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Random free-fermion quantum spin chain with multispin interactions
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We study the effects of quenched disorder in a class of quantum chains with (p + 1)-multispin interactions
exhibiting a free fermionic spectrum, paying special attention to the case p = 2. Depending if disorder couples
to (i) all the couplings or just to (ii) some of them, we have two distinct physical scenarios. In case (i), we
find that the transitions of the model are governed by a universal infinite-randomness critical point surrounded
by quantum Griffiths phases similarly as happens to the random transverse-field Ising chain. In case (ii), we
find that quenched disorder becomes an irrelevant perturbation: the clean critical behavior is stable and Griffiths
phases are absent. Beyond the perturbative regime, disorder stabilizes a line of finite-randomness critical points
(with nonuniversal critical exponents), that ends in a multicritical point of infinite-randomness type. In that case,
quantum Griffiths phases also appear surrounding the finite-disorder transition point. We have characterized
the correlation functions and the low-temperature thermodynamics of these chains. Our results are derived
from a strong-disorder renormalization-group technique and from finite-size scaling analysis of the spectral gap
computed exactly (up to sizes ∼107) via an efficient new numerical method recently introduced in the literature
[Phys. Rev. B 104, 174206 (2021)].
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I. INTRODUCTION

The importance of studying one-dimensional quantum
models is invaluable. Due to the peculiarities of the phase
space in d = 1, many models can be precisely described and,
thus, serve as important test beds for physical insights [1].
Among those models, there is an important class that goes
under the general name of free systems. These are systems
(of volume V ) whose the exponentially large Hilbert space
of dimension ∼eV can be expressed as a combination of ∼V
quasienergies of a free-particle system. Despite the name,
they exhibit nontrivial phenomena, such as phase transitions
and zero-energy fractional edge modes, and are, thus, good
starting points to understand many complex behaviors of more
general systems [2–4].

Initially, the known free systems models were linked to
a Jordan-Wigner transformation which maps interacting spin
models into free fermionic particles, i.e., into models which
are bilinear in the fermionic operators or fields. Later, it
was realized that the existence of this transformation is not
a necessary condition [5]. It is possible to construct the
eigen-spectrum of the spin system from the free-fermion
pseudo-energies obtained from the roots of a characteristic
polynomial. This polynomial is constructed thanks to the
infinite number of conserved charges of the model [6–8].
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Interestingly, these latter free systems, a priori, cannot be
written in term of local bilinears of fermion operators.

The first models in this class are the ZN -symmetric free
parafermionic models [5,9–11] and the three-spin interacting
Fendley model [6]. Actually, it has been found that Fendley
model belongs to a large family of spin chains with multispin
interactions and ZN symmetry [7,8]. For N > 2, the spectrum
is complex and has a free parafermionic form. Furthermore, it
was shown that the free-particle pseudo-energies of some of
the above models are also the pseudo-energies of a multispin
U(1) symmetric XY model [12,13]. Additional developments
related to Fendley model can be found in Refs. [14–17].

Recently, it was shown that, in general, the roots of the
characteristic polynomial yielding the free fermionic spec-
trum can be efficiently obtained numerically [12]. As a
consequence, the finite-size gaps of the spin system can
be computed straightforwardly for quite large system sizes.
Furthermore, the numerical cost for exactly computing the
finite-size gap with machine precision (and, hence, the asso-
ciated dynamical critical exponent) is minimum at criticality
increasing only linearly with the chain size. While this may
seems innocuous for translation-invariant systems where ana-
lytical results can often be obtained, it is of great applicability
to quenched disordered systems where analytical results are
scarce and exactly numerical results are plagued by numerical
instabilities inherent to the extreme slow critical dynamics of
these systems [18]. This brings us to the topic of our research.
What are the effects of quenched disorder on these generalized
free fermionic systems?

It is well known that the effects of quenched disorder
(i.e., static random inhomogeneities) in strongly interacting
systems can lead to interesting new phenomena. For instance,
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even the small amount of inhomogeneities can change the
singular behavior of a critical system [19,20], change the
sharp character of a transition by smearing [21–23], or even
destroy the phase transition itself [24,25]. For reviews, see,
e.g., Refs. [26,27].

In the (free fermionic) transverse-field Ising chain,
quenched disorder completely changes the critical behavior of
the clean (homogeneous) system as expected from the Harris
criterion [19]. The conventional critical dynamical scaling of
the clean system τ ∼ ξ z (with τ and ξ being, respectively,
time and length scales, and z = 1 being the dynamical expo-
nent) is replaced by an activated dynamical scaling ln τ ∼ ξψ

(with universal, i.e., disorder-independent, tunneling expo-
nent ψ = 1/2), which is now recognized as a hallmark of
the so-called infinite-randomness quantum criticality [28,29].
Technically, this means that the disorder-induced statisti-
cal fluctuations among the relevant energy scales increases
without bounds under the renormalization-group coarse-grain
procedure. Additionally, it was realized that this exotic phe-
nomena appears in all dimensions [30–32] and in many other
contexts, such as in Heisenberg-like quantum chains and
ladders [33–47], in the Hubbard chain [48,49], in aperiodic
quantum chains [50–53], in open quantum rotors systems
[54,55], in reaction-diffusion models such as the contact pro-
cess [56–62], in unbiased random walkers in random media
[63], and in Floquet criticality [64,65]. For a review, see, e.g.,
Refs. [66,67]. Despite these overwhelming situations in which
infinite-randomness is theoretically found, experimental evi-
dence is slight [68–72].

Despite all the progress on characterizing the infinite-
randomness criticality, we currently do not know what are
the necessary conditions ensuring its appearance.1 It is then
desirable to further study other aspects which were not con-
sidered in the previous studies. Here, we consider interactions
involving more than the conventional two-body interactions.
We pay special attention to the Z2-symmetric free fermionic
case in which the interactions involve three consecutive spins
[6]. The clean phase diagram has three critical lines separating
three gapful phases which are related to each other by triality.2

1Our best educated guess comes from the classification of the
Griffiths singularities near the transition point [20,73]. Due to sta-
tistical fluctuations inherent of quenched disorder systems, there
may be arbitrarily large regions in space which are locally ordered
and virtually disconnected from the bulk (the so-called rare re-
gions). If there rare regions are in their lower critical dimension
and that min{d, d+

c }ν < 2, where d is the dimension of the system,
d+

c is the upper critical dimension of the problem, and ν is the
correlation-length critical exponent of the clean theory, then, very
likely, infinite-randomness is expected. However, this criterion can
only be regarded as a sufficient one, not a necessary one because
infinite-randomness occurs in aperiodic systems which do not have
rare regions or Griffiths singularities. Thus, it is desirable to further
study systems exhibiting infinite-randomness criticality to better un-
derstand the fundamental ingredients yielding it.

2This is a generalization of the duality as happens in the Z2-
symmetric transverse-field Ising chain. The model is self-dual if
under the duality transformation the ferromagnetic and the param-
agnetic phase are interchanged.

The universality classes of the associated transitions are that
of the transverse-field Ising chain, but that of the multicritical
point (where these three critical lines meet) is yet to be de-
termined. Currently, only its dynamical critical exponent z =
3/2 [6] and the specific-heat exponent α = 0 [8] are known.
An inhomogeneous quantum Ising chain sharing the same
energy spectrum of this multicritical point was introduced
in Ref. [16]. In this related Ising chain, the order-parameter
exponent is β = 1/8, like the standard Ising chain.

Similarly to the random transverse-field Ising chain and
to the spin-1/2 XX chain with random couplings, we show
in this paper that generic quenched disorder stabilizes quan-
tum Griffiths phases surrounding the three transition lines.
In addition, the corresponding universality classes of these
transitions and that of the multicritical point are the same and
are of infinite-randomness type (with disorder-independent
tunneling exponent ψ = 1/2). Our results are based on a
generalization of the strong-disorder renormalization-group
(SDRG) method [74–76] and on exact numerical calculations
of the spectral gap using the aforementioned method based
on the characteristic polynomial that allows us to obtain exact
numerical results for very large lattice sizes [12]. After unveil-
ing the structure of the SDRG flow, we generalize our results
to the case of (p + 1)-multispin interactions (p = 1, 2, 3, . . . )
and arrive basically at the same conclusions. All the transi-
tions are in the same universality class of infinite-randomness
type with the same tunneling exponent ψ = 1/2.

In addition, we have also studied the case in which disorder
couples only to one type of coupling constants (the others
remaining homogeneous). In that case, some of the clean tran-
sition lines remain stable for weak disorder strength while a
line of finite-disorder fixed points (with nonuniversal dynam-
ical critical exponents z) appear for large disorder strengths
and terminates in an infinite-randomness multicritical point.

This paper is organized as follows. In Sec. II we define
the model studied and review some key results important to
our purposes. In Sec. III we overview the expected effects
of quenched disorder in a heuristic way. Our arguments are
mostly based on the effects caused by rare regions in the
near-critical Griffiths phases. In Sec. IV we review the SDRG
method for the standard two-spin interacting case and gen-
eralize it to the three-spin interacting case. In Sec. V we
report our numerical study of the finite-size gap statistics of
the model which are in agreement with the SDRG results.
We present further discussions and concluding remarks in
Sec. VI. Finally, the details of the renormalization-group flow
are presented in Appendixes A and B.

II. THE MODEL AND REVIEW OF KEY RESULTS

We consider the (p + 1)-multispin interacting quantum
chains (p = 1, 2, 3, . . . ), whose Hamiltonian, introduced in
Refs. [7,8], is given by

Hp = −
L−p∑
i=1

λiσ
x
i

i+p∏
j=i+1

σ z
j −

L∑
i=L−p+1

λiσ
x
i

L∏
j=i+1

σ z
j (1)

= −
L∑

i=1

λihi, where hi = −σ x
i

min {i+p,L}∏
j=i+1

σ z
j , (2)
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σ
x,y
i are Pauli matrices associated with spin-1/2 degrees of

freedom at site i, and L is the total number of {hi} energy-
density operators (which is also the total number of spins in
the chain). The case p = 1 is equivalent (up to global degen-
eracies) to the inhomogeneous transverse-field Ising quantum
chain. The local interaction operator hi involves min{p + 1, i}
spins and satisfy the algebra (for i �= j)

{hi, h j} = 0 if |i − j| � p, and [hi, h j] = 0 otherwise. (3)

In other words, hi and h j commute if they are farther than
p lattice units (|i − j| > p), and anticommute otherwise. Evi-
dently, from Eq. (1), h2

i = 1. Finally, λi is the local multispin
energy coupling. In this work, we introduce quenched disorder
by considering {λi} as independent random variables. Their
precise distribution will be defined later.

Interestingly, it was shown [7,8] that the spectrum of (1)
has the free fermionic form

E {sk} = −
L̄∑

k=1

skεk, (4)

where sk = ±1, and the free fermionic pseudo-energies εk =
1/

√
xk , with {xk} being the roots of the polynomial of degree

L̄ = � L+p
p+1 � (with �x� being the integer part of x):

PL(x) =
L̄∑

�=0

CL(�)x�, (5)

whose coefficients CL(�) are obtained from the recurrence
relation

PL(x) = PL−1(x) − xλ2
LPL−p−1(x), (6)

with the initial condition Pj (x) = 1 for j � 0.
It is important to notice that the free fermionic character is

guaranteed when open boundary conditions are applied. For
other boundary conditions, very likely this is not true [7,8],
and the solution of the model remains an open problem.

The first gap in the spectrum energy is � = 2/
√

xmax,
where xmax = max{xk} is the largest root of the polynomial
(5). At and near criticality, it was recently shown [12] that xmax

can be efficiently computed for very large chains even though
CL(�) grows factorially with �. [Indeed, there is no need to
compute all CL(�).] This is accomplished when one uses the
Laguerre upper bound (LB) for the roots of a polynomial:

xLB = −α1

L̄
+ L̄ − 1

L̄

√
α2

1 − 2

(
L̄

L̄ − 1

)
α2, (7)

where

α1 = CL(L̄ − 1)

CL(L̄)
, and α2 = CL(L̄ − 2)

CL(L̄)
, (8)

as the initial guess for xmax.
In the (critical) homogeneous case λi = λ, it was shown

[12] that, for any p, the quantity �LB ≡ 2/
√

xLB = (1 − ε)�
as L → ∞, with 0 < ε < 1 being a constant. Thus, �LB has
the same finite-size scaling properties of the finite-size gap
� and, thus, can be used to obtain the dynamical critical
exponent z, i.e.,

�LB ∼ L−zLB , (9)

FIG. 1. The phase diagram of the clean Hamiltonian (1) for
p = 2. Here, λ3i−2 = λA, λ3i−1 = λB, and λ3i = λC . The solid red
dashed lines are transitions in the Ising universality class (z = 1).
The multicritical point λA = λB = λC is in a different universality
class where z = 3/2 and α = 0. The three phases are gapful and are
similar to each other (see text).

with zLB = z = (p + 1)/2 [7,8]. Numerically, this is conve-
nient since �LB can be efficiently computed.

For p = 1, it was shown [12] that, in the critical quenched
disordered case ({λi} being independent and identically
distributed random variables), �LB = (1 − εL )� with εL van-
ishing slowly as L → ∞. This provides a convenient tool to
obtain the dynamical scaling relation. In this case,

ln �LB ∼ −Lψ, (10)

with universal tunneling exponent ψ = 1/2. By universal we
mean that ψ does not depend on the particular distribution of
the disorder variables.3 This result is expected since the model
Hamiltonian (1) for p = 1, apart from global degeneracies,
has the same spectrum as the transverse-field Ising chain.
It is worth noting that the activated dynamical scaling (10)
has been confirmed by many analytical and numerical studies
[66]. In addition, �LB can also be used to study the finite-size
gap in the near critical Griffiths phase. In this phase, the sys-
tem is gapless even though it is short-range correlated (finite
spin-spin correlation length) [29]. The finite-size gap � and
the associated LB estimate �LB obey the power-law scaling
(9) with z being the off-critical (Griffiths) dynamical exponent
which depends on the distance from criticality. As criticality
is approached, the off-critical dynamical exponent increases
and becomes infinite at the critical point, in accordance to the
activated critical dynamical scaling (10).

The model (1) for p = 2 and nondisordered couplings was
studied in Ref. [6] for couplings of period three [which is the
natural period given by the algebra (3)], i.e.,

λ3i−2 = λA, λ3i−1 = λB, and λ3i = λC. (11)

3Provided that the distribution is not pathological or extremely
broad [33,77–79], which is the case for most physically relevant
distributions.
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Exploring the triality of the model, the phase diagram was
determined (see Fig. 1).

We now want to discuss what we mean by triality in this
model. In the bulk limit, the lattice translations i → i + 1
(equivalent to A → B → C → A) and i → i + 2 (equivalent
to A → C → B → A), and the lattice reflection (i → L + 1 −
i) do not change the algebra (3) and, therefore, the spectrum.
Thus,

H (λA, λB, λC) = H (λB, λC, λA) = H (λC, λA, λB)

= H (λC, λB, λA). (12)

Now, consider the case α = λA/λC < 1 fixed. If the transition
happens at β = λB/λC �= 1, the relation (12) implies the exis-
tence of another transition at β−1 for the same α. Since there
is only a global Z2 symmetry to be broken, then there is only a
single phase transition. Therefore, the transition must happen
at βc = β−1

c = 1. Successive applications of the relation (12)
imply that the self-triality curves (red lines in Fig. 1) are the
transition lines. Notice that this argument can be generalized
to higher values of p where the self-(p + 1)-ality hyperplanes
are the transition manyfolds. For p = 3, see Ref. [14].

The three different phases are characterized by
the following expectation values: hA = | ∑i〈h3i−2〉|,
hB = |∑i〈h3i−1〉|, and hC = | ∑i〈h3i〉|. For λA, λB < λC ,
the system is in a phase where hC > hA, hB. By symmetry
or, more precisely, by triality, there are other two phases
in which hA > hB, hC and hB > hA, hC which happen when
λC, λB < λA and λA,C < λB, respectively. There are three
phase transition boundaries: λA < λB = λC , λC < λA = λB,
and λB < λC = λA. All of them are in the two-dimensional
(2D) Ising universality class, and, thus, the dynamical
exponent is z = 1. The multicritical point λA = λB = λC is,
on the other hand, in a different universality class where
z = 3/2 [6] and the specific-heat exponent α = 0 [8].

The purpose of present work is the study of the quenched
disorder effects in the phase transitions of the model
Hamiltonian (1) for p � 2.

As a final remark motivating this work, we recall that
multibody interactions are not an uncommon feature in
condensed-matter physics. It naturally arises in Mott insula-
tors and, specifically, is a key ingredient for stabilizing chiral
spin liquids [80,81]. In addition to that, transitional metal
oxides naturally have four-body interactions as described
by the Kugel–Khomskii model [82]. Multispin interactions
also appear in quantum spin chains due to another reason:
the mapping between different models. For instance, there
is an equivalence of the Ising model with two- and three-
spin interactions with the four-state Potts model [83]. In
addition, it is well known a mapping between the quantum
Ashkin-Teller model in one-dimension (1D), which has four-
spin interactions, and the XXZ spin-1/2 chain, which has
only conventional two-spin interactions [84]. Finally, the mul-
tispin interactions should not be seen as the main ingredient
for novel physics. The main ingredient is the algebra of the
local Hamiltonian operators (3) that solely determines the
free fermionic spectrum. The representation of this algebra
in our work involves multispin interactions. But this is not a
necessary condition.

III. OVERVIEW OF THE EFFECTS
OF QUENCHED DISORDER

In this work, we study the effects of quenched disorder on
the Hamiltonian (1), paying special attention to the first non-
trivial case p = 2. We inquire how disorder on the coupling
constants changes the clean phase diagram Fig. 1 as well as
the universality classes of the transitions.

We build our arguments taking as the starting point the
physical behavior of the clean system [6] revised in Sec. II.
For this sake, we assume that the set of couplings {λA,i} ≡
{λ3i−2}, {λB,i} ≡ {λ3i−1}, and {λC,i} ≡ {λ3i} are random vari-
ables, respectively distributed according to the probability
distributions PA(λ), PB(λ), and PC (λ).

A. The simpler case of a vanishing coupling λA,i

When one of the couplings is vanishing, say λA,i = 0, the
effective algebra (3) is that of the model with p = 1 [see also
Eq. (6)], which corresponds to the standard algebra of the
transverse-field Ising chain. In that case, the phase diagram is
that of the random transverse-field Ising chain which is well
known [29,85]. The transition takes place when the typical
values (geometric mean) of the remaining couplings equal
each other [86], i.e., the system is critical when δ = 0, where
δ = δi, with · · · denoting the disorder average and

δi ≡ ln λB,i − ln λC,i. (13)

For δ > 0 (δ < 0), the system is in the B (C) phase.

1. Uncorrelated disorder

According to the Harris criterion [19], uncorrelated
quenched disorder is a relevant perturbation at δ = 0 (since
dν = 1 < 2, with d = 1 being the number of spatial dimen-
sions in which disorder is uncorrelated and ν = 1 being the
correlation length exponent of the clean theory) and, thus, the
universality class of the transition must change. As shown by
Fisher [28,29], the universality class is of infinite-randomness
type with activated dynamical scaling (10).

In addition, surrounding this exotic quantum critical point,
there are Griffiths phases whose spectral gap vanishes and
the spin-spin correlations are short-ranged. The off-critical
dynamical scaling is a power law (9) with effective dynamical
exponent z ∝ δ−1 diverging as the system approaches
criticality.

2. Appearance of locally correlated disorder

On the other hand for λB,i = eελC,i with ε being a constant,
i.e., for perfectly correlation between the local random vari-
ables in lattices B and C, the Harris criterion has to be applied
with caution. This is because the local distance from critical-
ity δi = ε is uniform throughout the chain. It turns out that
disorder is an irrelevant perturbation [85]. The clean critical
behavior is stable up to some critical disorder strength, be-
yond which it changes to a finite-randomness critical behavior,
where the dynamical critical scaling is a conventional power
law (9) but with a nonuniversal critical dynamical exponent z,
i.e., it depends on the disorder strength [18,87]. In addition,
no Griffiths effects exist in this case.
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In this work, we do not consider explicitly the case where
λB,i and λC,i are locally correlated. However, we do consider
the case in which both couplings are uniform (λB,i = λB and
λC,i = λC) and the third one (λA,i) is random. If the typical
value of λA,i is sufficiently small, we show that quenched
disorder is perturbatively irrelevant in the renormalization-
group (RG) sense. Thus, disorder can be simply ignored,
and the transition at λB = λC is in the universality class of
the clean system. As we increase the values of the λA,i be-
yond the perturbative regime, disorder induces randomness
in the renormalized couplings λ̃B, λ̃C . Interestingly, the in-
duced disorder has a perfect correlation, namely, λ̃B,i = λ̃C,i.
Thus, the long-distance physics of locally correlated random
couplings naturally appears in this model. Consequently, a
finite-randomness critical point governs the transition for suf-
ficiently large λA,i.

B. The boundary phases: The case of small λA,i couplings

What are the effects of small coupling λA,i? In the clean
case, due to triality, small λA cannot shift the location of the
critical point λB = λC (see Fig. 1; see Ref. [6] for another
argument). In the disordered case, we numerically show (see
Sec. V) that this remains true, i.e., the critical point remains at
δ = ln λB,i − ln λC,i = 0 provided that ln λA,i < ln λB,i. Thus,
the phase transition lines of the phase diagram, in the random
system, are equal to those of the clean system with λA, λB, and
λC replaced by their typical values λA,typ, λB,typ, and λC,typ as
sketched in Fig. 2.

How about the universality classes of the transitions? Here,
we consider two cases: two competing (strongest) couplings
(a) not generating random mass, and (b) generating random
mass δi, see Eq. (13).

In case (a) the two strongest couplings are homogeneous
(λB,i = λB and λC,i = λC) and λA,i is typically much smaller
than λB, λC , the transition is in the universality class of the
clean system (Ising) as shown by the solid red line in Fig. 2(a).
When approaching the multicritical point, however, the weak
disordered couplings {λA,i} become nonperturbative and a
line of finite-randomness fixed points emerges (as previously
mentioned). The resulting universality class of the transition
[blue dotted line in Fig. 2(a)] has critical dynamical exponent
z larger than the unity and diverges as the infinite-randomness
multicritical point is reached.

In case (b) the two competing couplings generate a random

mass (δ2 − δ
2 �= 0). This happens whenever either one or both

couplings are independent random variables. The clean (Ising)
universality class in unstable since the Harris criterion is vio-
lated. The resulting universality class is the one of the random
transverse-field Ising chain with activated dynamical scaling
(10), and the associated phase boundaries are the dashed lines
in the phase diagram of Fig. 2.

C. The multicritical point: The case of strong λA,i couplings

What is the change of the clean multicritical point in the
presence of disorder? We cannot apply the Harris criterion
since the clean correlation length exponent ν is not known.
To answer this question, we develop an appropriate strong-
disorder renormalization-group technique (see Sec. IV). Our

FIG. 2. The phase diagram of the Hamiltonian (1) for p = 2.
In panel (a), {λ3i−2} = {λA,i} is a set of independent random vari-
ables while the remaining couplings λ3i−1 = λB and λ3i = λC are
homogeneous. In panel (b), at least two of the coupling constants
are independent random variables (see text). The solid red line is
a transition line in the Ising universality class of the clean sys-
tem [z = 1, see Eq. (9)]. The red dashed lines are transitions in
the infinite-randomness universality class [ψ = 1/2, see Eq. (10)].
The multicritical point (in both cases) is also in the same infinite-
randomness universality class. The blue dotted line in panel (a) is
a transition line where the universality class is of finite-randomness
type (1 < z < ∞). The phases have the same nature as the homoge-
neous case (see Fig. 1) and the shaded regions delimits the associated
Griffiths phases where the spectrum gap vanishes.

results strongly indicate that quenched disorder is a relevant
perturbation. In addition, we show that the resulting uni-
versality class is of infinite-randomness type with activated
dynamics (10) and universal tunneling exponent ψ = 1/2. We
have also confirmed these results by numerically studying the
finite-size gap of the system (see Sec. V).

D. The presence of quantum Griffiths phases

We now inquire about the off-critical properties. Are they
affected by quenched disorder? The nature of the phases do
not change since disorder on the coupling constants does
not break neither a symmetry of the Hamiltonian nor a
symmetry of the order-parameter field, i.e., disorder does not
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couple directly to the order-parameter field in the associated
underlying field theory. Thus, the phase diagram has the same
phases as the clean one. However, near the transition lines,
random mass induces Griffiths phases. In those regions of
the phase diagram (shaded areas in Fig. 2), the spectral gap
vanishes and the correlations remain short-ranged. The finite-
size gap scaling is of power-law type (9) with nonuniversal
(i.e., disorder-dependent) effective dynamical exponent z.

Here, the Griffiths phases can be understood through the
lenses of the so-called rare regions (RRs): large and rare
spatial regions in a phase locally different from the bulk. For
definiteness, consider the case in which λC,i = λC (i.e., uni-
form) and the λA,i are distributed between λA,min and λA,max,
with 0 < λA,min < λA,max. Evidently the typical value λA,typ =
exp(ln λA) is between λA,min and λA,max. To start, let us analyze
the phase transition between the A (hA > hB, hC) and C phases
(hC > hA, hB) where we can disregard the weak coupling
λB,i (say, for simplicity, that max{λB,i} < min{λA,min, λC}). As
previously discussed, the transition takes place when λC =
λA,typ. When λC 
 λA,max, the system is deep in the homo-
geneous C phase. Its properties are just the one of the clean
systems with the random couplings λA,i, λB,i replaced by their
typical value λA,typ, λB,typ. Importantly, the spectral gap is
finite.

When λA,typ < λC < λA,max, on the other hand, there are
RRs where the local couplings λA,i are typically greater than
λC . Being locally in the A phase, they endow the system
a high A-phase susceptibility. The spin in the domain walls
between the A and C phases can be arbitrarily weakly coupled
and are responsible for the low-lying excitations closing the
spectral gap. As neither the bulk nor the RRs are critical,
the corresponding correlation length is finite. By duality, an
analogous Griffiths phase appears when λA,min < λC < λA,typ.

Interestingly, there is a simple quantitative argument pro-
viding the closing of the spectral gap in the Griffiths phase.
Consider a RR of size LRR. The effective interaction between
the domain wall spins are thus of order JDW ∼ e−LRR/ξRR ,
where ξRR is the corresponding correlation length in that
particular RR. For simplicity, we consider ξRR = ξ to be
RR-independent (a more precise treatment can be found in
Ref. [20]). The reason for JDW being exponentially small is
because the RR itself does not harbor Goldstone modes since
the symmetry of the Hamiltonian interactions is discrete. The
system low-energy density of states ρDOS is dominated by
the excitations of the weakly coupled domain walls. Ignoring
the even weaker coupling to other domain-wall spins belong-
ing to other RRs, then ρDOS(ω) ∼ ∫

dLRRwRR(LRR)δ(ω −
JDW). Here, we simply sum of all possible RRs weighting their
contribution by their existence probability wRR ∼ e−LRR/�,
with � ∝ −1/ ln p, and p being the probability of λA,i be-
ing greater than λC . Notice that the probability of finding
a RR decreases exponentially with its volume, and � is a
constant that depends on the distribution’s details of the cou-
pling constants. Consequently, one finds that ρDOS ∼ ω−1+1/z,
with dynamical Griffiths exponent z = �/ξ . Notice the ab-
sence of a gap or a pseudogap in ρDOS. Actually, there is a
divergence in the low-energy density of states when z > 1

and ω → 0. We see that z diverges ∼δ
−1

when approaching
the transition.

By triality, the resulting Griffiths phases are those sketched
in Fig. 2(b) if the B-couplings are also randomly distributed
between λB,min and λB,max (0 < λB,min < λB,max).

Finally, near the multicritical point there are Griffiths
phases with RRs locally belonging to, say, either A phase or
B phase, while the bulk is in the C phase. A similar feature
also appeared in the Griffiths phase of quantum Ashikin-Teller
chain [88,89]. In those cases, the effective dynamical expo-
nent z = max{zA, zB}, where zA, zB is the dynamical exponent
provided by the Griffiths singularities of the A (B) RRs.

E. The absence of Griffiths phases

If, on the other hand, the B couplings are also homoge-
neous (λB,i = λB), the resulting transition between the B and
C phases is the one of the clean transverse-field Ising chain for
sufficiently weak λA,max (as previously discussed). In addition,
there is no associated Griffiths phase since there are no RRs
(λA,max < λB = λC) as sketched in Fig. 2(a). However, when
approaching the multicritical point, RRs in the A phase appear
and enhance the low-energy density of states. As a result, the
gap closes around the transition. At criticality, those A RRs
can even provide a larger dynamical exponent z. In that case,
the clean critical point is replaced by a line of finite-disorder
critical points [dotted boundary line in Fig. 2(a)]. Finally, at
the multicritical point, the approximation of weak A couplings
completely breaks down and the most general theory con-
tains a random-mass term. Therefore, this critical point is of
infinite-randomness type.

IV. THE STRONG-DISORDER
RENORMALIZATION-GROUP METHOD

In this section, we develop a strong-disorder
renormalization-group (SDRG) method suitable for studying
the long-distance physics of the Hamiltonian (1) for p = 1 and
2 and with random coupling constants. It is an energy-based
RG method where strongly coupled degrees of freedom are
locally decimated out hierarchically. Namely, we search
for the strongest coupled local degrees of freedom and
freeze them in their local ground state. The couplings
between the remaining degrees of freedom are renormalized
perturbatively. This procedure becomes more and more
accurate if the local energy scales become more and more
disordered (broadly distributed). In that case, the perturbative
renormalization procedure becomes more accurate after
each RG decimation step. This method was originally
devised to conventional spin-1/2 models [74–76] and later
on generalized to many other models. For a review, see
Refs. [66,67].

A. Case p = 1

1. The decimation procedure

To start, let us consider the case p = 1 in which the model
Hamiltonian (1) simplifies to

H = −
∑

j

λ jh j = −
∑

j

λ jσ
x
j σ

z
j+1. (14)
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For simplicity, we disregard the boundary conditions. Al-
though (14) and the random transverse-field Ising chain are
distinct, they share (apart of global degeneracies) the same
eigenenergies.

Following the SDRG philosophy, we search for the largest
local energy scale � = max{|λ j |}, say |λ2|. We then project
the Hamiltonian onto the low-energy sector of H0 = −λ2h2 =
−λ2σ

x
2 σ z

3 . Denoting σ z
i |↑i〉 = |↑i〉, σ z

i |↓i〉 = −|↓i〉, σ x
i | →i

〉 = | →i〉, and σ x
i | ←i〉 = −| ←i〉, then the ground-state sec-

tor of H0 is spanned by |±〉 = (| →2,↑3〉 ± | ←2,↓3〉)/
√

2,
if λ2 > 0, and |±〉 = (| →2,↓3〉 ± | ←2,↑3〉)/

√
2, other-

wise. As a result, the projection can be interpreted as a
replacement of spins σ2 and σ3 by an effective spin-1/2 de-
gree of freedom σ̃ which is defined by σ̃ z|±̃〉 = ±|±̃〉. Notice
in addition that 〈±|h2|±〉 = 〈±|σ x

2 σ z
3 |±〉 = sign(λ2) �= 0.

The effective system Hamiltonian is obtained by treating
H1 = −λ1h1 − λ3h3 as a perturbation to H0. In second order
of perturbation theory, we find that

H̃1 = −λ̃h̃ + const, with λ̃ = λ1λ3

�
, (15)

and h̃ = σ x
1 σ̃ zσ z

4 . For our purposes, the constant term is harm-
less and can be disregarded.

Notice that h̃ is now a three-spin interaction. However,
since σ̃ appears only in h̃, it is a local gauge variable whose
role is simply to double the degeneracy of the spectrum. The
SDRG decimation procedure (15) can be straightforwardly
generalized to operators involving an arbitrary number of
“internal” degrees of freedom since the algebra (3) is pre-
served.

Alternatively, the additional degeneracy induced by the ef-
fective internal spin σ̃ can be interpreted as if the renormalized
chain is, actually, two decoupled new chains. In the first one,
σ̃ is fixed in state |+̃〉 (the original spins 2 and 3 fixed in the
ground state |+〉 of H0) and the corresponding renormalized
Hamiltonian is simply H̃1 = −λ̃σ x

1 σ z
4 , while in the second one

σ̃ is fixed at |−̃〉 (the original spins frozen in the state |−〉)
and H̃1 = +λ̃σ x

1 σ z
4 . These two chains have the same spectrum

and the subsequent SDRG decimations are identical (apart
from the signs of the renormalized couplings which, for our
purposes, are not important).

Thus, h̃ can be simplified back to a two-spin interaction at
the expense of dealing with two “twin” renormalized chains.
The only difference between them being the sign of the renor-
malized coupling constant λ̃.

To use this simplification and keep track of the degenera-
cies, we are then required to introduce the quantity g�. It
measures the total number of gauge (extra) spin-1/2 degrees
of freedom at the energy scale �. Clearly, after each decima-
tion it renormalizes to

g� → g� + 1, (16)

with the initial condition g�0 = 0. The total number of effec-
tive degrees of freedom in the chain N� renormalizes to

N� → N� − 2, (17)

with the initial condition N�0 = L. Notice that N� + 2g� = L
is a constant throughout the RG flow.

FIG. 3. Decimation scheme for the Hamiltonian (1) in the p = 1
case. In panel (a), the decimation is sketched in the real space
with points and lines representing spin sites and coupling con-
stants, respectively. In panel (b), the decimation is sketched in the
Hamiltonian space with circles representing the local energy opera-
tors and the lines connecting anticommuting operators.

In Fig. 3(a) we sketch the decimation procedure (15)–(17).
Regarding the local energy scales, the decimation procedure
(15) is identical to that of the random spin-1/2 XX chain
[33,90] and that of the random transverse-field Ising chain
[29]. This is not a surprise since the free-particle spectra of
all these models are the same.

Finally, it is instructive to recast the decimation procedure
in the Hamiltonian space as shown in Fig. 3(b). The jth circle
represents the local energy operator h j . A line connecting
different circles means that the sharing operators anticom-
mute with each other. Disconnected operators act on different
Hilbert spaces and, thus, trivially commute with each other. In
the decimation procedure, h2 and the “neighboring” operators
are replaced by h̃ which anticommutes with the neighboring
operators h0 and h4. The algebra structure is, thus, preserved
along the SDRG flow.

2. The strong-disorder renormalization-group flow

Since the SDRG decimation rule (15) is the same as that
for the spin-1/2 XX chain, the renormalization-group flow of
the coupling constants is already known [29,33,90]. Let

δ ≡ ln λodd − ln λeven

σ 2
ln λodd

+ σ 2
ln λeven

, (18)

with σ 2
x = x2 − x2 being the variance of x. For δ 
 1, the

SDRG flow is towards a stable fixed point in which only
the odd couplings are decimated. This implies that only the
even couplings are renormalized and, thus, are much smaller
than the odd ones. This corresponds to a phase in which
|〈h2i−1〉| > |〈h2i〉|. In the spin-1/2 XX chain, this corresponds
to the odd-dimer phase where spin singlets are formed over the
odd bonds, i.e., |〈S2i−1 · S2i〉| > |〈S2i · S2i+1〉|. The correspon-
dence of this phase in the transverse-field Ising chain is not so
straightforward since the XX spin-1/2 chains maps into two
independent random transverse-field Ising chains [33]. In the
first one, the odd couplings of our model play the role of the
transverse fields of the Ising chain. In the second, these roles
are exchanged. Thus, the phase |〈h2i−1〉| > |〈h2i〉| corresponds
to the paramagnetic (ferromagnetic) phase in the first (second)
quantum Ising chain.

If 0 < δ � 1, the system is in the associated Griffiths
phase. Typically, |〈hodd〉| > |〈heven〉|, but there are some
“defects” inside which |〈hodd〉| < |〈heven〉|. These defects form
the rare regions discussed in Sec III. Surrounding a rare re-
gion, there are two (domain-wall) spins weakly coupled. As
a result of their weak coupling, the typical and mean values
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of the finite-size gap vanish ∼L−z [Eq. (9)], which defines an
off-critical dynamical (Griffiths) exponent z. As the critical
point is approached, this exponent diverges as z ∼ |δ|−1.

We now further discuss on the effects of the RRs in the
Griffiths phase through the lenses of the SDRG method. Re-
call that, in the transverse-field Ising chain, the origin of
the gapless modes in, say, the paramagnetic phase is due
the RRs which are locally in the ferromagnetic phase and
fluctuate between the two ferromagnetic states. As this is
a coherent tunneling process involving many spins, the as-
sociated relaxation time increasing exponentially with the
RR’s volume. In the XX spin-1/2 chain, these RRs corre-
spond to patches which are locally in the even-dimer phase
while the bulk is in the odd-dimer phase. The two domain
walls delimiting a RR are, in zeroth order of approxima-
tion, simply free (unpaired) spins. To lowest nonvanishing
order in perturbation theory, these spins (say, at sites 1
and �) actually interact via an effective coupling constant
equal to λ̃� = λ1λ3 . . . λ�−1/λ2λ4 . . . λ�−2 [which could also
be obtained by a successive iteration of Eq. (15)]. Thus,
the gap of a finite chain is simply the excitation energy of
the weakest coupled spins in these domain walls: min{|λ̃�|}.
Notice that, as expected, λ̃� vanishes exponentially with the
RR size implying an exponentially large relaxation time.
An analogous physical picture appears in our model. For
simplicity, consider a compact RR in which the local even
couplings λ2, λ4, . . . , λ�−2 (� even) are greater than the
local odd couplings λ1, λ3, . . . , λ�−1. In that case, after
decimating the even operators h2i in that RR, an effective
operator linking spins 1 and � appear h̃1 = −λ̃�σ

x
1 σ z

� with
λ̃� = λ1λ3 . . . λ�−1/λ2λ4 . . . λ�−2 (disregarding an unimpor-
tant sign). Thus, 〈h2〉 = 〈h4〉 = · · · = 〈h2�−2〉 = ±1 and a
longer correlation between spins 1 and � develop, 〈σ x

1 σ z
� 〉 �= 0.

Consequently, a low-energy mode arises with excitation en-
ergy of order λ̃. Evidently, by duality, there are analogous
conventional and Griffiths phases for δ < 0.

At criticality δ = 0, the fixed point is universal in the sense
that critical exponents do not depend on the details of the
disorder distributions. For instance, the finite-size gap distri-
bution for sufficiently large systems is [91]

PSDRG(η) = 4√
π

∞∑
k=0

(−1)k (k + 1/2)e−η2(k+1/2)2
,

= 4π

η3

∞∑
k=0

(−1)k (k + 1/2)e−π2(k+1/2)2/η2
, (19)

where

η = ln (2�0/�)

σ0(L/2)ψ
, (20)

σ0 = ( 1
2σ 2

ln λodd
+ 1

2σ 2
ln λeven

)1/2, �0 is the maximum value of λ

in the bare system, � is the finite-size gap, and ψ = 1/2
is the universal tunneling exponent. The distribution PSDRG

is L independent for L 
 γ −1
D = π/8σ 2

ln λ, the inverse of the
Lyapunov exponent [92] which plays the role of a clean-dirty
crossover length [93,94]. The relation between length and en-
ergy scales follow from the scaling variable in Eq. (20), from
which follows the activated dynamical scaling ln � ∼ −Lψ in
Eq. (10).

3. Thermodynamics

The thermodynamic observables follow straightforwardly.
For instance, the low-temperature entropy is simply S ∼
1
L (NT + gT ) ln 2, which simply counts the total number of
active (undecimated) spins at the energy scale � = T . The
reasoning is the following [76]: At low temperatures T � �0,
the distribution of effective coupling constants is singular
and, thus, the majority of the couplings are much smaller
than the maximum energy scale � = T . In sum, the active
spins are essentially free. At criticality (δ = 0), N� ≈ L/[1 +
ln(�0/�)/σ 2

ln λ]1/ψ [95,96] and g� = 1
2 (L − N�). Then,

S = 1

2

⎡
⎣1 +

(
σ 2

ln λ

ln
(

�0
T

)
)1/ψ

⎤
⎦ ln 2. (21)

Notice the residual zero-temperature entropy coming from the
exponentially large ground-state degeneracy.

The specific heat follows from C = T ∂S/∂T . In the low-
temperature limit,

C ∼ ln−(1+1/ψ ) (�0/T ), (22)

which is similar to that of the random spin-1/2 XX chain.

4. Ground-state degeneracy and the spectrum of other models

It is interesting to further explore the connection between
the p = 1 model, the spin-1/2 XX chain, and the transverse-
field Ising chain in view of the SDRG decimation procedure.

Within the SDRG framework, one can obtain the whole
spectrum of the transverse-field Ising chain in the following
way [97]: When performing the decimating procedure, one
can either search for the ground state (and then project onto
ground state of the local Hamiltonian) or, alternatively, search
for the excited states (and then project onto the excited state of
the local Hamiltonian). If one projects onto the excited states,
the effective coupling of field pics up a different sign but the
magnitude is the same [see Eq. (15)]. However, for decimation
purposes, all remains the same as the sign is irrelevant. Per-
forming the decimation for all possibilities of low and excited
states, one constructs the entire spectrum of the Ising chain:
2L/2 states in total. (Recall that the associated Ising chain has
half of the sites, but the same number of operators in the
Hamiltonian.) Notice that this is equivalent to consider two
“twins” renormalized chains as previously outlined. Thus, all
ground states of the p = 1 model are equivalent to the entire
spectrum of the transverse-field Ising chain.

The connection to the XX model is alike. Here, the local
Hamiltonian has three energy levels: one corresponds to the
spin-0 singlet state, another to the zero-magnetization spin-
1 triplet state, and the remaining one is doubly degenerate
corresponding to the ±1-magnetization spin-1 states. If one
disregards the doubly degenerate ±1-magnetization states, the
decimation procedure recovers that of the Ising chain. Thus,
the many ground-states of the p = 1 model corresponds to a
small fraction of the states in the spectrum of the XX spin-1/2
chain.

We now inquire about the spectrum of the p = 1 chain.
When projecting the system onto to local excited states,
the only difference with respect to projecting onto the local
ground state is a sign picked up by the effective energy scales
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and a flip of one of the spins. Thus, the entire spectrum can be
easily related to the states in the ground-state manifold. There
will be 2

L
2 states each of which is 2

L
2 degenerate. Precisely, all

states can be represented by

⊗L/2
j=1|φ j〉, (23)

where |φ j〉 is either |φ j,+〉 = (| → j1 ,↑ j2〉 ± | ← j1 ,↓ j2〉)/
√

2

or |φ j,−〉 = (| → j1 ,↓ j2〉 ± | ← j1 ,↑ j2〉)/
√

2. Here, { j1, j2} is
the pair of spin sites decimated together in the jth decimation
which is the same pair for all states. The precise state |φ j〉
(if |φ j,+〉 or |φ j,−〉 and with the + or − sign) depends on the
sign of coupling constant and on whether the projection was
made into the local ground or excited states. All of these, are
determined by the history of decimation procedure.

5. Spin-spin correlations

In the SDRG approach, any of the 2L/2 ground states of H0

is a simply product state as specified in (23). In that case, the
spins in the jth pair are strongly correlated and dominates the
average value of the spin-spin correlation. The probability that
a pair of length r = j2 − j1 is formed along the SDRG flow is
proportional to r−2 for sufficiently large r [33,96]. Hence, the
mean correlation function decays only algebraically,∣∣〈σ x

i σ z
i+r

〉∣∣ ∼ r−η, (24)

with universal exponent η = 2. (Here, · · · denotes the disorder
average.) The typical value of the correlation, on the other
hand, decays stretched exponentially fast [33],

ln
∣∣〈σ x

i σ z
i+r

〉∣∣ ∼ −rψ. (25)

The distribution of the values of the correlation function is
also known. For that, we refer the reader to Refs. [18,94].

The off-critical (δ �= 0) correlations are also known
[29,33,85]. They decay exponentially faster ∼e−r/ξ with a
diverging correlation length

ξ ∼ δ−ν, (26)

where ν = 2 for the mean correlations and ν = 1 for the
typical correlations.

Interestingly, all those results apply for any state as well
provided that only the magnitude of the correlations are con-
cerned.

B. Case p = 2

1. The usual strong-disorder renormalization-group method

We now derive the SDRG decimation rules for the Hamil-
tonian (1) with p = 2.

Following the usual SDRG receipt, we treat H1 = −λ3h3 −
λ4h4 − λ6h6 − λ7h7 (where h j = σ x

j σ
z
j+1σ

z
j+2) as a perturba-

tion to H0 = −λ5h5. (We are assuming that the energy cutoff
� = |λ5|.) Up to second order in perturbation theory, the
renormalized Hamiltonian is H̃1 = P0H2

1 P0/(−2|λ5|), where
P0 is the projector onto the ground state of H0. The direct
terms in the square of H1 are unimportant constants since h2

i =
1. The cross terms are proportional to the anticommutators
{hi, h j}. Thus, many of those vanish because of the algebra
(3). The surviving ones are those which commute with each

other. Thus, H̃1 simplifies to H̃1 = −λ̃Ch̃C − λ̃ACh̃AC − λ̃Ah̃A

where the operators are

h̃C = P0h3h6P0 = σ x
3 σ z

4 σ̃ x τ̃ zσ z
8 ,

h̃AC = P0h3h7P0 = σ x
3 σ z

4 σ̃ x τ̃ xσ z
8σ z

9 ,

h̃A = P0h4h7P0 = −σ x
4 σ̃ yτ̃ yσ z

8σ z
9 , (27)

and the renormalized couplings are

λ̃C = λ3λ6

�
, λ̃AC = λ3λ7

�
, and λ̃A = λ4λ7

�
. (28)

Here, the effective degrees of freedom σ̃ and τ̃ span the
ground-state subspace {| → ↑↑〉, | → ↓↓〉, | ← ↓↑〉, | ←
↑↓〉} for λ5 > 0, otherwise the set of states is {| ← ↑↑〉, | ←
↓↓〉, | → ↓↑〉, | → ↑↓〉}. These states are recognized as
{|↑,↑〉, |↑,↓〉, |↓,↑〉, |↑,↑〉} in the σ̃ z ⊗ τ̃ z basis.

The decimation procedure (27) and (28) is represented in
the Hamiltonian space in Fig. 4(a). Unlike the p = 1 case [see
Fig. 3(b)], the structure of the anticommuting algebra (3) of
the original Hamiltonian is not preserved and new operators
(involving σ y) appear.

2. The block strong-disorder renormalization-group method

The arising of the new operator h̃AC in (27) hinders the
practical implementation of the method. First, it prevents us
from projecting the renormalized system onto the ground
states of the new effective spin operators σ̃ and τ̃ as in
the p = 1 case. Second, and more importantly, it requires a
generalization of the SDRG procedure to take into account
these new operators. While this is possible and cumbersome,
we found, surprisingly, a quite simpler route guided by the
algebra of the energy-density operators (3). We generalize the
“usual” SDRG approach reported above to (in the lack of a
better terminology) a “block” SDRG approach. In the latter,
we consider a larger unperturbed Hamiltonian (and thus, a
larger Hilbert space) when performing the decimation proce-
dure (see details in Appendix A). The size of the block is the
maximum number of operators which anticommute among
themselves.

When decimating the largest local energy scale � =
|λ5|, instead of considering H0 = −λ5h5 (which is a
B-type operator), we consider a larger block involving the
A- and C-type “nearest-neighbor” operators, i.e., H0 =
−λ4h4 − λ5h5 − λ6h6. This is the largest block which encom-
pass h5 and still have only two energy levels (such as h5),4

i.e., the eigenenergies of H0 are ±(λ2
4 + λ2

5 + λ2
6)1/2. Then, we

project the H − H0 on the ground-state subspace of H0. The
degeneracy of the ground state is 24 and, thus, can be spanned
by four effective spin-1/2 degrees of freedom σ̃a, σ̃b, σ̃c, and
σ̃d . In practice, we have to project λ2h2, λ3h3, λ7h7, and λ8h8.
The result is that, in the regime |λ5| 
 |λ4,6|, the renormalized
operators are

h̃2 = σ x
2 σ z

3 σ̃ z
a

(
sin θσ̃ x

b σ̃ z
d + cos θσ̃ z

b

)
σ̃ z

c , (29)

4Actually, there are two other blocks: −λ3h3 − λ4h4 − λ5h5 and
−λ5h5 − λ6h6 − λ7h7. However, only the symmetric one (with re-
spect to λ5) provides the convenient SDRG decimation rules.
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FIG. 4. Strong-disorder RG decimation scheme for the Hamiltonian (1) in the p = 2 case. The decimation is depicted in the Hamiltonian
space analogous to Fig. 3(b) where circles represent the local energy operators and lines connect operators which anticommute. In panel (a),
the SDRG method is implemented in its simpler form (usual SDRG) where a newly generated operator h̃AB disrupts the algebra (3). In panel
(b), the SDRG method is implemented in a slightly more general fashion (block SDRG) which preserves the algebra (3) in the renormalized
chain.

where

cos θ = −sign(λ5)|λ4|√
λ2

4 + λ2
6

and sin θ = λ6√
λ2

4 + λ2
6

, (30)

h̃8 = −sign(λ5)
(
cos θσ̃ x

d + sin θσ̃
y
b σ̃

y
d

)
σ z

9σ z
10, (31)

h̃3 = σ x
3 σ̃ y

a σ̃
y
b σ̃ z

c σ̃ z
d , and h̃7 = σ̃ x

c σ̃ z
dσ z

9 . (32)

The corresponding renormalized coupling constants are λ̃2 =
λ2, λ̃8 = λ8,

λ̃3 = −sign(λ4)
λ3λ6

�
, and λ̃7 = |λ4|λ7

�
. (33)

Surprisingly, the renormalized operators are different in
character from those in Eq. (27). Interestingly, they preserve
the algebra structure (3) of the original system as depicted
in Fig. 4(b) if we identify h̃2 → h2, h̃3 → h̃C , h̃7 → h̃A,
and h̃8 → h8. Furthermore, the “hybrid” operator h̃AC

[generated from the usual SDRG approach, see Fig. 4(a)] is
not generated in the block SDRG approach [see Fig. 4(b)].
Instead, there are only “pure” operators except for the
BC-type operator in (29) and the AB-type operator in (31).
This is very convenient because they can be neglected at
strong-disorder fixed points (corresponding to situations
near and at the dashed transitions in Fig. 2). The reasoning
is the following: Since the effective disorder at and near
the transition is very large (which we show a posteriori),
very likely either |λ4| 
 |λ6| or the |λ4| � |λ6|. In
the former case, sin θ ≈ 0 in Eq. (30), and, thus, the
hybrid-type operators can be neglected. The renormalized
B-type operators then simplify to h̃2 =
−sign(λ5)σ x

2 σ z
3 σ̃ z

a σ̃ z
b σ̃ z

c , h̃8 = σ̃ x
d σ z

9σ z
10. Taking sin θ =

1 − cos θ = 0 and noticing that the new effective spin-1/2
degrees of freedom σ̃a and σ̃b appear only in combinations
that commute with each other (σ̃ z

a σ̃ z
b in h̃2 and σ̃

y
a σ̃

y
b in h̃3),

we can project the resulting renormalized Hamiltonian in the
common eigenstates of σ̃ z

a σ̃ z
b and σ̃

y
a σ̃

y
b . As a result, we have

four “twin” renormalized systems. They are

H̃1 = ±λ2h2 ± λ̃Ch̃C − λ̃Ah̃A − λ8h8, (34)

where h2 = σ x
2 σ z

3 σ̃ z
c , h̃C = σ x

3 σ̃ z
c σ̃ z

d , h̃A = σ̃ x
c σ̃ z

dσ z
9 , h8 =

σ̃ x
d σ z

9σ z
10,

λ̃C = λ3λ6

�
, and λ̃A=

|λ4|λ7

�
. (35)

The decimation procedure (34) and (35) is schematically de-
picted in Fig. 4(b). By symmetry, an analogous decimation
procedure is obtained in the case |λ4| � |λ6|, with the ex-
changes λ2 � λ8 and λ̃A � λ̃C , which is obtained after a
convenient change in the definition of the effective operators
σ̃a, σ̃b, σ̃c, and σ̃d .

The decimation procedure (34) and (35) [see Fig. 4(b)]
is very convenient. It preserves the algebra structure (3) and
the operators of the original Hamiltonian h̃i = σ x

i σ z
i+1σ

z
i+2.

This procedure is a straightforward generalization of the dec-
imation procedure of the p = 1 case in the following sense.
For p = 1, a decimation of an A-type coupling implies the
renormalization of the neighboring B-type couplings and vice
versa [see Eq. (15)]. For p = 2, due to triality, the decimation
of a B-type operator implies the renormalization of the neigh-
boring A- and C-type couplings [see Eq. (35)].

3. On the equivalence between the usual and the block
strong-disorder renormalization-group approaches

In the regime |λ5| 
 |λ4,3|, there should be no difference
between the usual and block SDRG approaches as the ground
state of the block H0 = −λ4h4 − λ5h5 − λ6h6 is simply that of
the local H0 = −λ5h5 furnished with trivial degeneracies. It is
somewhat surprising that seemingly fundamentally different
decimation procedures arise from these approaches. Thus, we
inquire whether these two decimating procedures are really
different.

In Ref. [39] the SDRG method was carried out in the
antiferromagnetic Heisenberg model in a zigzag and two-leg
ladder geometries. In both cases, it was shown that, in the
early stages of the SDRG flow, further neighbors interactions
arise, just like what was found in the usual SDRG decimation
[see Fig. 4(a)]. However, in the final stages of the SDRG flow,
the renormalized geometry of the system always converged to
a chain geometry. (Evidently, one had to disregard exceed-
ingly small couplings that were generated along the flow.)
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This may be a general feature of quasi-one-dimensional criti-
cal or near-critical systems. The low-energy long-wavelength
effective theory is that of a chain. Technically, couplings of
“long” operators that connect exceedingly distant spins arise
after many renormalizations and, thus, are typically much
smaller than those of “shorter” operators.

In sum, the longer-range character of the new hybrid
operator h̃AC in the usual SDRG approach may be an irrel-
evant “operator” which vanishes in the latter stages of the
SDRG flow. In the block SDRG approach, the new hybrid
operators h̃AB and h̃BC could be clearly determined as irrel-
evant ones near and at criticality, where the flow is towards
strong disorder, a self-consistent assumption that we have
yet to prove. Therefore, it is plausible that h̃AC in the usual
SDRG approach can be neglected by the same reasons. In
that case, both the usual and block SDRG approaches are
equivalent near and at criticality. This is a fundamental feature
of the renormalization-group philosophy. Details on defining
the coarse-grained operators should not matter in the long-
wavelength regime.

4. Strong-disorder renormalization-group flow corresponding
to conventional phases

Having derived the SDRG decimation rules, we now ana-
lyze the flow of the coupling constants.

Let us start by analyzing the simpler case corresponding
to flow towards the gapped phases. In this case, one of the
coupling constants, say, of C type, is always greater than
the others. Precisely, min{λ3i} > max{λ3i−1, λ3i−2}. In that
case, notice that only the bare h3i operators are decimated.
Therefore, the corresponding fixed point is noncritical and,
thus, represents a phase: the hC > hA, hB conventional phase
in Fig. 2. Notice that both the usual and the block SDRG
can be applied here since only the original h3i operators are
decimated. Thus, in the SDRG framework, the spectrum gap
is simply � = 2 min{λ3i}.

Evidently, by triality, there are additional two phases in
which hA > hB, hC and hB > hA, hC as shown in Fig. 2.
Finally, we call attention to the fact that, in the SDRG
framework, these phases exist because a decimation of hi,
renormalizes the neighboring interactions hj with | j − i| �
p = 2. Thus, for a generic value of p in the Hamiltonian (1),
we expect, at least, p + 1 different phases.

5. Strong-disorder renormalization-group flow corresponding
to conventional Griffiths phases and phase transitions

between two phases

First, we analyze the case in which at least two of the three
types of couplings are random, i.e., the SDRG flow associated
with the transitions and Griffiths phases shown in Fig. 2(b)
away from the multicritical point.

Let us consider the case in which max{λ3i−2} <

min{λ3i−1, λ3i}. In this case, the SDRG flow is dictated only
by the competition between {λ3i} and {λ3i−1} as the A-type
couplings will never be decimated. Thus, we can simply drop
the λA in the decimation procedure (34) and (35) as the distri-
bution PA renormalizes to an extremely singular one. In that
case, the zigzag-chain geometry of the renormalized system

becomes that of a single chain. Therefore, the flow is simply
that of the case p = 1.

To analyze it, we simply generalize the distance from crit-
icality Eq. (18) to

δBC ≡ ln λ3i − ln λ3i−1

σ 2
ln λB

+ σ 2
ln λC

. (36)

From here, all energy-related results from the p = 1 case
follows straightforwardly. The transition is governed by an
infinite-randomness critical point and happens for δBC = 0.
The gap distribution is that of Eq. (19) with the scaling vari-
able (20) redefined as

η = ln (2�0/�)

σ0(L/3)ψ
. (37)

This redefinition is due to the fact that the total number of
decimations in the p = 1 case is L/2 while it is L/3 for the
p = 2 case. Thus, L/2 in the p = 1 case translates to L/3 in
the p = 2 case.

In addition, there are associated Griffiths phases for
|δBC | � 1. The off-critical dynamical exponent z diverges as
z ∼ |δBC |−1 when it approaches criticality. The nature of the
low-energy modes are also associated with domain-wall spins
surrounding a rare region, just like for p = 1.

By triality, there are other two boundary transitions for
δAB = 0 and δAC = 0. These boundaries and the Griffiths
phases are shown in Fig. 2 as dashed lines and shaded
regions, respectively. The SDRG results here reported,
thus, put the heuristic arguments of Sec. III on solid
ground.

Now we analyze the case in which the two competing
(strongest) couplings are uniform, i.e., λB,i = λB, λC,i = λC ,
and λA,i random with λA,typ < λB, λC . This corresponds to the
region in the phase diagram of Fig. 2(a) surrounding the clean
and finite-randomness transition but sufficiently far from the
multicritical point.

When max{λA,i} < λB, λC , the SDRG method does not
need to be applied since weak λA coupling is irrelevant. The
transition at λB = λC is in the clean Ising universality class,
and the spectral gap vanishes only at criticality.

When λA,typ < λB < λC < max{λA,i}, the system in the
Griffiths C phase with high A susceptibility as in the generic
case discussed above (analogously for λA,typ < λC < λB <

max{λA,i}).
Finally, we discuss the interesting case when λA,typ < λB =

λC < max{λA,i}. The system is globally critical between B and
C phases but there are rare regions locally in the A phase.
What are their effects? Applying the block-SDRG decimation
procedure, we simply decimate A operators in the first stages
of the flow. After decimating all A operators with λB = λC <

λA,i < max{λA,i}, we can simply ignore the remaining A op-
erators since they would be surrounded by locally stronger B
and C operators. The effective chain is, thus, that with B and C
operators only. However, the effective coupling constants are
not uniform. Interestingly, notice that the effective couplings
obey the condition λ̃B,i = λ̃C,i. The precise condition for the
absence of random distances from criticality (random mass)
discussed in Sec. III A 2. When the A rare regions are small,
the effective couplings λ̃B,i, λ̃C,i are weakly renormalized and
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their effective disorder (variance of their distribution) is weak.
As a result, the clean critical behavior is stable. However,
when approaching the multicritical point we expect the renor-
malization of λ̃B,i, λ̃C,i to become more and more relevant.
This means that their effective disorder increases to the point
where the clean critical behavior is destabilized. The resulting
phase transition is thus of finite-randomness type with nonuni-
versal critical exponent z. This result should be valid up to
the multicritical point where z reaches its maximum value.
Interesting, z is formally infinity in the other transition lines
meeting at the multicritical point.

We end this section by noticing that the above results
straightforwardly generalizes to any value of p.

6. The strong-disorder renormalization-group
flow at the multicritical point

Finally, we deal with the case in which all couplings com-
pete.

At first glance, one could think in analyzing the flow equa-
tions for the distributions PA, PB, and PC analytically. The flow
equation for PA is (see Appendix B)

−∂PA

∂�
= PA(�)PA − (PB(�) + PC(�))(PA − PA ⊗ PA),

(38)

where PX = PX (λ; �), PX (�) = PX (�; �), and

PX ⊗ PX =
∫

dλ1dλ4PX (λ1; �)PX (λ4; �)δ

(
λ − λ1λ4

�

)
.

(39)

By triality, the flow equations for PB and PC follow from
exchanging the labels accordingly. The last term on the
right-hand side (r.h.s.) of (38) implements the renormaliza-
tion of the A-type coupling [λ̃A in Eq. (35), and we are
considering only the magnitude of the coupling constants]
when a B- or C-type coupling is decimated. The remaining
terms ensure that PA remains normalized when the cut-
off energy scale � is changed. As shown in Appendix B,
the critical point (where PA = PB = PC) of the flow equa-
tion (38) is of infinite-randomness type [see Eq. (B5)] and
is related to a different universal tunneling exponent ψ =
2/3 which is greater than that ψ = 1/2 of the case p =
1. A larger tunneling exponent means larger effective dis-
order as the typical value of the finite-size gap is even
smaller [see Eq. (37)]. This sounds intuitive since two cou-
pling constants are renormalized in each decimation instead
of one renormalization per decimation, as happens in the
p = 1 case.

Although this gives us a prescription to find a new uni-
versality class beyond that of the permutation-symmetric
universality class (where ψ = 1/N , with N being an integer
[37,40,46,47,98]), the analytical analysis of this problem is
not correct. The flow equation (38) assumes no correlation
between the three types of couplings. However, when, say,
an B-type coupling is decimated the renormalized A- and
C-type couplings are added as neighbors in the renormal-
ized system [see Fig. 4(b)]. Being neighbors diminishes their
chance of being further renormalized (which would increase

the effective disorder strength by producing even more sin-
gular couplings) when compared with the case described by
Eq. (38) where they are inserted in the chain in an uncorrelated
fashion.

As treating the correlated case analytically is not simple,
we then proceed our study numerically. We implement the
block SDRG rules (34) and (35) for a system where all the
coupling constants are independent random variable and iden-
tically distributed according to

P(λ; �0) = 1

D0�0

(
�0

λ

)1−1/D0

,

where �0 is the initial energy cutoff and D0 parametrizes the
disorder strength of the bare system.

We first study the moments of the distribution of the renor-
malized couplings along the SDRG flow. As usual in the
SDRG approach, it is convenient to define the logarithmic
couplings ζi = ln(�/λi) and the logarithmic energy cutoff
� = ln(�0/�). We then study the mean value ζ and standard

deviation σζ = (ζ 2 − ζ
2
)1/2 as a function of �. Our results

for D0 = 1/2 and D0 = 1 and system size of L = 315 spins
is shown in Fig. 5(a). Clearly, ζ ≈ σζ ≈ � + const in the
� → ∞ limit. This implies an infinite-disorder fixed-point
critical distribution. Thus, the SDRG method here employed
is justified.

Next, we study the infinite-disorder fixed-point distribu-
tion. For comparison, that distribution for p = 1 is well known
[33,96,99]. It is

P∗
p=1(λ; �) = 1

D��

(
�

λ

)1−1/D�

, (40)

with D� = � + D0 [equivalent to π∗(ζ ; �) = e−ζ/D� /D�]. In
Fig. 5(b), we show the distribution of log couplings at dif-
ferent stages of the SDRG flow for the case D0 = 1. (We
find statistically identical result for D0 = 1/2 which is not
shown for clarity.) After the initial stages of the SDRG flow,
the fixed point is reached. Here, the different stages of the
SDRG flow is parametrized by the density ρ = N�/L, where
N� is the number of active spins at the cutoff energy scale
�. Recall that, after each decimation step of the block SDRG
procedure, three spins are removed. Clearly, the fixed-point
distribution differs from the p = 1 case (40) (dashed line y =
e−x), but only slightly. We attribute this small difference to
the correlations arising among renormalized couplings under
the flow.

The relation between energy and length scales along the
SDRG flow is shown in Fig. 5(a). Simply the length scale
ρ−1 ∼ �1/ψ with universal tunneling exponent ψ = 1/2. We
also expect the finite-size gap � to obey the activated dy-
namical scaling (37). This is confirmed in our numerics as
shown in Fig. 5(c). Both the mean value and the width of
the distribution of ln(�) behave similarly ∼Lψ . Here, the
finite-size gap is obtained by decimating the entire chain. The
last decimated coupling constant λ̃final provides the finite-size
gap � = 2λ̃final.

7. Thermodynamics and correlations

As the fixed-point distribution is of infinite-randomness
type, the critical thermal entropy and specific heat behave
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FIG. 5. (a) The mean value of ζ , the standard deviation σζ

and the density of active spins ρ as a function of the logarith-
mic cutoff energy � = ln �0/� (� = max{λi}). (b) Snapshots of
the coupling constant distributions at different densities ρ along
the SDRG flow. (c) The typical value of the finite-size gap as
a function of the system size L. We have considered chains
of up to L = 315 spins, with bare disorder strengths D0 = 1/2
and 1. Here, ψ = 1/2. The error bars are about the size of the
symbols.

similarly as in the p = 1 case discussed in Sec. IV A 3.
The only difference is the residual entropy which modifies

Eq. (21) to

S = 2

3

⎡
⎣1 +

(
σ 2

ln λ

ln
(

�0
T

)
)1/ψ

⎤
⎦ ln 2, (41)

the reasoning being that the ground state has degeneracy 22L/3.
The specific heat follows straightforwardly and recovers (22).

In the SDRG framework, the ground-state spin correlation
Ci, j,k = 〈σ x

i σ z
j σ

z
k 〉 is ±1 if the spins i < j < k are decimated

together, and weakly vanishing (we set to zero) otherwise. To
obtain the average value of Ci, j,k , we then build a normalized
histogram |C(r1, r2)| in log-scale. After each SDRG decima-
tion (decimation of spins i, j, and k), we add a unity to the
bin (r1, r2) if ln( j − i) is between ln r1 − 1/2 and ln r1 + 1/2,
and ln(k − j) is between ln r2 − 1/2 and ln r2 + 1/2. This
procedure is repeated until the entire chain is decimated
and averaged over many disorder realizations. The histogram
|C(r1, r2)| is then a proxy to average value of Ci, j,k , i.e.,

|C(r1, r2)| = ∣∣〈σ x
i σ z

i+r1
σ z

i+r1+r2

〉∣∣. (42)

We plot in Fig. 6(a) the mean value of the spin correlation
C(r1, r2) as a function of the internal distances r1 and r2.
Clearly, the correlation is maximum when r1 = r2, as ex-
pected from symmetry.

In Fig. 6(b), we plot the diagonal correlation C(r, r), one of
the possible off-diagonal correlations C(r, 2r), the integrated
correlation

∑
r2

C(r, r2) = ∑
r1

C(r1, r), and the cluster-size
correlation

∑
r1

|C(r1, r − r1)| = ∑
r1,r2

δr,r1+r2 |C(r1, r2)|.
They all vanish algebraically ∼r−φ , with universal exponent
φ ≈ 1 but the off-diagonal correlations which vanishes as
C(r, 2r) ∼ r−ϕ with ϕ ≈ 1.85.

In Fig. 6(c), we plot the average correlation C(r1, r2) for
various values of r2. Interestingly, our numerical data indicate
that C(r1, r2) ∼ r−(ϕ−φ)

1 for fixed r2 and r1 
 r2.
Analyzing these exponents for other sample sizes, we esti-

mate their error to be of order 10%. Unfortunately, we do not
have an analytical derivation for these exponents.

How about the typical value of these correlations? Typi-
cally, the triad of spins in (42) are not decimated together and,
thus, develop quite weak correlations. As argued by Fisher
[33] and shown in many numerical works [18,94,100] for the
case p = 1, these weak correlations are of order of the typical
value of the coupling constants involved, Ctyp(r) ∼ Jtyp(r).
Very plausible, this is also the case for any p with the caveat
that more than one coupling constant is involved. Thus, Ctyp ∼
Jtyp(r1)Jtyp(r2) · · · Jtyp(rp). Thus, from the dynamical scaling
(10) we then conclude that the typical value of the correlations
decays stretched exponentially fast with the spin separations.
Roughly, we expect

Ctyp(r1, r2) ∼ e−A[�(r1,r2 )γD]ψ , (43)

where �(r1, r2) is a function which equals max{r1, r2} for
r1 
 r2 or r2 
 r1 and ≈cr when r1 ≈ r2 ≈ r (with c be-
ing a disorder-independent constant of order unity), γD is a
disorder-dependent Lyapunov exponent [18,94] related to the
clean-dirty crossover length [93], and A is a constant of order
unity.
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FIG. 6. Average value of the spin correlations (42). (a) The av-
erage value of the spin correlation |C(r1, r2)| [see Eq. (42)] as a
function of the internal spin-spin separations r1 and r2. (b) The av-
erage values of the diagonal |C(r, r)| (open circles), the off-diagonal
|C(r, 2r)| (stars), the integrated

∑
r2

|C(r, r2)| = ∑
r1

|C(r1, r)| (open

squares), and the cluster-size
∑

r1,r2
δr,r1+r2 |C(r1, r2)| (closed dia-

monds) correlations. (c) The average correlation |C(r1, r2)| as a
function of r1 for different values of r2. The system size is L = 315

averaged over 1 500 disorder realizations which is sufficient to yield
error bars of the size of the symbols. Solid lines are simply to guide
the eyes.

8. Generalization to p > 2

The usual SDRG method of Sec. IV B 1 can be easily
generalized to any p. The key point is that new effective
operators h̃ generated under the SDRG flow either commute
or anticommute and are of two-level type h̃2 = 1. In this

case, the only type of decimation that can take place is of
second order in perturbation theory, and, thus, the renormal-
ized coupling constants have the multiplicative structure of
Eq. (28). As a consequence, the relation between length and
timescales at a phase transition can only be of activated type
(10), meaning that, at sufficiently strong disorder where the
SDRG is applicable, the phase transition is governed by a
infinite-randomness fixed point.

The analysis of the block SDRG flow of Sec. IV B 1 allows
us to conclude that this infinite-randomness critical point has
tunneling exponent ψ = 1/2 and very different mean and
typical values of the correlation function for the cases p = 1
and 2. Although the generalization of the block SDRG method
to other values of p is not straightforward (as it involves many
nontrivial projections, see Appendix A), it is plausible to con-
jecture that the phase transitions for uncorrelated disorder are
governed by an analogous infinite-randomness critical point
for any p. The tunneling exponent is universal and equals
ψ = 1/2. It not only governs the dynamical scaling but also
the typical correlations. On the other hand, the exponent for
the mean correlation function is universal, i.e., disorder inde-
pendent, but does depend on the value of p.

A detailed and quantitative investigation of the critical
behavior and of the associated Griffiths phases is out of the
scope of the present work and is left for future research.

V. FINITE-SIZE GAP STATISTICS

In this section, we present our numerically exact results
on the spectral gap of the model Hamiltonian (1) for p = 2.
This quantity is computed from the roots of the polynomial as
described in Sec. II and compared with the SDRG predictions
described in Sec. IV B.

A. Technical details

We refer the reader to Ref. [12] for useful numerical
methods for calculating the roots of the polynomials (5) and
(6). We emphasize that our method allows us to evaluate
the finite-size gap in lattice sizes up to ∼107 sites in the
neighborhood of the transition lines with a numerical cost
that grows linearly with the system size competing with the
SDRG numerical cost. For systems that large, typically, the
polynomials (5) have coefficients spanning 500 orders of mag-
nitude. Therefore, the entire evaluation of these coefficients
can only be achieved using high numerical precision (500
digits). However, as shown in Ref. [12], we only need the
last 100 coefficients of the polynomial to obtain the finite-size
gap with quadruple standard numerical precision (32 digits).
When applying this method to our Hamiltonian, we found
it useful to keep the last coefficient of (5) always of order
unity. This was accomplished by factorizing these coefficients
when iterating the recursion relation (6). With that, the entire
procedure can be accomplished using only standard routines
in FORTRAN with quadruple precision.

B. Off-critical finite-size gap I

We start analyzing the off-critical Griffiths phases sketched
in the phase diagram of Fig. 2(b). For such, we study three sets
of chains: (set I) λA is uniformly distributed in the interval
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FIG. 7. Finite-size gap analysis of the Griffiths phases in
Fig. 2(b). The coupling constants {λA,i} are uniformly distributed in
the interval [0, 0.2] (set I), [0.2, 1.2] (set II), and [0.5, 1.5] (set III).
In all cases, {λB,i} are uniformly distributed in the interval [0.5, 1.5],
and λC is uniform and plays the role of a running parameter through-
out the Griffiths phases. (a) The typical finite-size gap ln � as a
function of the system size L for λC = 1. The data are averaged
over Nsamples = 6000 disorder realizations and the error bars are about
the size of the data points. Linear fits for the data are provided in
the legends from which the dynamical exponent z is obtained. The
best fits are restricted to system sizes L > 106. (b) The dynamical
exponent z as a function of the distance from criticality (36). Lines
are to guide the eyes. Inset shows the same data as in the main panel
but on a log-log scale. The dashed line is the SDRG asymptotic
behavior (δ � 1) z = 1/(2δ).

[0, 0.2]; (set II) λA is uniformly distributed in the interval
[0.2, 1.2]; (set III) λA is uniformly distributed in the inter-
val [0.5, 1.5]. In all cases, λB is distributed uniformly in
the interval [0.5, 1.5], and λC is a constant (running from
1.2 down to 0.9) which serves as a tuning parameter. The
running λC passes through the critical point λ∗ = λB,typ =
exp( 3 ln 3−2 ln 2

2 − 1) ≈ 0.95578 [see Eq. (36)] but does not
include it since the analysis of the critical system is reported
in other sections. Notice that set III of chains is critical for
λC < λ∗

C . For that reason, we consider only λC > λ∗
C in this

section.
In case I, we explore the interplay between the two

strongest couplings λB and λC while λA is a much weaker

FIG. 8. The typical value of the system gap � as a function of the
distance from criticality δ = ln(1 − λB ) for chains of different sizes
L. The coupling constants are such that λA is uniformly distributed in
the interval [0, 0.2], and λB and λC are homogeneous with λC = 1
and λB being the tuning parameter. The data are averaged over
Nsamples = 1500 disorder realizations. The error bars are about the
symbol sizes. Solid lines are simply to guide the eyes. The dashed
line is the clean behavior in the thermodynamic limit: � ∼ δφ� , with
φ� = 1.

coupling. The RRs are of B type inside a bulk in the C phase.
In case II, the value of λA is increased such that some RRs of A
type also appear. Finally, in case III, both RRs of A and B type
appear equally. At the final point λC = λ∗

C , the multicritical
point is reached.

In Fig. 7(a) we show the relation between ln � (with �

being the system finite-size gap) and the system size L for
λC = 1. From this, we can obtain the off-critical dynami-
cal exponent z by fitting � ∼ L−z to the data. Repeating
this procedure for other values of λC , we determine how z
diverges as the critical point is approached, see Fig. 7(b). It di-
verges as z ≈ 1/(2δ), with δ being the distance from criticality
as defined in (36). We emphasize that this numerically exact
result is in agreement with the SDRG analytical predictions in
the z → ∞ limit.

C. Off-critical finite-size gap II

We now study the case in which only one of the cou-
plings is disordered, say, λA uniformly distributed in the
interval [0, 0.2]. The corresponding phase diagram is shown
in Fig. 2(a). Here, we focus on the off-critical region near the
transition between the B and C phases. Notice that there are
no Griffiths phases surrounding the transition for sufficiently
small λA,typ. Thus, the gap is vanishing only at the transi-
tion point λB = λC . Closer to the multicritical point, Griffiths
phases appear.

We plot in Fig. 8 the typical value of the system gap
� as a function of the distance from criticality δ. Since λC

and λB are homogeneous, the definition (18) is not useful
because of the vanishing denominator. Here, we simply use
δ = ln(λC − λB). Also, we fix λC = 1 > max{λA} and use λB

as a running parameter. Notice that � diminishes as in the
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FIG. 9. The typical value of the finite-sized gap � as a function
of the system size L. The couplings λB and λC are nonrandom
and their values are given in the legends. The coupling λA is an
independent random variable uniformly distributed in the interval
[0, 0.9e] (thus, a typical value λA,typ = 0.9). The data are averaged
over Nsamples = 6000 disorder realizations. The error bars are about
the symbol sizes. Solid lines are best fits to Eq. (9) in the region
L > e12. The corresponding Griffiths dynamical exponents are given
in the legends.

clean system: � ∼ δ. For small δ, � saturates due to finite-
size effects, meaning that the correlation length is greater than
L. We recall that our method is not optimal for gapful systems.
This is because, the larger the gap, the larger the number of
coefficients required in the characteristic polynomial [12]. For
this reason, we studied chains of “small” sizes up to 10 267
sites.

Having shown the absence of Griffiths phases far from
the multicritical point (λC > max{λA}), we now show their
existence otherwise. We thus study chains in which λC = 1,
λA is uniformly distributed in the interval [0, eλA,typ], and
λB is the tuning parameter. We report that the finite-size gap
vanishes as � ∼ L−z [as in Fig. 7(a)], with the value of the
off-critical dynamical exponent z increasing up to a finite
value as the transition is approached, see Fig. 9. Notice that
far from the critical point λB = 1, the off-critical dynamical
exponent is practically insensitive to the distance from criti-
cality δ = 1 − λB as the low-energy behavior is dominated by
RRs which are locally in the A phase.

D. Critical finite-size gap statistics I

We now address the infinite-randomness critical lines, the
dashed lines in the phase diagram of Figs. 2(a) and 2(b). To
illustrate universality, we consider two cases: (chain A) λA

and λB are, respectively, uniformly distributed in the intervals
[0, 0.2] and [0.5, 1.5], and λC is homogeneous and equals
λB,typ = exp( 3 ln 3−2 ln 2

2 − 1) ≈ 0.95578 (ensuring criticality);
and (chain B) λA, λB, and λC are, respectively, uniformly
distributed in the intervals [0, 0.5], [0, 1], and [0, 1].

In Fig. 10 we plot the typical value of the finite-size gap
[and the corresponding Laguerre bound �LB, see Eqs. (7)–
(10)] for those critical chains as a function of the system size
L. As expected from the activated dynamical scaling (10),
the finite-size gap vanishes stretched exponentially fast with

FIG. 10. Finite-size gap � (and the corresponding Laguerre
bound �LB) as a function of the system size for chains A and B
(see text). The typical value is compatible with activated dynamical
scaling ln � ∼ −Lψ , with universal (disorder-independent) tunnel-
ing exponent ψ = 1/2, see dashed line and Eq. (37). The data are
averaged over Nsamples = 103 (4 × 104) disorder realizations for chain
A (B), and the error bars are about the symbol sizes.

a universal (i.e., disorder-independent) tunneling exponent
ψ = 1/2, compatible with the asymptotic behavior (L 
 1)
of our data. We call attention to the fact that � and �LB

become virtually indistinguishable for L 
 1. This feature
was already noticed for the case p = 1 [12]. We conjecture
that finite-size values of �LB → � for L → ∞ in the case
of infinite-randomness criticality. As argued in Ref. [12], this
is because the largest root of the characteristic polynomial
separates from the other ones as L increases. Thus, only the
few largest coefficients of the polynomial are necessary to
accurately compute it (see Sec. V A).

E. Critical finite-size gap statistics II

Here, we investigate the intriguing critical line in which the
two major couplings are uniform, i.e., the horizontal boundary
line in the phase diagram [Fig. 2(a)]. Thus, we take λB =
λC = 1 and λA uniformly distributed between 0 and eλA,typ.
The typical value of the A couplings, λA,typ, is used as a tuning
parameter and reaches the multicritical point when λA,typ = 1.

Our results are shown in Fig. 11. Clearly, sufficiently far
from the multicritical point (λA,typ � λ∗

A,typ ∼ 0.6) the critical
point is in the clean Ising universality class z = 1 [solid line
in Fig. 2(a)]. Approaching the multicritical point (λA,typ >

λ∗
A,typ), a line of finite-disorder fixed points [dotted line in

Fig. 2(a)] is tuned with varying critical dynamical exponent
z that diverges as the multicritical point is approached (see
inset). For comparison, we show the line z = (2γ )−1 as pre-
dicted by the SDRG method when γ = 1 − λA,typ → 0. This
seems to be the trend for γ � 0.01. We cannot rule out that
we are plagued by finite-size effect for smaller γ .

F. Multicritical finite-size gap statistics

Here, we finally investigate the multicritical point. We find
that in both phase diagrams of Fig. 2, the multicritical point is

214413-16



RANDOM FREE-FERMION QUANTUM SPIN CHAIN WITH … PHYSICAL REVIEW B 108, 214413 (2023)

FIG. 11. The typical value of the finite-size gap � as a function
of the system size L for chains with homogeneous coupling con-
stants λB = λC = 1 and {λA} uniformly distributed in the interval
[0, eλA,typ] for various values of the tuning parameter (from top to
bottom) λA,typ = 0.6, 0.8, 0.9, 0.95, 0.99, and 0.999. The data are
averaged over Nsamples = 104 disorder realizations and the error bars
are about the size of the symbols. The solid lines are best linear fits
to ln � ∼ −z ln L (constrained to L > e13) from which the critical
dynamical exponent is obtained (respectively, z = 1.00, 2.08, 4.56,
9.76, 19.48, and 49.82) and shown in the inset as a function of the
distance from the multicritical point γ = 1 − λA,typ.

of infinite-randomness type with universal tunneling exponent
ψ = 1/2.

In Fig. 12 we plot the distribution P of the finite-size
gap � properly rescaled according to Eq. (37) for various
system lengths and disorder parameters. Clearly, the scaling
variable η is sufficient to produce that data collapse for the
system sizes used, and this gives us further confidence on
the activated dynamical scaling (10) with universal (disorder-
independent) tunneling exponent ψ = 1/2. We notice, in
addition, that the probability distribution P is not universal
and is weakly dependent on the disorder details.5 Further-
more, P is quite different from the SDRG prediction Eq. (19)
for the transverse-field Ising chain (p = 1), even though they
are governed by the same infinite-disorder fixed point. Finally,
we report (not shown for clarity) that this distribution depends
on the modularity of the lattice size L, i.e., P (η) depends
on L mod 3. This is not a surprise since a similar difference
also appears in the clean system. There, the finite-size gap
amplitudes also depend on the modularity, i.e., � ∼ aL−z with
a ≡ a(L mod 3).

VI. CONCLUSIONS

We have studied the effects of quenched disorder on a
family of free fermionic models (1) with (p + 1)-multispin
interaction, paying special attention to the case p = 2

5It is highly nontrivial to understand those details even in the
simpler case of p = 1, as shown in Ref. [18]. It involves nonuniversal
quantities such as the crossover length between the clean and infinite-
randomness critical points.

FIG. 12. Finite-size gap distribution P for different system sizes
L. The finite-size gap � is rescaled according to the scaling variable
η in Eq. (37). The coupling constants are either homogeneous and
equal to e−1 or uniformly distributed in the interval [0, 1], as indi-
cated in the legends. The width σ0 is, respectively,

√
1/3,

√
2/3, and

1 in panels (a), (b), and (c). The normalized histograms were built
using 105 to 106 disorder realizations. The dashed line is the SDRG
prediction (19) for the transverse-field Ising chain (p = 1).

corresponding to the random version of the three-spin
interacting Fendley model.

When all the coupling constants are generically disor-
dered, the clean phase transitions (including the multicritical
points) are destabilized. The replacing transition is of
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infinite-randomness character where the critical dynami-
cal scaling is activated (10) with universal (disorder- and
p-independent) tunneling exponent ψ = 1/2. This exponent
governs the low-temperature singular thermodynamic behav-
ior. The average value of the correlation functions are also
universal and decay algebraically with the spin separations.
We do not have an analytical theory for those exponents and
a detailed study is left for future research. The typical value
of the correlations, on the other hand, behaves quite differ-
ently. It decays stretched exponentially fast with the spin-spin
separation. In addition, strong Griffiths singularities surround
the transitions. Although the system is noncritical with short-
range correlations, the spectral gap vanishes. The singularities
are related to the slow dynamics of the domain walls sur-
rounding the so-called rare regions. This phenomena is very
similar to the domain-wall-induced (or rare-regions-induced)
Griffiths singularities in the dimerized XXZ spin-1/2 chain
and in the random transverse-field Ising model.

When only one (of few) type of coupling constants are
disordered, the scenario is more involved. When the dis-
ordered coupling is weak, the singular critical behavior of
the clean system is stable and there are no surrounding
Griffiths phases. Upon increasing the magnitude of the dis-
ordered coupling, the universality of the transition changes
and is of finite-randomness character. The critical scaling is
power-law conventional (9) but with nonuniversal (disorder-
dependent) dynamical critical exponent z. The increasing of
the magnitude of the disordered couplings yields to another ef-
fect. It nucleates rare regions which contributes to off-critical
Griffiths singularities. Interestingly, the finite-randomness
criticality extends up to the multicritical point.

Although we have explicitly worked out those results for
the cases of p = 1 and 2, from symmetry grounds we expect
them to be valid for all p in the family model (1) for suf-
ficiently large disorder. Evidently, we cannot exclude other
scenarios appearing when p is very large and disorder is weak.

Finally, the agreement between our numerically exact re-
sults obtained for quite large lattice sizes (up to L ∼ 107

sites) with the “block” SDRG is remarkable. We stress that
the SDRG method is not an exact one. It took more than
a decade after its conception to realize that it can provide
asymptotically exact critical exponents and other universal
quantities. This was accomplished comparing the SDRG with
exact diagonalization of a few models such as the transverse-
field Ising chain and the XX spin-1/2 chain and for moderate
lattice sizes (L ∼ 103) and the Heisenberg chain (L ∼ 200).
Here, we have the rare opportunity to show that this is also
true for a different family of models and for quite large chains.

We believe that our method for evaluating the finite-size
gaps for large system sizes with minimal numerical cost (∼L)
will be a useful tool to study the effects of disorder in the
phase transitions of other systems.
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APPENDIX A: THE BLOCK STRONG-DISORDER
RENORMALIZATION-GROUP METHOD

Here, we derive another SDRG decimation procedure. We
follow the idea of Ref. [59] where a larger block spin is con-
sidered. It was initially devised to enable the SDRG approach
to tackle cases where the bare disorder in the system is weak.
It was important to correct the SDRG flow from nonphysical
features introduced by the simpler perturbative approach (as
in Sec. IV). Here, this approach has a fundamentally different
appeal. It consider the largest spin block in which there are
only two energy levels. The projection is, thus, onto a richer
ground-state which may capture additional features neglected
in the simplest approach.

1. Case p = 1

Let us start with the simpler case where p = 1. For conve-
nience we rewrite the Hamiltonian as

H =
∑

i

{−λA,ihA,i − λB,ihB,i}, (A1)

where hA,i = σ x
2i−1σ

z
2i and hB,i = σ x

2iσ
z
2i+1.

Following the SDRG philosophy, we search for the local
Hamiltonian which exhibits the largest energy gap between
its two energy levels. As the largest spin block still exhibit-
ing only two energy levels is either −λA,ihA,i − λB,ihB,i or
−λB,ihB,i − λA,i+1hA,i+1, we then define the energy cutoff as
� = max{(λ2

A,i + λ2
B,i )

1/2}.6
Say that � = (λ2

A,2 + λ2
B,2)1/2. In this case, we treat H0 =

−λA,2hA,2 − λB,2hB,2 exactly and project the operators H1 =
−λB,1hB,1 − λA,3hA,3 onto its ground-state subspace. More
precisely, we are interested in the projections of
the operators σ z

3 and σ x
5 . The ground-state subspace

of H0 is spanned by |s3, s5〉 = |s3〉 ⊗ (cos θ |↑4〉 +
sin θ |↓4〉) ⊗ |s5〉, where σ x

3 |s3〉 = s3|s3〉, σ z
5 |s5〉 = s5|s5〉,

cos θ = λB,2s5/
√

2�(� − λA,2s3), and sin θ = (� −
λA,2s3)/

√
2�(� − λA,2s3). The projected operators are, thus,

σ̃ z
3 = |λB,2|σ̃ z/� and σ̃ x

5 = −λA,2σ̃
x τ̃ x/�, where the effective

spin-1/2 degrees of freedom σ̃ and τ̃ span the ground-state
subspace with σ̃ x|s3, s5〉 = s3|s3, s5〉 and τ̃ z|s3, s5〉 =
s5|s3, s5〉. Therefore, the renormalized Hamiltonian is

H̃1 = −λ̃B,1h̃B,1 − λ̃A,3h̃A,3, (A2)

where h̃B,1 = σ x
2 σ̃ z, h̃A,3 = σ̃ x τ̃ xσ z

6 , λ̃B,1 = λB,1|λB,2|/�, and
λ̃A,3 = −λA,2λA,3/�. Notice that the algebra (3) is preserved
in the renormalized system. In addition, the extra degree
of freedom τ̃ appears only in h̃A,3, and, thus, we interpret
the renormalized chain as being two new chains where the
renormalized operators are h̃B,1 = σ x

2 σ̃ z, h̃A,3 = σ̃ xσ z
6 in

6We could have defined � = max{(λ2
A,i + λ2

B,i )
1/2, (λ2

B,i +
λ2

A,i+1)1/2}. Since we are interested in the regime where, due to
disorder, very likely neighbor couplings are very distinct from each
other, the exact definition is of no importance.
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both chains. The corresponding renormalized couplings are
λ̃B,1 = λB,1|λB,2|/� and λ̃A,3 = ∓λA,2λA,3/�.

In the regime of interest where λA,2 and λB,2 are very
distinct from each other, say, λB,2 
 λA,2, then � → |λB,2|,
the renormalized operator σ̃ → σ3, and the renormalized
couplings become λ̃B,1 = λB,1 and λ̃A,3 = ∓λA,2λA,3/|λB,2|,
which recovers the usual SDRG result (15). If, on the other
hand, λB,2 � λA,2, then � → |λA,2| and the renormalized
couplings become λ̃B,1 = λB,1|λB,2|/|λA,2| and λ̃A,3 = ∓λA,3,
which, at first glance, does not seem to recover the usual
SDRG result (15). This is not the case. One can correct the
signs of the couplings by appropriately redefining the effective
spin-1/2 degrees of freedom σ̃ and τ̃.

In sum, the block SDRG approach here derived is similar
to the usual SDRG derived in Sec. IV A. Qualitatively, they
are the same in the sense that two original operators are
removed from the system in each decimation step and that
the renormalized couplings are smaller than the original ones
(both approaches are self-consistent). The only difference is
quantitative: the effective couplings are renormalized differ-
ently. However, this difference vanishes in the strong-disorder
limit.

2. Case p = 2

The Hamiltonian of interest is

H =
∑

i

{−λA,ihA,i − λB,ihB,i − λC,ihC,i}, (A3)

where hA,i = σ x
3i−2σ

z
3i−1σ

z
3i, hB,i = σ x

3i−1σ
z
3iσ

z
3i+1, and hC,i =

σ x
3iσ

z
3i+1σ

z
3i+2.

Following the block SDRG philosophy, we search for
the largest local coupling � = max{|λA,i|, |λB,i|, |λC,i|}, say,
� = |λB,2|, and consider the largest block of operators which
still exhibits only two energy levels. Thus, we consider
as unperturbed Hamiltonian H0 = −λA,2hA,2 − λB,2hB,2 −
λC,2hC,2. The renormalized system is obtained by projecting
hB,1, hC,1, hA,3, and hB,3 onto the ground-state subspace of H0.

The construction of the eigenstates of H0 is straightfor-
ward but tedious. There are only two energy levels with
energies ±E , where E = (λ2

A,2 + λ2
B,2 + λ2

C,2)1/2. Each level
is 24 degenerate as H0 involves 5 spins-1/2 (spins σ4,5,...,8).
The ground-state manifold is the set {|gs4,s,s7,s8〉} where
|gs4,s,s7,s8〉 = |s4, s7, s8〉 ⊗ |ss4,s7,s8〉 since H0 is diagonal in the
operators σ x

4 , σ z
7 , and σ z

8 . Here, σ x
4 |gs4,s,s7,s8〉 = s4|gs4,s,s7,s8〉,

σ z
7 |gs4,s,s7,s8〉 = s7|gs4,s,s7,s8〉, σ z

8 |gs4,s,s7,s8〉 = s8|gs4,s,s7,s8〉, and
the two states |ss4,s7,s8〉 (s = ±1) encodes the states of spins
5 and 6. They are

|±s4,s7,s8〉 = |a�s〉 + |b�s〉
2
√

1 + 〈b�s|a�s〉
± |a�s〉 − |b�s〉

2
√

1 − 〈b�s|a�s〉
,

where

|a�s〉 = |as4,s7,s8〉 = N−[λC,2s7s8|→5,↑6〉
+ (E − λB,2s7)|→5,↓6〉 − λA,2s4|←5,↓6〉],

|b�s〉 = |bs4,s7,s8〉 = N+[(E + λB,2s5)|→5,↑6〉
+ λC,2s7s8|→5,↓6〉 + λA2s4|←5,↑6〉],

N± = 1/
√

2E (E ± λB,2s7) are normalization constants, and
〈b�s|a�s〉 = s7s8λC,2/(λ2

A2 + λ2
C2)1/2.

We define the four spin-1/2 operators σ̃4, σ̃, σ̃7, and σ̃8

which span the ground-state subspace in the following man-
ner: σ̃ x

4 |gs4,s,s7,s8〉 = s4|gs4,s,s7,s8〉, σ̃ z|gs4,s,s7,s8〉 = s|gs4,s,s7,s8〉,
σ̃ z

7 |gs4,s,s7,s8〉 = s7|gs4,s,s7,s8〉, and σ̃ z
8 |gs4,s,s7,s8〉 = s8|gs4,s,s7,s8〉.

We are now ready to project the H1 onto the ground states
of H0. Let us start by projecting the operator σ z

4 . The matrix
element is

〈gt4,t,t7,t8 |σ z
4 |gs4,s,s7,s8〉

= δs4,−t4δs7,t7δs8,t8〈t−s4,s7,s8 |ss4,s7,s8〉

= δs4,−t4δs7,t7δs8,t8√
λ2

A,2 + λ2
C,2

(
−|λA,2|λB,2s7sδs,t

E
+ s7s8λC,2δs,−t

)
.

Thus, the projected operator is

σ̃ z
4

⎛
⎜⎝− |λA,2|λB,2

E
√

λ2
A,2 + λ2

C,2

σ̃ zσ̃ z
7 + λC,2√

λ2
A,2 + λ2

C,2

σ̃ xσ̃ z
7 σ̃ z

8

⎞
⎟⎠.

Similarly, projecting σ x
8 , σ x

7 σ z
8 , and σ z

4σ z
5 we obtain, respec-

tively,

|λA,2|√
λ2

A,2 + λ2
C,2

σ̃ x
8 − λB,2λC,2

E
√

λ2
A,2 + λ2

C,2

σ̃ yσ̃
y
8 ,

|λA,2|
E

σ̃ x
7 σ̃ z

8 , and − sign(λA,2)
λC,2

E
σ̃

y
4 σ̃ yσ̃ z

7 σ̃ z
8 .

Collecting all those terms, we find that H̃1 = −λ̃B,1h̃B,1 −
λ̃C,1h̃C,1 − λ̃A,3h̃A,3 − λ̃B,3h̃B,3, where

λ̃C,1 = −sign(λA,2)
λC,1λC,2

E
, h̃C,1 = σ x

3 σ̃
y
4 σ̃ yσ̃ z

7 σ̃ z
8 ,

λ̃A,3 = |λA,2|λA,3

E
, h̃A,3 = σ̃ x

7 σ̃ z
8σ z

9 ,

λ̃B,1h̃B,1 = λB,1σ
x
2 σ z

3 σ̃ z
4

⎛
⎜⎝λC,2E σ̃ xσ̃ z

8 − |λA,2|λB,2σ̃
z

E
√

λ2
A,2 + λ2

C,2

⎞
⎟⎠σ̃ z

7 ,

λ̃B,3h̃B,3 = λB,3

⎛
⎜⎝ |λA,2|E σ̃ x

8 − λB,2λC,2σ̃
yσ̃

y
8

E
√

λ2
A,2 + λ2

C,2

⎞
⎟⎠σ z

9σ z
10.

a. The algebra of the renormalized operators

As in the simpler SDRG approach (Sec. IV B) the
algebra (3) is not preserved. However, it is almost pre-
served. The only operators changing the algebra structure
are the operators h̃B,1 and h̃B,3. They anticommute with the
nearest- and next-nearest-neighbor operators and commute
with the farther-neighbor operators, preserving the algebra
(3). However, they do not commute with each other.
Instead, [λ̃B,1h̃B,1, λ̃B,3h̃B,3] ∝ λB,1λA,2λC,2λB,3/E2. Interest-
ingly, in the regime |λB,2| 
 |λA,2|, |λC,2| (which is the one
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we are interested in), they can be considered commuting op-
erators since

[λ̃B,1h̃B,1, λ̃B,3h̃B,3]

EB,1EB,3
is of order O

(
λA,2λC,2

λ2
B,2

)
→ 0, (A4)

where ±EB,1 (±EB,3) are the energy levels of h̃B,1 (h̃B,3).
Precisely,

EB,1 = |λB,1|
√

λ2
C,2

λ2
A,2 + λ2

C,2

+ λ2
A,2

λ2
A,2 + λ2

C,2

(
λB,2

E

)2

.

The value of EB,3 is that of EB,1 with λB,1 replaced by
λB,3 and λA,2 interchanged with λC,2. In the regime |λB,2| 

|λA,2|, |λC,2|, then EB,1 ≈ |λB,1| and EB,3 ≈ |λB,3|. In addition,
the renormalized operators simplify to

h̃B,1 = σ x
2 σ z

3 σ̃ z
4

⎛
⎜⎝λC,2σ̃

xσ̃ z
8 − sign(λB,2)|λA,2|σ̃ z√

λ2
A,2 + λ2

C,2

⎞
⎟⎠σ̃ z

7 , (A5)

h̃B,3 =

⎛
⎜⎝ |λA,2|σ̃ x

8 − sign(λB,2)λC,2σ̃
yσ̃

y
8√

λ2
A,2 + λ2

C,2

⎞
⎟⎠σ z

9σ z
10, (A6)

and the corresponding renormalized couplings are simply
λ̃B,1 = λB,1 and λ̃B,3 = λB,3.

It is important to notice that the commutator (A4) is van-
ishing only when |λB,2| 
 |λA,2|, |λC,2|. In any other regime,
it is of order unity. This justifies the choice of the block
Hamiltonian H0. Having localized the largest coupling in
the system, the block must take into account the nearest
neighbors.

Having devised a decimation procedure that preserves the
algebra (3), we now show further simplifications which ap-
pear at and near the critical points. At or near the transition
lines of Fig. 2(b), one of the couplings are much smaller
than the competing ones. Without loss of generality, say that
|λC,2| � |λA,2|. Near the multicritical point, on the other hand,
all couplings are of the same order of magnitude. However,
under renormalization, the effective disorder is large. Thus,
very likely either |λA,2| 
 |λC,2| or |λA,2| � |λC,2|. Without
loss of generality, let us consider that |λC,2| � |λA,2|.

Thus, the regime |λB,2| 
 |λA,2| 
 |λC,2| is quite general
near and at the transitions. In that case the B-type operators
and renormalized coupling constants simplify to

λ̃B,1 = −sign(λB,2)λB,1, h̃B,1 = σ x
2 σ z

3 σ̃ z
4 σ̃ zσ̃ z

7 ,

λ̃B,3 = λB,3, and h̃B,3 = σ̃ x
8 σ z

9σ z
10.

An analogous simplification is obtained in the case |λA,2| �
|λC,2| after a convenient redefinition of σ̃.

As a final simplification, notice that the new effective
degrees of freedom σ̃4 and σ̃ appear only in h̃B,1 and
h̃C,1 with the combination σ̃ z

4 σ̃ z and σ̃
y
4 σ̃ y which commute

with each other. Thus, we can diagonalize the system in
those degrees of freedom. The eigenstates are (|↑4,↑∼〉 ±
|↓4,↓∼〉)/

√
2 and (|↑4,↓∼〉 ± |↑4,↓∼〉)/

√
2. This means that

we can fix the degrees of freedom of spins 4 and 5 in one of

these states and obtain four different effective Hamiltonians,
namely,

H̃1 = ±λB,1h̃B,1 ± λ̃C,1h̃C,1 − λ̃A,3h̃A,3 − λB,3h̃B,3, (A7)

where the renormalized operators are h̃B,1 = σ x
2 σ z

3 σ̃ z
7 , h̃C,1 =

σ x
3 σ̃ z

7 σ̃ z
8 , h̃A,3 = σ̃ x

7 σ̃ z
8σ z

9 , and h̃B,3 = σ̃ x
8 σ z

9σ z
10, and the renor-

malized couplings are

λ̃C,1 = λC,1λC,2

�
and λ̃A,3 = |λA,2|λA,3

�
. (A8)

The decimation procedure (A7) and (A8) is depicted in
Fig. 4(a).

b. On the difference between the usual and block strong-disorder
renormalization-group approaches

At first glance, the block SDRG approach here devised
is not qualitatively different from usual SDRG described in
Sec. IV B. Clearly, it has the advantage, however, of pro-
viding a clear reason for neglecting the new operator h̃AC in
Eq. (27) near and at the phase transitions. Analyzing a bit
further the differences between these approaches, we notice
that the usual SDRG method generates a hybrid operator h̃AC

originated from A- and C-type original operators. No such
operator is generated in the block SDRG method. Instead, the
B-type operators (A5) and (A6) are actually B-type operators
plus AB- and CB-type operators as well. These hybrid oper-
ators, however, in the regime of different local energy scales
(|λB,2| 
 |λA,2| 
 |λC,2|) can be neglected. The reason is the
following: Consider, for instance, the terms inside parentheses
in Eq. (A5), clearly, the term originating the AB-type operators
(the first term) can be viewed as a small tilt to the molecular
field of the B-type operator (the second term). In the regime
|λA,2| 
 |λC,2|, this small transverse molecular field can be
neglected.

This possibility of neglecting a hybrid operator in detri-
mental of a “pure” one does not appear in the usual SDRG.
Maybe because the local Hilbert space (that of H0) is not
large enough to accommodate more than one possibility of
renormalization.

APPENDIX B: SIMPLIFIED STRONG-DISORDER
RENORMALIZATION-GROUP FLOW

In this section, we consider the simplified version of the
SDRG decimation procedure for the p = 2 case. As stated in
Sec. IV B, the first decimation is such that five operators are
removed h1,2,...,5 and three new ones are inserted h̃1,2,3 in the
system (see Fig. 4). If, for some reason, one could neglect h̃2,
the algebra structure would not change after decimation. This
allows for a simplification of the problem. The new operator
h̃1 (h̃3) corresponds to a renormalization of the couplings on
the sites 3i − 2 (3i − 1). We then can write an equation for
the transformation of the coupling constant distributions. The
transformation for the distribution of the couplings 3i − 2
when the cutoff � diminished to � − d� is

PA(λ,� − d�)N = PA(λ,�) + RB[PA] + RC[PA],
(B1)

where N is a normalization constant (which we define later)
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and

RX [PY] =PX (�,�)d�

∫
dλ1dλ4PY(λ1,�)PY(λ4,�)

×
[
−δ(λ − λ1) − δ(λ − λ4) + δ

(
λ − λ1λ4

�

)]
,

(B2)

is a functional quantifying the change in PY when
a X -type coupling constant is decimated. Here,
PX (�,�)PY (λ1)PY (λ4)d�dλ1dλ4 is the probability
of having the decimation of an X -type coupling which
involves the neighboring Y -type couplings λ1 and λ4. We
need to sum over all possibilities for the values of these
neighboring couplings. The first two deltas correspond
to the removal of these Y -type couplings. The last one
corresponds to the addition of the renormalized coupling
λ̃ = λ1λ4/�.

The normalization constant is important to keep the distri-
bution PA normalized after the cutoff is reduced. Integrating
both sides of Eq. (B1) from λ = 0 to � − d�, the left-hand
side (l.h.s.) is simply N . Up to linear order in d�, the r.h.s.
is 1 − (PA(�,�) + PB(�,�) + PC (�,�))d�. This is the
expected result if one counts that a decimation of type B
removes a net fraction of PB(�,�)d� couplings of type
A. In addition, a decimation of A type removes a fraction of
PA(�,�)d� couplings of type A. The beta function for the
distribution PA simplifies to

−∂PA

∂�
= PA(�)PA − PB∪C (�)(PA − PA ⊗ PA),

(B3)

where PX (�) = PX (�,�), PX = PX (λ,�), PB∪C (�) =
PB(�) + PC (�), and

PA ⊗ PA =
∫

dλ1dλ4PA(λ1,�)PA(λ4,�)δ

(
λ − λ1λ4

�

)
.

(B4)

The equivalent equations for PB,C are obtained by exchang-
ing A � B and A � C.

At criticality, PA = PB = PC and, thus,

∂PA

∂�
= PA(�)(PA − 2PA ⊗ PA).

Using the ansatz

PA = 1

z(�)�

(
�

λ

)1−1/z(�)

, (B5)

then

1

PA

∂PA

∂�
= − ż

z
− 1

z�
+ ż

z2
ln

�

λ
,

PA ⊗ PA = �

∫ �

λ

dx

x
PA(x)PA

(
λ�

x

)
= PA

z
ln

�

x
,

ż

z
+ 1

z�
− ż

z2
ln

�

λ
= − 1

z�
+ 2

1

z2�
ln

�

x
.

Thus,

ż

z
= − 1

z�
− 1

z�
, and ż = − 2

�
,

which are the same. So the ansatz is acceptable. Then,

z(�) = D + 2�,

where � = ln(�0/�) and D = z(�0).
The relation between the number of coupling constants and

the cutoff energy scale is

N (� − d�) = N (�) − 3N (�)PA(�)d�,

which simplifies to

d ln N

d�
= 3PA(�) = 3

z�
,

from which we obtain

ln
N (�)

L
= −3

2
ln

D + 2�

D
.

Thus,

� ≡ L

N
=

(
1 + 2�

D

) 1
ψ

,

with tunneling exponent ψ = 2/3 > 1/2.
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Phys. Rev. B 90, 125141 (2014).

[93] N. Laflorencie, H. Rieger, A. W. Sandvik, and P. Henelius,
Phys. Rev. B 70, 054430 (2004).

[94] A. H. O. Wada and J. A. Hoyos, Phys. Rev. B 105, 104205
(2022).

[95] F. Iglói, R. Juhász, and P. Lajkó, Phys. Rev. Lett. 86, 1343
(2001).

[96] J. A. Hoyos, A. P. Vieira, N. Laflorencie, and E. Miranda,
Phys. Rev. B 76, 174425 (2007).

[97] D. Pekker, G. Refael, E. Altman, E. Demler, and V.
Oganesyan, Phys. Rev. X 4, 011052 (2014).

[98] L. Fidkowski, H.-H. Lin, P. Titum, and G. Refael, Phys. Rev.
B 79, 155120 (2009).

[99] F. Iglói, Phys. Rev. B 65, 064416 (2002).
[100] P. Henelius and S. M. Girvin, Phys. Rev. B 57, 11457 (1998).

214413-23

https://doi.org/10.1103/PhysRevB.90.125141
https://doi.org/10.1103/PhysRevB.70.054430
https://doi.org/10.1103/PhysRevB.105.104205
https://doi.org/10.1103/PhysRevLett.86.1343
https://doi.org/10.1103/PhysRevB.76.174425
https://doi.org/10.1103/PhysRevX.4.011052
https://doi.org/10.1103/PhysRevB.79.155120
https://doi.org/10.1103/PhysRevB.65.064416
https://doi.org/10.1103/PhysRevB.57.11457

