coupling coefficient, and H is the external magnetic
field along the normal z direction.

To unveil the anti-PT symmetry of low-energy exci-
tations, we have studied spin waves by perturbing the
magnetic moments mi from their equilibrium positions, mi =
m0

i êz + δmi, with |m0
i | ≈ 1 and |δmi| � 1. In this way, the

Schrödinger-like equation regarding δmi can be obtained
as i∂t |�(r, t )〉 = H|�(r, t )〉, where |�(r, t )〉 = [ψ1, ψ2]T =
[δmx

1 − iδmy
1, δmx

2 − iδmy
2]T, and

H =
[

(Ek + H )(1 − iα) J (1 − iα)

−J (1 + iα) −(Ek − H )(1 + iα)

]
, (2)

with Ek = Ak2 + Kz + J in the long-wavelength limit of a
plane-wave ansatz. Here, k stands for the wave vector of
propagating spin waves.

Now, let us consider the SyAFM with PT symmetry. A
parity operation P̂ corresponds to applying the Pauli operator
σx. The time-reversal T̂ is defined as i → −i and t → −t . It
is well known that the presence of an external magnetic field
H breaks time-reversal symmetry. To investigate the inherent
properties of SyAFM systems, we firstly consider the exter-
nal magnetic field H = 0. The Hamiltonian now satisfies the
anticommutator relation {H0, P̂T̂ } = 0, indicating that the
low-energy spin dynamics in SyAFMs is anti-PT symmetric.

The eigenvalues of H0 are

ω± = iEk
( − α ±

√
ξ 2

k − 1
)
, (3)

where ξk = J
√

1 + α2/Ek .
(i) For purely imaginary ω± when |ξk| > 1, the eigenvec-

tors read

|�±
APT〉 = [sech ϕ ± i tanh ϕ,−eiη]T , (4)

where tanh ϕ =
√

1 − 1/ξ 2
k and tan η = α. These states

|�±
APT〉 are also eigenvectors of the P̂T̂ operator [39], and

it is clear that the spin excitations in the two sublattices
have equal amplitudes. Thus, the state |�±

APT〉 possess anti-
PT symmetry. This symmetry is preserved until k reaches

FIG. 1. The real part of the magnonic energy bands exhibits two
exceptional points (EPs) along the wave vector k. The region within
|k| < |kEP| corresponds to the anti-PT -symmetry-preserved (APT)
phase, while for |k| > |kEP|, the anti-PT symmetry is broken, and
the APTB phase emerges. The renormalized fast Fourier transform
(FFT) intensities represent the micromagentic simulation results with
the parameters A = 0.4 pJ/m, Kz = 0.5 kJ/m3, J = 1.2 MJ/m3, and
α = 0.1. The solid black lines are the analytical eigenvalues ω±.

kEP = ±[(J (
√

1 + α2 − 1) − Kz )/A]1/2, where the EP occurs
at |ξk| = 1, leading to a breakdown of the anti-PT symmetry,
as shown in Fig. 1.

(ii) The system enters the APTB phase with complex
eigenvalues if |ξk| < 1 with large wave vectors |k|. The corre-
sponding eigenvectors are given by the following expression
[40]:

|�+
a 〉 =

[
cosh

φ

2
,− sinh

φ

2
eiη

]T

,

|�−
b 〉 =

[
− sinh

φ

2
, cosh

φ

2
eiη

]T

, (5)

where tanh φ = ξk , tan η = α. Considering cosh2 φ

2 −
sinh2 φ

2 = 1, one gets that m1 and m2 precesses with
different cone angles in two adjacent FM sublayers. The
left- and right-circularly polarized modes |�+

a 〉 and |�−
b 〉

are dominated by the precession in the upper and lower
sublayers, resulting in a small intrinsic magnetization
m = (m1 + m2)/2. Thus, the emergent magnetization m
in collinear SyAFM systems indicates a breaking of the
anti-PT symmetry.

Obviously, in the absence of an external magnetic field,
the spin dynamics of SyAFMs possesses anti-PT symmetry.
Two phases observed on either side of the EPs arise from a
competitive effect between PT symmetry and spin-rotational
symmetry. Although, the introduction of an external magnetic
field disrupts the inherent anti-PT symmetry, the magnetic
field provides a controllable parameter for exploring dynamics
of encircling the EPs in SyAFM.

214420-2



DYNAMICALLY ENCIRCLING AN EXCEPTIONAL POINT … PHYSICAL REVIEW B 108, 214420 (2023)

III. ENCIRCLING EP

Now, we encircle the EP in the SyAFM by manipulat-
ing the external magnetic field H and magnetic anisotropy
Kz. Such manipulation can be experimentally realized in
multiferroic heterojunctions (e.g., CoFeB/MgO [41] and
Fe4N/BiFeO3 [42]) via interfacial magnetoelectric coupling.
We apply an appropriate microwave field to achieve dynamic
control of the system. It should be noted that, alternatively, we
could also select J or α to substitute for Kz during encircling
the EP, as the energy spectrum structure generated by J or
α along with H is analogous to that formed by Kz and H ,
thereby not influencing the dynamics of the system. For the
sake of simplicity, but without loss of generality, we consider
the resonant modes of SyAFM with the wave vector k = 0. At
H = 0, the EP is found at KEP

z = J (
√

1 + α2 − 1). To dynam-
ically encircle the EP, we introduce the following conditions:

Kz(t ) = KEP
z − ρ1 cos(nt ), H (t ) = ρ2 sin(nt ), (6)

where ρ1, ρ2 are the encircling radii, T = 2π/n is the pe-
riod of encirclement, and parameter n quantifies adiabaticity.
For adiabatic evolution, the condition T |ω+(t ) − ω−(t )| � 1
should be satisfied. The direction of the loop is counter-
clockwise (CCW) for n < 0 and clockwise (CW) for n > 0
[43–52]. When ρ1 = ρ2 = ρ, the encircling path forms a cir-
cle with the EP positioned at the center. Under this condition,
the time-varying wave function of the system can be written
as the superposition of two eigenstates [53–56]:

|�(t )〉 = c+
a (t )|�+

a (t )〉 + c−
b (t )|�−

b (t )〉, (7)

where |�±
a,b(t )〉 = [ψ1(t ), ψ2(t )]±,T

a,b are the normalized in-
stantaneous eigenstates. Due to the magnetic field, the
eigenstate cannot be expressed by Eq. (5), and the gen-
eralized orthogonal normalization condition is no longer
applicable [57]. However, we can make it orthogonal by
defining a biorthogonal basis, where the eigenstate 〈�̃(t )|
satisfies the condition: 〈�̃±

b,a(t )|H(t ) = 〈�̃±
b,a(t )|E [43,58–

61]. The relationship between the eigenstates is given by
〈�̃±

a,b(t )|�±
b,a(t )〉 = 0, and the amplitude of the eigenstate

|�±
a,b(t )〉 is defined as

c±
a,b(t ) = 〈�̃±

a,b(t )|�(t )〉
〈�̃±

a,b(t )|�±
a,b(t )〉 . (8)

The earlier theoretical studies have shown that, for a non-
Hermitian system, |c±

a,b(t )|2 does not represent the probability
of being in state |�±

a,b(t )〉 in the real sense [58]. However, it
provides valuable information about the quantum state and,
thus, its relative magnitude will be used for approximation of
the occupation probability.

To understand the quasistatic evolution process in the
SyAFM system, we firstly analyze the adiabatic predic-
tion c±

ad (t ) ≈ exp[−i
∫ t

0 ω±(t )dt ′] [62] in the state evolution.
Based on the quantum adiabatic theorem, it is less probable for
the system to transform when the state evolution is slower and
the energy gap is broader. As shown in Fig. 2, under the adia-
batic condition, the expression |c+

ad | � |c−
ad | is preserved, and

the entire evolution is headed toward loss [Figs. 2(b), 2(f) and
2(j)], regardless of the initial states [Figs. 2(a), 2(e) and 2(i)].
This implies that the eigenstates with less dissipative eigenval-

ues are dominant in the SyAFM. In contrast, in non-Hermitian
PT -symmetric systems, the eigenvalues either increase (gain)
or decrease (loss) in the symmetry-broken phase, which
leads to |c−

ad (t )| � |c+
ad (t )| [54,63]. Consequently, infinitesi-

mal nonadiabatic couplings can be exponentially amplified,
leading to a predominance of gain eigenmodes. However, in
non-Hermitian anti-PT -symmetric systems, the relative gain
(less dissipative) eigenstates take the form of c+

ad instead of
c−

ad [45]. In this case, the predominance of eigenstates is
determined by the slow evolution or, more precisely, lower
dissipation rate. The distinction between the eigenstate behav-
ior of PT - and anti-PT -symmetric systems emphasizes why
adiabatic predictions cannot be universally applicable for non-
Hermitian systems. However, they are valuable guidelines for
understanding the dynamic state evolution.

The dynamic process of encircling the EP in the SyAFM
system depends on both the initial state and the chosen en-
circling path. By comparing the instantaneous eigenvalues
in Figs. 2(g) and 2(c), it is obvious that in the APT phase
holds ω±(−π ) = ω±(π ), indicating that the eigenvalues re-
turn back to their initial figures after completing a full cycle.
Additionally, the dynamical encircling of the EP induces in-
terband magnonic transitions [the dotted line in Fig. 2(g)],
which implies a drastic change in energy. On the other hand,
when evolving SyAFM from the APTB phase in one circle,
two eigenvalues tend to exchange their positions: ω±(0) �
ω∓(2π ) [64]. This behavior can be traced by evaluating the
ratio of excitation amplitudes of two adjacent antiparallel
FM sublayers, determined from instantaneous eigenvectors
|�±

a,b(t )〉, while starting from different phases:

|ψ1/ψ2|l = βl , (9)

where l = a, b represents the different states. If the SyAFM
system evolves from the APT phase through one full cycle,
βl undergoes significant changes at t = π , while the magnon
modes remain unchanged [Fig. 2(h)]:

|�±
a,b(0)〉APT = |�∓

a,b(2π )〉APT. (10)

On the other hand, when evolving from the APTB phase,
βl changes smoothly with time t , and the modes undergo a
switching process [Fig. 2(d)], as follows:

|�±
a,b(−π )〉APTB � |�∓

b,a(π )〉APTB, (11)

It is worth noting that the presence of an external magnetic
field H in the SyAFM system leads to symmetry breaking
during the dynamic encircling of the EP, resulting in the emer-
gence of a dynamic net magnetic moment. Therefore, βl can
be chosen as the parameter for variations in the SyAFM state.
Furthermore, the results presented in Fig. 2(g) (EP within
the evolutionary path) and Fig. 2(k) (EP outside of the evo-
lutionary path) suggest that evolution from the APT phase
may lead to identical initial and final eigenvalues. Without
encircling the EP, no energy transition process is observed.
Even when the evolution path approaches very close to the
EP but does not encircle it, there still exists a finite energy
gap between these two eigenvalues in the spectra, thereby
reducing the probability of NATs. The EP exhibits intricate
topological characteristics. When investigating the dynamic
evolution of the SyAFM system by involving an encircled
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FIG. 2. Dynamic evolution of magnonic states near EP [black stars in (a), (e), and (i)]. (a)–(d) show encircling exceptional points (EPs)
from the anti-PT -symmetry-broken (APTB) phase [red line in (a)]. (e)–(h) show encircling EPs from the anti-PT -symmetry-preserved (APT)
phase [green line in (e)]. (i)–(l) represent nonencircling EPs from the APT phase. Encircling directions, clockwise (CW)/counterclockwise
(CCW) are indicated with arrows and solid/dashed lines in (a), (e), and (i), respectively. The accumulated loss and adiabatic prediction |c±

ad (t )|
as well as trajectories of eigenvalues ω±(t ) starting from different initial states (blue and red dots) are presented in (b), (f), (j), and (c), (g),
and (k), respectively. Furthermore, βl (with l = a, b) in (d), (h), and (l) represent the ratio of excitation amplitudes between upper and lower
ferromagnetic layers.

EP, it is insufficient to solely focus on its dynamical phase.
Mailybaev et al. [20] have demonstrated that, in such a sys-
tem, it is necessary to also examine the geometric phase. To
describe topological properties of the system, a topological
invariant known as the vorticity of the energy eigenvalue was
introduced in calculations [65–67]. In non-Hermitian systems,
for any pair of energy bands, this vorticity is defined as the
winding number of energy in the complex energy plane:

ν(�) = − 1

2π

∮
�

∇t arg[ω+(t ) − ω−(t )]dt, (12)

where � represents a closed loop in the parameter space t.
When the closed path � encompasses the EP, ν(�) = ± 1

2 ,
regardless of the evolution trajectory and time. This value
physically represents one complete loop around the parameter
space, but in the complex plane, it denotes a half a loop due to
the degenerate EP. Only a second loop can return the system
back to the initial state (except the π Berry phase) [68]. The
± signs correspond to different wrapping directions, imply-
ing that the vorticity may be the cause of the antisymmetric
exchange of the modes in the system with the encircled EP.
If the evolution of the system no longer encompasses the EP,
then the vorticity ν(�) vanishes. Hence, the vorticity can be
used as a criterion of the existence of an encircled EP within
the evolutionary trajectory of a system.

IV. NAT AND CHIRAL MODE TRANSFER

To comprehensively describe the observed topological
mode transfer by dynamically encircling the EP, the evolu-
tion process was numerically solved with higher precision.
Figure 3 shows the dynamic process of the state evolution
from the APTB phase (t = −π ) of the SyAFM system during
the encircling of the EP. When evolving in the CW direction,
both states |�−

b 〉 and |�+
a 〉 transform into the state |�+

a 〉
[Figs. 3(i) and 3(k)]. On the other hand, when taking a CCW
trajectory, the system evolves into the state |�−

b 〉 [Figs. 3(j)
and 3(l)]. The final state depends on the direction of encir-
clement, which indicates an asymmetric mode switching for
symmetry-broken states [46,55]. When the system evolves
from the APT state (t = 0), a final state is generally inde-
pendent of the evolution direction and the initial state, the
system will return to the state |�+

a 〉 after completing one
loop in the parameter space [as shown in Figs. 4(i)–4(l)].
Our analysis of the final states of the SyAFM suggests that
the evolution process in the system with encircled EPs favors
low-dissipative states regardless of the initial state. However,
it should be noted that, in SyAFM, various modes tend to
dissipate due to lack of gain modes, which may hinder low-
dissipation states in surpassing high-dissipation states, unless
a low-dissipation state is chosen as an initial condition. From
Figs. 3(a)–3(d) and 4(a)–4(d), it can be seen that the introduc-
tion of an external magnetic field H can effectively provide
gain in the SyAFM system. It should be noted that a relatively
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FIG. 3. Chiral mode transfer by dynamically encircling an exceptional point (EP) from an initial state in the anti-PT -symmetry-broken
(APTB) phase. The first (last) two columns show the clockwise (CW) and counterclockwise (CCW) evolutions from the initial state |�(−π )−b 〉
(|�(−π )+a 〉). In the first row, (a)–(d), the red solid line |c−

b | and the blue solid line |c+
a | represent the amplitude of instantaneous eigenstates,

|c−
ad | and |c+

ad | are the adiabatic predictions. Nonadiabatic transition (NAT) occurs at points where the spectral lines intersect each other [(b) and
(c)]. The second row, (e)–(h), shows the time-dependent ratio between two instantaneous eigenstates (|c+

a |/|c−
b |), with NAT occurring at the

critical points when |c+
a |/|c−

b | = 1. In the third row, (i)–(l), we demonstrate the encircling paths in the parameter space by the red and blue
Riemann sheets, which correspond to the respective high and low dissipative states. Other parameters are ρ = 400 J/m3, J = 0.5 MJ/m3,
α = 0.1, γ = 50.05 kHz/T, n = ±109 rad/s, and Ms = 0.8 MA/m.

FIG. 4. Nonchiral behavior of magnonic states induced by dynamical encircling of the exceptional point (EP) in a synthetic antiferromagnet
(SyAFM), the evolvement from the anti-PT -symmetry-preserved (APT) phase. The first (last) two columns show the clockwise (CW) and
counterclockwise (CCW) evolutions from the initial state |�(0)−b 〉 (|�(0)+a 〉). In the first row, (a)–(d), the red solid line |c−

b | and the blue solid
line |c+

a | represent the amplitude of the instantaneous eigenstates, |c−
ad | and |c+

ad | are the adiabatic predictions. Nonadiabatic transition (NAT)
occurs at the intersection of the spectral lines [(a)–(d)]. The second row, (e)–(h), shows the time-dependent ratio between two instantaneous
eigenstates (|c+

a |/|c−
b |), with NAT occurring at the critical points when |c+

a |/|c−
b | = 1. In the third row, (i)–(l), we demonstrate the encircling

paths in the parameter space by the red and blue Riemann sheets, which correspond to the respective high and low dissipative states. The other
parameters are described in the caption of Fig. 3.
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TABLE I. Encircling EPs from the APTB phase with different initial states and evolutionary directions.

Initial states |�−
b 〉 |�+

a 〉
Direction CW CCW CW CCW

Final states |�+
a 〉 |�−

b 〉 |�+
a 〉 |�−

b 〉
ν(�) −0.5 0.5 −0.5 0.5
Cχ −1.000 to 0.136 I −0.981 to 0.134 I −1.001 to 0.136 I −0.982 to 0.134 I
CT 1.18494 1.20858 1.20858 1.18494
NAT 0 1 1 0

large H is necessary to establish a dissipative space for the
state evolutions and ensure the self-consistency of theoretical
analysis.

Clearly, the adiabatic process of dynamically encircling the
EP is profoundly influenced by the evolutionary trajectory.
When the evolution is initiated from the red Riemann sheet of
the APTB phase, a NAT is distinctly noticeable in Figs. 3(j)
and 3(k). However, when the evolution trajectory starts on the
blue Riemann sheets, SyAFM evolves adiabatically, as shown
in Figs. 3(i) and 3(l). The adiabatic predictions, based on the
results presented in Fig. 2, particularly these for |c+

ad |, are
consistent with the above identified evolutions. The system
predominantly settles into a low-dissipation state, typically
represented by the blue Riemann sheet. Similarly, due to
|c+

ad | � |c−
ad |, branch cuts introduce an additional complexity

into the dynamic process starting from the APT phase and
heading toward a low dissipation final state of SyAFM. When
the branch cuts occur, they direct the evolution states toward
a highly dissipative red Riemann sheet (at t = π ). Such an
event serves as a predecessor of at least one NAT during the
evolution, as demonstrated in Figs. 4(i) and 4(j). Initially, the
system transforms from a state relative to the red Riemann
sheet to a state corresponding to the blue Riemann sheet.
However, after encountering a branch cut, the magnon state
reverts back to the red sheet. Similarly, along another trajec-
tory [Figs. 4(k) and 4(k)], the evolution begins in the blue
Riemann sheet, and just before undergoing NAT, it traverses
a branch cut, shifting the system state to the red sheet. These
findings are in accordance with our earlier observations that
identical evolutionary trajectories invariably produce similar
NAT processes.

In addition to the above-discussed evolutionary trajectory
of magnon states, we have further investigated the final states
to provide a more detailed description of the state evolution.
For example, a considerable difference between the ratios
of excitation amplitudes of the final state in the two AFM-
coupled FM sublayers was observed for the system evolved

from the different (APT and APTB) phases. When the evolu-
tion starts from the APTB phase, the ratio can be expressed
as

ψ1(T )/ψ2(T ) = Cχ , (13)

where χ represents either the CW or CCW direction. It was
found that both the real and imaginary parts of Cχ are depen-
dent on the encircling directions (cf. Table I). Interestingly, if
the APT phase is the initial phase, the ratio Cχ is associated
rather with the initial states |�+

a 〉 and |�−
b 〉 (cf. Table II). It is

intricate to determine the relative eigenmode distribution with
respect to final state:

|c+
a (T )|/|c−

b (T )| = CT ; (14)

where the parameter CT is entirely controlled by the evolu-
tionary trajectory. This feature enabled us to utilize CT for
characterization of NATs during the adiabatic evolution. A de-
tailed inspection of the plots in Figs. 3(a)–3(d) [and similarly
Figs. 4(a)–4(d)] suggests that adiabatic predictions cannot
always flawlessly anticipate |c+

a | or |c−
b |. A striking divergence

occurs, when system time reaches either t = ±π/2 or 3π/2.
At these points, the system parameter approaches the EP,
while H is maximized, leading to significant changes in the
magnon state [Figs. 2(d) and 2(h)]. Those pronounced shifts
are caused by spin-wave excitation triggered by the pertur-
bation of the external magnetic field H . The application of
the field enhances the sensitivity of the magnetic system near
the EP and provides a pathway for achieving more precise
measurements of the magnetic susceptibility, as reported in
Ref. [69].

State evolutions in anti-PT -symmetric systems were
found to show an opposing trend in comparison with their
PT -symmetric counterparts. The distinctive characteristics
observed when starting the encircling EP evolution from the
APTB phase in the anti-PT -symmetric systems can also be
observed when starting the evolution from the PT -symmetric
phase in PT -symmetric systems and vice versa. This finding

TABLE II. Encircling EPs from the APT phase with different initial states and evolutionary directions.

Initial states |�−
b 〉 |�+

a 〉
Direction CW CCW CW CCW

Final states |�+
a 〉 |�+

a 〉 |�+
a 〉 |�+

a 〉
ν(�) −0.5 0.5 −0.5 0.5
Cχ −0.990 to 0.071 I −1.005 to 0.072 I −1.001 to 0.007 I −0.999 to 0.007 I
CT 1.90167 1.90167 52.8112 52.8112
NAT 1 1 2 2
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FIG. 5. Micromagnetic simulations of the dynamic evolution
of synthetic antiferromagnetic (SyAFM) magnon states. (a) and
(b) show the dynamic process of encircling exceptional points (EPs)
from the anti-PT -symmetry-broken (APTB) phase. (c) and (d) show
the dynamic process from the APTB phase without encircling EP.
The initial states |�−

b 〉 and |�+
a 〉 are indicated by the orange dashed

line and the blue solid line, respectively. In the simulations, the
parameters are ρ1 = 400 A/m, ρ2 = 300 A/m, γ = 0.202 MHz/T,
α = 0.1, n = ±109 rad/s, J = 105 J/m3, the encircling centers of
the parameters in (c) and (d) are located at Kz = 100 998 J/m3,
H = 0 A/m.

can be extended not only to the final states of the evolution
but also to a series of other characteristic parameters, includ-
ing the ratio of excitation amplitudes between two adjacent
FM sublayers in AFM systems [45,46,70]. From the above,
one can infer that the distinctions ranging from energy band
structures to evolutionary processes in non-Hermitian systems
are caused by the symmetries [46,71]. Therefore, we can use
the dynamical properties of the anti-PT -symmetric SyAFM
system to predict the characteristics of the PT -symmetric FM
system [69]. Furthermore, we expect that the property of using
the symmetry-breaking phase and the symmetry-preserving
relative mixed state for filtering in the PT -symmetric sys-
tem can also be observed in the anti-PT -symmetric SyAFM
system. This will provide us with additional ways for manip-
ulating magnetic dynamics.

To further support our results, we have performed micro-
magnetic simulations using the OOMMF package [72]. Initially,
we stimulated the SyAFM system with a microwave field
h = sinc(2π f t ) and determined the eigenfrequency f from

the fast Fourier transform analysis. Subsequently, we excited
the magnon eigenmode in the APTB phase using the eigen-
frequency f and compared the state evolution encircling and
nonencircling the EP. The results of dynamically encircling
the EP for the CCW and CW directions are presented in
Figs. 5(a) and 5(b), respectively. From the figures, it is clear
that the evolution from the APTB phase is chiral. On the
other hand, without encircling the EP [Figs. 5(c) and 5(d)],
the dynamics remains adiabatic with no chiral mode trans-
fer. This observation is consistent with our previous analysis
[Figs. 2(i)–2(l)], which showed that the large energy gap leads
to adiabatic processes in the SyAFM system.

V. CONCLUSIONS

In summary, we have investigated the chiral control
and nonadiabatic transition of magnon modes in anti-PT -
symmetric SyAFM systems by dynamically encircling an EP.
Our findings demonstrate that the quantum adiabatic theorem
remains a valuable tool for the description of the temporal
evolution of magnon modes. The transfer of magnon modes
was linked with the magnon state evolution. A chiral mode
was found to occur during the evolution from the initial phase
with broken anti-PT symmetry. When the state evolution
started from the phase with preserved anti-PT symmetry,
the final magnon state of the SyAFM system corresponded
to the same final state. To distinguish the magnon states and
describe the effect of the encircled EP on the state evolutions,
we introduced several characteristic parameters in numerical
calculations and simulations, including the vorticity (ν), the
relative excitation amplitude (Cχ ) in two adjacent antiparallel
FM sublayers for the final mode, and the relative distribution
(CT ) of magnon eigenmodes in the final state, which effec-
tively characterize the evolutionary trajectory of evolution.
The calculated values of these parameters are summarized in
Tables I and II. This paper extends our current understanding
of spin waves in AFM systems and provides an approach for
flexible steering and controlling quantum state.
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