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Even-odd effect for spin current through a thin antiferromagnetic insulator
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Magnon spin transport in a metal–antiferromagnetic insulator–ferromagnetic insulator heterostructure is
considered. The spin current is generated via the spin Seebeck effect and in the limit of the clean sample where
the effects of interface imperfections and lattice defects are excluded. For NiO as an antiferromagnetic insulator
we have a magnetic order of antiferromagnetically combined planes which are internally in ferromagnetic order.
We find that the sign of the spin current depends on the magnetization direction of the plane next to the metal
resulting in an even-odd effect for the spin current. Moreover, as long as damping is excluded, this even-odd
effect is the only remaining dependence on the NiO thickness for high temperatures.
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I. INTRODUCTION

Leveraging spin angular momentum in magnetic insulators
gathers considerable interest due to intrinsic low-dissipative
transport properties. Spin transport experiments on heavy
metal–ferromagnet (HM-FM) heterostructures have shown
an enhancement when a thin NiO antiferromagnetic (AFM)
layer is placed in between, forming, e.g., a platinum–NiO–
yttrium iron garnet (YIG) trilayer [1–3] (see Fig. 1). Such
an enhancement is described by theoretical models both
in the diffusive limit [4] and when transport is governed
by evanescent spin waves in the NiO layer [5]. However,
various issues are far from being understood, such as the
relation between the crystal and the magnetic configurations
of the AFM, as well as interfacial properties at each con-
tact. Note that there was a significant sample dependence in
the experiments which might be due to the properties just
mentioned varying from sample to sample. Further experi-
mental investigations related to spin transport through NiO
layers include the study of spin Hall magnetoresistance in fer-
romagnetic insulator–NiO–heavy metal systems [6–8], spin
transport from a ferromagnetic to a nonmagnetic metal [9] and
from one magnetic metal to another [10], as well as nonlocal
spin transport in a Pt-NiO-YIG trilayer [11].

The spin current in Refs. [1,2] were generated via ferro-
magnetic resonance by a microwave field. Using a thermal
gradient to produces spin currents via the spin Seebeck effect
instead, as demonstrated in Ref. [3], allows further insights
as more magnon modes are involved in the transport of spin.
Further, spin-Seebeck-effect transport experiments have been
performed with NiO [12] and a metallic AFM in between the
HM-FM structure [13]. In contrast to Ref. [3], Refs. [12,13]
report the absence of enhancement of spin currents compare
to the HM-FM bilayer for most of the parameters. What was
found in all three works [3,12,13] was a thickness dependence
of the peak temperature, which is the temperature allowing
the strongest spin transport. The peak temperature was found
to be increasing with the thickness of the antiferromagnetic

layers. In contrast, in Ref. [14] studying epitaxial NiO in the
[001] direction, no peak temperature was found up to room
temperature, which is attributed to a higher Néel temperature
for epitaxial NiO. Furthermore, Ref. [14] reports no spin
transport enhancement by the NiO layer for YIG-NiO-Pt, but
for Fe3O4-NiO-Pt trilayers.

In this paper, we investigate how the AFM layers oriented
in the (111) direction—namely the number of atomic planes in
the transport direction—impact the spin current propagation.
We focus on the spin Seebeck effect across a clean and ideal
interface. We find that the sign of the spin current is deter-
mined by the number of atomic NiO planes being even or odd.
Additionally, we find that in the limit of high temperatures,
this even-odd effect is the only remaining dependence on the
NiO thickness in the clean limit considered here. This is due
to the normalization condition for magnons as bosonic modes.

II. MODEL

We consider a trilayer system with the antiferromagnetic
layers (NiO) in between, with the x axis parallel to the (111)
direction, orthogonal to the interface, and the hard in-plane
axis along y [15]. The spin Hamiltonian of the system is

HAFM =1

2

∑
r∈AFM

[
J1

∑
δ

Sr · Sr+δ + J2

∑
η

Sr · Sr+η

+ 2D1
(
Sx

r

)2 + 2D2
(
Sy

r

)2

]
, (1)

where the exchange interactions J1 < 0 and J2 > 0 are the
exchange couplings to the nearest and next-nearest neigh-
bors, respectively. The biaxial magnetocrystalline anisotropy
is parametrized by the strengths D1 and D2 and the vectors
joining nearest and next-nearest neighbors are δ and η, respec-
tively. The magnetic parameters we use are J1 = −16 K, J2 =
221 K, D1 = 1.13 K, and D2 = 0.06 K [16]. The anisotropies
D1 and D2 complicate the considerations as the quantization
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FIG. 1. Schematic setup consisting of a NM-AFM-FM trilayer
heterostructure. As a model system it is considered a platinum (Pt), a
thin antiferromagnetic NiO layer, and yttrium iron garnet (YIG) film,
which is in good approximation a ferromagnet. A thermal gradient
yields spin transport through the metal-insulator interface, which
causes an electric current in Pt due to the inverse spin Hall effect
(SHE) which allows detection of the spin current by electrical means.

axes of the magnons get tilted. However, in this case, they are
negligibly small, so we will set in the following D1 = D2 = 0,
the case of finite D1 and D2 is discussed in the Appendix. The
spin system in the ferromagnetic insulator (FMI) shares the
same fcc lattice as the AFM to avoid the influence of interface
roughness and lattice mismatch. Thus the Hamiltonian is

HFMI = 1

2

∑
r∈FI

[
JF

∑
δ

Sr · Sr+δ − 2KF
(
Sz

r

)2

]
, (2)

with JF the exchange coupling and KF the uniaxial easy-axis
anisotropy. The parameters are chosen such that the saturation
magnetization and low-energy dispersion of YIG is matched,
with a (nonphysical) spin quantum number of SF = 0.16 and
JF = −400 K, as well as a small anisotropy KF = 10−5|JF |.
The AFM-FMI interaction is

HAFM-FMI = JI1

∑
r∈AFM

r+δ∈FMI

Sr · Sr+δ + JI2

∑
r∈AFM

r+η∈FMI

Sr · Sr+η, (3)

with JI1,I2 the interfacial antiferromagnetic exchange cou-
pling. The metal is described by a simple tight-binding model,
HM = −t

∑
σ=↑,↓

∑
r,δ(c†

rσ cr+δ,σ + H.c.)/2, where δ is again
the vector to a nearest neighbor and the hopping energy is
assumed to be t = 1 eV = 1.16 × 104 K.

III. MAGNETIC STABILITY AND DYNAMICS

We now investigate the stability of the magnetic configu-
ration of the joint NiO-ferromagnet system. We consider the
AFM and the FMI as a joint system, HI = HAFM + HFMI +
HAFM-FMI, and determine the classical ground state, shown at
Fig. 2, where the spins point in the +z or −z direction, while
the configuration with spins pointing out of the interface plane
are energetically not desired. Note that we have a different
number of layers with B (−z spin direction) and A (+z spin
direction) configurations as the spins in the FMI all belong
to the A configuration. Note further that in contrast to the
typical situation of an antiferromagnet, our system is also
not invariant under interchanging the A and the B sublattices

FIG. 2. Stability of the magnetic configuration where the spins of
the NiO layer neighboring the FMI are pointing in the −z direction
while the FMI is magnetized in the +z direction: For this mag-
netic configuration we perform a Holstein-Primakoff transformation,
truncate at second order in the creation/annihilation operators, and
compute the eigenvalues εq of the dynamical matrix (see the Ap-
pendix for details). An imaginary component above numerically
uncertainties, around 10−12 K, is an indication for the presumed mag-
netic configuration to be unstable. We plot the maximum value of the
decadic logarithm of the imaginary part of the resulting eigenvalues
(in units of degrees Kelvin). (a) A single atomic NiO layer and five
FMI layers. (b) Four NiO layers and five FMI layers.

within the NiO layer (even if the number of layers in the x
direction is even) because of the coupling to the FMI.

Later, we study the low-energy spin dynamics around
the classical ground state. We perform a Holstein-Primakoff
transformation [17] around the classical ground state and
truncate after second order in the creation and annihilation
operators. Then, we continue with a Fourier transform in
the yz plane. Finally a multiflavor Bogoliubov transformation
(see, e.g., Ref. [18]) yields the magnonic eigenstates of the
system. We solve the remaining eigenvalue problem for any
in-plane magnon momentum, q‖ = qyey + qzez, numerically
and label the eigenstates formally by qx. This also allows to
investigate the stability of the initially guessed ground state,
as imaginary components in the eigenenergy indicate that this
state was unstable (see the Appendix for details).

IV. SPIN SEEBECK EFFECT

The spin Seebeck effect is the generation of a spin current
due to a thermal gradient. This can originate in the magnon’s
response to a thermal gradient and in spin-phonon drag (see
Ref. [19] for an overview). Here, we focus on a temperature
difference at the metal-insulator interface and disregard the
influence by phonons. We compute the magnon spin current
based on the Fermi’s golden rule formalism [20,21]. The
transition from an initial (i) and final ( f ) magnonic state is
given by Ii→ f = 2π |〈ψ f |HInt|ψi〉|2δ(E f − Ei )/h̄, where the
interface exchange interaction between the metal and the
AFM is HInt = JI

∑
r∈M,r+δ∈AFM

∑
σ,σ ′=↑,↓ c†

rσ σσσ ′crσ ′ · Sr+δ,
where JI is the interfacial nearest-neighbor exchange coupling
between the metal and the AFM and σ is a vector of Pauli
matrices. We can write the interaction Hamiltonian in terms
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of the magnonic eigenmodes of the insulator,

HInt =
∑
kk′q

[
V α

qkk′αqc†
↓kc↑k′ + V β

qkk′β
†
−qc†

↑kc↓k′
] + H.c.,

where V α,β

qkk′ represents the electron-magnon scattering am-
plitudes for each magnon mode. For the current from the
α magnons, we obtain—under the assumption that the elec-
trons are in thermal equilibrium and that only electrons
with energies close to the Fermi energy EF can contribute
significantly—the general expression

Iα = 2π

h̄

∑
kk′q

∫
dε (ε + 	μ)

[
nB

(
ε + 	μ

kBTe

)
− nI (ε)

]

× ∣∣V α
qkk′

∣∣2
δ(EF −Ek )δ

(
ε−εα

q

)
δ
(
εα

q+Ek−Ek′
)
, (4)

where nB(·) is a Bose distribution function, Te is the temper-
ature of the metal, and nI (·) is the magnon distribution in
the insulating layers. At thermal equilibrium, nI (ε) = nB([ε −
μα]/kBTα ). Accordingly, we obtain an expression for the β

magnons. For the case where the ferromagnetically ordered
planes of the NiO layer are in parallel to the interface, only
one of the sublattices of NiO couples to the metal in our
model and the matrix elements V α,β

qkk′ are obtained by using
the Bogoliubov transformation to express the lattice magnons
describing the local spin excitations at the interface by the
magnonic eigenstates,

V α
qkk′ =

√
2sJI

sin(kx ) sin(k′
x )

NNM
x

η(q‖)δk‖+q‖,k′
‖uq0√

NI
, (5)

where η(q‖) = [e−iqz/
√

6 + 2eiqz/2
√

6 cos(qy/2
√

2)] follows
from the lattice structure and uq0 is the amplitude of the
magnonic eigenstate with momentum q at the interface. The
terms sin(kx ) and sin(k′

x ) are the amplitude of the electronic
solutions of the tight-binding Hamiltonian at the interface.
With this, we can write the equation for the α current slightly
more conveniently as

Iα = sπJ2
I

h̄

∑
	ky	kz

{
|η(	k‖)|2

[∑
kykz

sin2(kx )

∂Ek/∂kx

sin2(k′
x )

∂Ek′/∂k′
x

]

×
∑

qx

|u	k‖,qx,0|2
[
εα

q + 	μ
]

×
[

nB

(
εα

q + 	μ

kBTe

)
− nI

(
εα

q

)]}
, (6)

where there is a dependence on the number of atomic layers of
both the AFMI and the FMI only in the second line of Eq. (6).
Let us consider the situation 	μ = 0. Note that we have the
following normalization condition due to the paraunitarity of
the Bogoliubov transformation,∑

qx

|u	k‖,qx,0|2h(qx ) = (−1)NM , (7)

where h(qx ) = 1 for spin-(−1) magnon operators (α) and
h(qx ) = −1 for spin-1 magnon operators (β) mode, and NM is

FIG. 3. Differential spin current density per thermal gradient,
∂2 j/[∂kr∂ (	T )], as a function of the in-plane absolute momentum
transfer kr = √

(	ky )2 + (	kz )2 at T = 300 K for different numbers
of atomic layers of NiO. The number of ferromagnetic layers is
always five. Note the qualitative difference between even and odd.

the number of atomic NiO planes. Furthermore, we consider
now that magnons also to be in quasiequilibrium at temper-
ature TM , nI (εα

q ) = nB(εα
q/kBTm). Now, we can compute the

differential spin current (see Fig. 3) and the integrated spin
current (see Fig. 4). While ε[nB(ε/kBTe) − nB(ε/kBTm)] is not
a constant as a function of ε, it gets smoother with increasing
temperature due to the properties of the Bose-Einstein dis-
tribution. Consequently, the magnon spin transport at higher
temperatures is mainly determined by the normalization con-
dition Eq. (7). Figure 4 shows the amplitude of the spin current
that increases with increasing temperature due to a larger
number of thermally excited magnons at higher temperature.
Furthermore, we see that the differences in spin current for

FIG. 4. Spin current density per thermal gradient, i.e., the spin
Seebeck coefficient, for an exchange coupling to the metal of JI =
1 K, where a is the lattice constant of NiO. We see that for increasing
temperatures, the only remaining thickness dependence is the even-
odd effect, i.e., the sign of the spin current density depending on the
number of NiO atomic planes being even or odd.
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NiO layers of the same parity tends to vanish with increas-
ing temperature. This is due to Eq. (6) being increasingly
dominated by the influence of the amplitudes u	k‖,qx,0 and
those are subject to a normalization criterion as discussed
above.

V. DISCUSSION AND SUMMARY

In this paper, we considered perfect crystals of NiO which
has higher Néel temperatures than polycrystalline NiO as
experimentally investigated in Refs. [1,3]. Furthermore, the
exchange coupling between the insulators in our model is
strong which should result in a high blocking temperature
so that the order of the NiO layer should be pinned by the
magnetization of the FMI. This is consistent with the re-
sult that the amplitude of the spin current is monotonously
increasing with increasing temperature such as in the ex-
periments by Baldrati et al. [14] in contrast to the peak
in the temperature dependence found by Ref. [3] for poly-
crystalline NiO. Our theoretical results heavily depend on
the crystalline orientation in the (111) direction. For other
orientations, we expect a different behavior as the interface
will most likely be compensated, e.g., for NiO in the (100)
direction. Note that a dependence on the crystalline order
was experimentally found for Cr2O3 layers [22]. Further note
that a spin-transfer torque between two ferromagnets based
on thermally driven spin current through an antiferromagnet
with compensated surfaces was theoretically investigated in
Ref. [23].

To provide a more intuitive and less technical description
of the even-odd effect, we point out that the sign of the spin
current is determined by the magnetic orientation of the insu-
lating layer next to the metal. This is due to the fact that for
a layer magnetized in the +z direction, i.e., it belongs to the
A sublattice, the magnons in the −z direction have a higher
amplitude on this layer than +z magnons, and the other way
around for a layer belonging to the B sublattice. The amplitude
on the interfacing layer is crucial for the spin current. The
magnetization of the layer next to the metal is—in return—
determined by the number of NiO layers being even or odd
as the magnetization of the layer next to the ferromagnetic
insulator is pinned.

Although the focus of this work was the antiferromagnet
NiO, the results, especially the predicted even-odd effect, are
relevant for other materials. Namely, enhanced spin transport
was already measured for CoO instead of NiO in Ref. [3]. The
requirement for a precisely defined number of layers could
also be achieved in magnetic van der Waals materials [24].
Here, specifically a layered antiferromagnet such as CrI3 [25]
is of interest.

We have computed the spin current between a ferromag-
netic insulator and a heavy metal through a thin NiO layer in
the clean limit and found a strong even-odd effect for the spin
current. Moreover, at higher temperature, the influence of the
NiO layer thickness apart from the even-odd effect vanishes.
It remains an open question how details of a real system
including damping will influence the spin current. However,
our results suggest that as long as the magnetic structure

in NiO is pinned by the FMI, the even-odd effect could be
observed in experiment with the remaining challenge that a
sample needs to be prepared with a precise number of atomic
planes.
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APPENDIX: MAGNONIC EIGENSTATES

In this Appendix, we show the details of the calculations of
magnonic eigenstates.

1. Holstein-Primakoff transformation

We use a standard Holstein-Primakoff transformation to
express the spin operators on the lattice sites by bosonic
operators a(†)

r for lattice sites r where in the presumed ground
state the spins point in the z direction, i.e., on the A sublattice
and b(†)

r where it points in the −z direction (B planes). The
Holstein-Primakoff transformation reads (we truncate after
second order in the bosonic operators)

Sz
r = h̄(s − a†

rar ), S+
r = h̄

√
2ar, S−r = h̄

√
2sa†

r (A1)

for the A sublattice and

Sz
r = h̄(−s + b†

rbr ), S+
r = h̄

√
2b†

r, S−r = h̄
√

2sbr
(A2)

for the B sublattice, Sx
r = (S+

r + S−
r )/2, Sy

r = (S+
r − S−

r )/(2i).

2. In-plane Fourier transform

We perform a Fourier transform in the yz plane and call
the resulting operators a(†)

j,q‖ and b(†)
j,q‖ , where q‖ is the in-plane

momentum and j the index of the plane in x direction.

3. Magnonic eigenstates of AFMI-FMI system

We present here the formalism of the two-flavor Bogoli-
ubov transformation for the case of M atomic NiO layers and
N atomic FMI layers. After the in-plane Fourier transform, the
Hamiltonian can be denoted as

H =
∑

q‖

(�†
k‖ , �−k‖ )Hk‖

(
�k‖

�
†
−k‖

)
, (A3)

where �q‖ = (b†
1,−q‖ , a2,q‖ , . . . , b†

M,−q‖ , aM+1,q‖ , aM+2,q‖ , . . . ,

aN+M,q‖ )T for an odd M and �q‖ = (a1,k‖ , b†
2,−k‖ , . . . ,

b†
M,−k‖ , aM+1,k‖ , aM+2,k‖ , . . . , aN+M,k‖ )T for even M. The

matrix Hamiltonian is thus

Hk‖ =
(Aq‖ B

B Aq‖

)
, (A4)
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where the matrix elements

Ak‖ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 ca

c∗
a da

. . .

. . .
. . .

. . .

c∗
a da ca

c∗
a dM ca f

c∗
a f dM+1 c

c∗ d c

c∗ d . . .

. . .
. . .

. . .

c∗ d c
c∗ dN+M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A5)

and

B = S(D1 − D2)

2

(
1M×M 0M×N

0N×M 0N×N

)
, (A6)

where 1M×M is the M × M identity matrix and 0i× j is an i × j
matrix with zeros only. The coefficients in Ak‖ are

d1 = S
(
J1γ

(1)
q‖ + 3J2 − 3J1

)
,

da = S
(
J1γ

(1)
q‖ + 6J2

)
,

ca = S
(
J1γ

(2)
q‖ + J2γ

(3)
q‖

)
,

dM = S
(
J1γ

(1)
q‖ + 3J2 − 3J1

) + 3SF (JI1 + JI2),

ca f = √
SF S

(
JI1γ

(2)
q‖ + JI2γ

(3)
q‖

)
,

dM+1 = SF JF
(
γ (1)

q‖ − 9
) + 3S(JI1 + JI2),

d = SF JF
(
γ (1)

q‖ − 12
) + 2SF KF ,

c = SF JF γ (2)
q‖ ,

dM+N = SF JF
(
γ (1)

q‖ − 9
) + 2SF KF , (A7)

and

γ
(1)

k‖ = 2

[
2 cos

(
ky

2
√

2

)
cos

(√
3kz

2
√

2

)
+ cos

(
ky√

2

)]
, (A8)

γ
(2)

k‖ = eikz/
√

6 + 2e−ikz/(2
√

6) cos

(
ky

2
√

2

)
, (A9)

γ
(3)

k‖ = γ
(2)
−2q‖ . (A10)

Later, we determine the dynamical matrix by multiplying
Hq‖ with G where

Gi j = [ψi,q‖ , ψ
†
j,q‖ ], (A11)

where ψ
†
i,q‖ and ψ

†
j,q‖ are the elements of [�q‖ , (�q‖ )†]

and [(�q‖ )†, �−k‖ ], respectively. We diagonalize the matrices
GHq‖ , i.e., we obtain the eigenenergies and amplitudes of
the magnonic eigenstates on the lattice sites by solving the

eigenvalue problem [15]

GHq‖uq‖ = ±εq‖uq‖ , (A12)

where εq‖ has to be one of the eigenenergies (for in-plane
magnon momentum q‖) and uq‖ is a vector of the am-
plitudes on each layer of the magnonic eigenstate. The ±
symbol is necessary due to the pseudounitary behavior of the
Bogoliubov transformation (while the magnon energies are
all positive). For the different solutions we formally assign
an index qx. The creation and annihilation operators of the
magnonic eigenstates will be denoted α(†) if they have more
weight on the A layers and β (†) if they have more weight on
the B layers). We need the amplitude on the layer facing the
metal, uq‖,qx,0, for the calculation of the spin current through
the metal-insulator interface. We solve Eq. (A12) numerically
for convenience.

4. Correction to the spin of the α and β magnons due to NiO
anisotropies

If the anisotropies D1 and D2 were zero, the matrix ele-
ments of B would vanish. Then the α magnons would carry
spin of −h̄ in the z direction and the β magnons would carry
a spin of +h̄ in the z direction. The finite matrix elements in
B yield a correction to the spin of the α and β magnons [26].
In the main text, we set D1 = D2 = 0, ignoring this spin cor-
rection (along with the influence of D1 and D2 on the magnon
spectrum) in order to obtain a more intuitive understanding
of the even-odd effect (also see the following section of this
Appendix). If we take finite D1 and D2 into account in our
numerical calculations, we find an additional contribution to
the spin current (see Fig. 5). We see that this contribution is
more significant relative to the absolute value of the current
for smaller temperatures.

5. Normalization condition

In the general case, including finite anisotropies D1 and
D2 [see Eq. (1)], each eigenstate of the dynamical matrix is a
superposition of a j,q‖ , a†

j,−q‖ ( j as the index of A planes), b j,q‖ ,

and b†
j,−q‖ ( j as the index of B planes). However, the mixing

of a j,q‖ with a†
j,−q‖ as well as b j,q‖ with b†

j,−q‖ turns out to be a
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FIG. 5. The spin current through the metal-insulator interface as
a function of temperature: for vanishing anisotropies (D1 = D2 = 0)
(circles connected by solid lines) and for finite anisotropies (D1 =
1.13 K, and D2 = 0.06 K) (triangles connected by dotted lines). We
plot here the smaller temperatures for better visibility. The relative
correction due to finite D1 and D2 gets smaller and smaller with
increasing temperature.

small effect and is negligible at least for higher temperatures,
due to the small values of D1 and D2. So, in order to obtain an

intuitive understanding of the even-odd effect, we can set them
to zero. Then only a j,q‖ and b†

j,−q‖ are mixed (α or β†) or b j,q‖

and a†
j,−q‖ (β or α†). Then for each magnon, identified by qx,

the normalization condition (following from the Bogoliubov
transformation) reads∑

j

g(qx, j)|u	q‖,qx, j |2 = h(qx ), (A13)

where j is now just the plane index in real space, g(qx, j) = 1
for α magnons (spin −1) on A layers and β magnons on B
layers, whereas g(qx, j) = −1 for α magnons on B layers
and β magnons on A layers. This normalization condition
guarantees the correct bosonic commutation relations for the
magnons. If we sort the α(†) and β (†) analogously to the a(†)

and the b(†) operators being sorted in (�T
k‖ )† and �−k‖ , we can

write the transformation matrix U with uq‖,qx as columns of
U . Then the normalization condition is U †GU = G. We find
easily that we have a similar normalization condition when
summing over the magnon amplitudes at one layer,∑

qx

g(qx, 0)|u	q‖,qx,0|2 = (−1)NM , (A14)

where we have a plus on the right-hand side if layer 0 (the one
facing the metal) is an A layer and minus if it is a B layer.
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