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Dynamical structure factor of the SU(4) algebraic spin liquid on the honeycomb lattice
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We compute the momentum-resolved dynamical spin structure factor S(k, ω) of the SU(4) Heisenberg model
on the honeycomb lattice assuming the π -flux Dirac spin liquid ground state by using two methods: (i) variation-
ally using Gutzwiller projected particle-hole excitations of the π -flux Fermi sea, and (ii) in the noninteracting
parton mean-field picture. The two approaches produce qualitatively similar results. Based on this analogy, we
argue that the energy spectrum of the projected excitations is a gapless continuum of fractional excitations.
Quantitatively, the Gutzwiller projection shifts the weight from higher to lower energies, thus emphasizing
the lower edge of the continuum. In the mean-field approach, we obtained the 1/distance4 decay of the spin
correlation function, and the local correlations show S33

MF(ω) ∝ ω3 behavior.
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I. INTRODUCTION

Early on, Li et al. pointed out that the highest symmetry
that transition-metal compounds with S = 1/2 spins and de-
generate eg orbitals per site can have is SU(4) [1]. They can
be described by the SU(4) symmetric Heisenberg model,

H = J
∑
〈i, j〉

15∑
a=1

T a
i T a

j , (1)

where the summation is over the 〈i, j〉 nearest-neighbor sites,
and T a

i , with a = 1, 2, . . . , 15, are the generators of the SU(4)
Lie algebra in the four-dimensional fundamental (also known
as defining) representation. Realizing such a high symmetry
in real materials is not guaranteed. It is suggested that the
spin-orbital interactions for face-sharing MO6 octahedra in
[2] and the Jeff = 3/2 quartets in the d1 electron configu-
rations in the strong spin-orbit coupling limit [3] may lead
to SU(4) symmetry. Fermionic cold atoms in optical lattices
also provide promising systems by tailoring the exchange be-
tween S = 3/2 atoms [4], and with alkaline earth atoms [5–7].
Recently, the SU(4) Heisenberg model has been proposed
to describe the low-energy properties of magic-angle twisted
graphene [8,9] and metal dichalcogenide bilayers [10–12].

The ground state of the SU(4) Heisenberg model de-
pends on the underlying lattice. The one-dimensional SU(4)
Heisenberg chain is critical, with algebraically decaying spin
correlations [13,14], although the phase diagram of one-
dimensional alkaline-earth atoms is more complex [15]. In
coupled chains (ladders), singlet plaquettes made of four spins
appear, a feature typical of SU(4) spins [16–19]. The ground
state is dimerized on the square lattice and breaks the SU(4)
symmetry [20]. The model’s fate on the triangular lattice,
initially considered for LiNiO2 in Ref. [21], is still open.
References [12,22,23] suggest the importance of the SU(4)
singlet plaquettes, but a gapless uniform [24] or stripy [23,25]

spin liquid phase, and a trimerized state breaking the flavor
symmetry [26], are also possible candidates.

On the honeycomb lattice, exact diagonalization of small
clusters and iPEPS calculations found no evidence for sym-
metry breaking, and a Gutzwiller projected π -flux parton
Fermi sea was proposed as the ground state [27]. This was
also confirmed by parton mean-field [28] and DMRG [29]
studies, and it was found to be robust to small anisotropies
[30]. However, a finite-temperature DMRG calculation re-
vealed evidence for gap opening [31,32].

II. MEAN-FIELD GROUND STATE

In the fermionic parton mean field [33], the SU(4) spin
operators in Eq. (1) are decomposed into fermions,

T a
i = 1

2

4∑
α,β=1

c†
i,αλa

α,βci,β , (2)

where the 4×4 matrices λa generalize the eight SU(3)
Gell-Mann matrices [34] to SU(4). In the fundamental rep-
resentation, a singly occupied site with a fermion of flavor
α ∈ {1, 2, 3, 4} represents a spin basis state α, and the system
is quarter-filled. We obtain the mean-field approximation by
substituting Eq. (2) into the Hamiltonian (1) and replacing a
pair of fermionic operators with their expectation value. We
consider the time-reversal invariant ansatz [27]

HMF =
4∑

α=1

∑
〈i, j〉

ti, jc
†
i,αc j,α, (3)

where each hopping amplitude is real with ti, j = ±|t |, and the
signs of the hoppings are shown in Fig. 2(b). The energy of
the quarter-filled honeycomb lattice is minimal for the π -flux
state [35], when the product of the hopping amplitudes around
any plaquette is negative. In the reciprocal space, the HMF is
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FIG. 1. (a) The reciprocal space of the honeycomb lattice. The
reduced Brillouin zone (a quarter of the honeycomb lattice Brillouin
zone) originates from the eight-site unit cell of the π -flux HMF. The
structure factor is fully characterized by its behavior in the extended
zone. The momenta of the points K1 and K2 are (±2π/3, 2π/

√
3).

The dots are the k-points of the Ns = 72 site cluster; we plot the
structure factor along the magenta path. (b) The twofold-degenerate
bands of the parton mean-field theory, defined by Eq. (4), in the
reduced Brillouin zone, with Dirac cones at λ = ±√

3t and k = 0.
The tiny spheres represent the (λk, k) points for the fermions on
the 72-site cluster with antiperiodic boundaries. Instead of the D6

symmetry, only the D2 remains; the green dashed lines show the
invariant reflections. The arrows indicate the lowest energy particle-
hole excitations with nonvanishing weight at the M and �′ momenta.

an eight-by-eight matrix with the characteristic polynomial

0 = (
λ4

k − 6t2λ2
k + t4γk

)2
, (4)

where

γk = 3 + 2 cos 2k · a1 + 2 cos 2k · a2 + 2 cos 2k · [a1 + a2].

(5)

The one-particle spectrum λk consists of four bands, each
doubly degenerate, as shown in Fig. 1(b). The quarter-
filled π -flux Fermi sea |πFS〉 fills the lowest band up
to the Dirac Fermi point at k = 0. Solving the ti, j =
J

∑
β〈πFS|c†

i,βc j,β |πFS〉 self-consistency equation, we get
t = (0.7712 ± 0.0002)J in the thermodynamic limit, in agree-
ment with Ref. [28]. The |πFS〉 also contains charge
fluctuations, i.e., sites with multiple occupancies that do
not map to a spin state. To go beyond the mean-field ap-
proximation, one enforces single occupancy by applying the
Gutzwiller projector PG to |πFS〉. The projective symmetry
group classification on the honeycomb lattice and its stability
analysis for the SU(2) case found that the Dirac spin liquid is
an unstable ground state [36,37]. For SU(4), the fluctuations
around the mean-field solution are weaker, so the ansatz may
become stable (the possible instabilities of the π -flux state on
the honeycomb lattice are discussed in Refs. [38,39]).

Here we extend the study of the SU(4) Heisenberg model
on the honeycomb lattice by including Gutzwiller projected
particle-hole excitations above the π -flux Fermi sea. These
states represent fractionalization within the fermionic par-
ton construction and have been used in [40–47] to describe
the dynamics of SU(2) quantum spin liquids. In [48], we
have shown that projected particle-hole excitations capture the
main features of the dynamical structure factor of the SU(3)

FIG. 2. (a) A D6 symmetric eight-site cluster of the honeycomb
lattice with periodic boundary conditions, containing four unit cells,
each with a basis of two sites (A and B). The arrows show the
primitive vectors a1 and a2. (b) The minimal, eight-site cluster of
π -flux HMF with a basis A, B, . . . , H, invariant under a C3 rotation
and translations by 2a1 and 2a2. The black and white bonds represent
hopping amplitudes of opposite signs; their product around a plaque-
tte is negative, −|t |6. (c) Antiperiodic boundary condition reverses
the signs of the hoppings crossing the cluster’s boundary, shown with
the green line. (d) The hoppings with periodic boundary conditions
used in Ref. [27]. They are gauge equivalent to those on (c) if one
reverses the sign of the fermionic operators on sublattices A and
G (black circles). For certain cluster sizes, the equivalence requires
antiperiodic boundary conditions. (e) The hopping amplitudes after
a C6 rotation around the center of the middle hexagon, (f) reflec-
tion about the vertical axis, and (g) and (h) translations by a1 and
a2. For periodic boundaries, gauge transformations where fermionic
operators on sublattices marked with black circles get multiplied by
a minus sign restore the original hopping structure (b).

Heisenberg chain. Below, we implement the method to the
SU(4) honeycomb model, calculate the dynamical structure
factor, and argue that the spectrum is gapless at the M and M ′
points.

Before proceeding to the actual calculation, let us briefly
review the projective symmetries of the π -flux ansatz. The
basis of the honeycomb lattice consists of two sites, with basis
vectors δA = (0, 0) and δB = (0, 1√

3
). The position of site

j is r j = R j + δd j , where R j = Rj1a1 + Rj2a2 is a Bravais
lattice vector and d j ∈ {A, B}. The C6 sixfold rotation, the σ

reflection (generating the D6 point group), and the elementary
translations T1 and T2 by the primitive vectors a1 = (1, 0) and
a2 = (− 1

2 ,
√

3
2 ) shown in Fig. 2(a) generate the p6m wallpaper

group of the lattice. However, the π -flux HMF (3) and |πFS〉
break some of these symmetries. The hopping structure shown
in Fig. 2(b) requires a quadrupled unit cell containing a basis
of eight sites, with a remaining C3 point group. In addition to
geometrical symmetries, we can apply gauge transformations
to the fermions. A site-dependent, but flavor-independent,
transformation G : c†

j,α → eiφ( j)c†
j,α leaves the spin operators

in Eq. (2) unchanged. One can use this gauge redundancy to
restore the symmetries of HMF if the symmetry operations
g ∈ {C6, σ, T1, T2} are combined with an appropriate gauge
transformation Gg ∈ {GC6 , Gσ , GT1 , GT2

} into g̃ ≡ Ggg, so
that

HMF = GggHMFg−1G−1
g = g̃HMFg̃−1. (6)
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This is the projective symmetry introduced in Refs. [49,50].
The existence of a gauge transformation Gg, for which HMF

has projective symmetry for g̃, guarantees that the expectation
values of spin operators and their correlation functions are
symmetric under g.

The condition imposed by Eq. (6) is equivalent to

ti, j = eiφg(i)tg−1(i),g−1( j)e
−iφg( j), (7)

where the fermionic operators transform as

g̃c†
m,αg̃−1 = eiφg[g(m)]c†

g(m),α. (8)

Figures 2(e)–2(h) illustrate the effect of the symme-
try operations on the hopping amplitudes tm,nc†

m,αcn,α →
tm,nc†

g(m),αcg(n),α drawn in Fig. 2(b). The sign changes fol-
lowing a symmetry operation can be reversed by multiplying
each fermionic operator on the sublattices marked with black
circles by minus signs as c†

j,α → −c†
j,α and c j,α → −c j,α .

These minus signs can then be transferred to the hopping
amplitudes ti, j connected to the site j. These are the gauge
transformations we are looking for, so HMF of Eq. (3)
has projective symmetry for all generators {C6, σ, T1, T2}.
The sign patterns are periodic in 2a1 and 2a2 and fit
into the quadrupled unit cell of Fig. 2(b). For translations,
the signs can be written as eiφT1 ( j) = eiQ1·r j and eiφT2 ( j) =
eiQ2·r j , where Q1 = (π,−√

3π ) and Q2 = (π,
√

3π ) are the
momenta of the M ′ points at the edge of the extended
Brillouin zone; see Fig. 1. The gauge transformation of any
symmetry operation can be found by applying the generators
{C6, σ, T1, T2} one after the other, using that for a product
g1g2 of the g1 and g2 symmetry operations

g̃2(g̃1c†
m,αg̃−1

1 )g̃−1
2 = eiφg2 [g2g1(m)]eiφg1 [g1(m)]c†

g2g1(m),α

= eiφg2g1 [g2g1(m)]c†
g2g1(m),α. (9)

Unfortunately, the |πFS〉 is degenerate for periodic boundary
conditions. Imposing antiperiodic boundaries, as shown in
Fig. 2(c), makes the variational ground state unique, although
it breaks the projective symmetries for the sixfold rotation and
some of the reflections (see Appendix C for details). Conse-
quently, the spin correlation function 〈πFS|T 3

R,d T 3
R′,d̄ |πFS〉 is

symmetric only under translations and the D2 point group,
which is also confirmed by numerical results. Since the
asymmetry is due to the boundary conditions, we expect the
restoration of the D6 symmetry in the thermodynamic limit, in
agreement with the numerics.

III. DYNAMICAL STRUCTURE FACTOR

The momentum-resolved dynamical spin structure factor at
zero temperature is defined by

S33(k, ω) =
∑

f

∣∣〈 f |T 3
k |GS〉∣∣2

δ(ω + EGS − E f ), (10)

where the sum is over the final states | f 〉 of H with energies
E f , |GS〉 denotes the ground state with energy EGS, T 3

k =
1√
Ns

∑
R,d eik·(R+δd )T 3

R,d is the Fourier transform of the

T 3
R,d = 1

2 (c†
R,d,1cR,d,1 − c†

R,d,2cR,d,2) (11)

diagonal spin operator on the sublattice d , as defined in
Eq. (2), and Ns denotes the number of lattice sites in the
cluster. S33(k, ω) satisfies the sum rule (see Appendix B)∑

k∈eBZ

∫
S33(k, ω)dω = 3

16
Ns, (12)

where the sum is over all k vectors in the extended Brillouin
zone (eBZ) shown in Fig. 1(a).

Following Refs. [40,41,44], we construct an approximation
to the states | f 〉 by diagonalizing the Hamiltonian in a Hilbert
subspace spanned by Gutzwiller-projected particle-hole states
with momenta k,

|k; α; R, d; d̄〉 = PG

∑
R′

eik·R′
T̃R′

1
1 T̃R′

2
2 c†

R,d,α
c

0,d̄,α
|πFS〉

= PG

∑
R′

eik·R′
ei(R′

1Q1+R′
2Q2 )·(R+δd +δd̄ )

× (−1)ξ (R,R′ )c†
R+R′,d,α

c
R′,d̄,α

|πFS〉, (13)

where R′ = R′
1a1 + R′

2a2 and d, d̄ ∈ {A, B}. The

ei(R′
1Q1+R′

2Q2 )·(R+δd +δd̄ )(−1)ξ (R,R′ ) comes from T̃R′
1

1 T̃R′
2

2 using
Eq. (9), eiQ1,2·2a1,2 = 1, and T̃l |πFS〉 = |πFS〉. The (−1)ξ (R,R′ )

accounts for the boundary conditions; it is always +1 for
periodic boundaries, while for antiperiodic boundaries we
get −1 when R is inside the cluster, but R + R′ crosses the
antiperiodic boundaries an odd number of times (it comes
from the GAPBC

Tl
hidden in T̃l ; see Appendix C). The states

|k; 153; R, d; d̄〉 ≡ 1
2

(|k; 1; R, d; d̄〉 − |k; 2; R, d; d̄〉) (14)

belong to the 15-dimensional adjoint irreducible representa-
tion of SU(4), while the

∑4
α=1 |k; α; R, d; d̄〉 are singlets. We

calculate the overlap 〈k; 153; R, d; d̄|k; 153; R′, d ′; d̄ ′〉 and
the Hamiltonian matrix 〈k; 153; R, d; d̄|H|k; 153; R′, d ′; d̄ ′〉
by Monte Carlo sampling. Solving the generalized eigen-
value problem provides the excitation energies E f and
the states | f 〉, from which we can calculate 〈 f |T 3

k |GS〉 =∑
d eik·δd 〈 f |k; 153; 0, d; d〉, as Eq. (11) implies. Repeating the

same using the singlet states, we get the singlet excitation
energies. For details, see Ref. [48].

We have compared the S33(k, ω) calculated by this varia-
tional method and by exact diagonalization for a small 16-site
cluster in Fig. 3, where for a well-chosen boundary condition
[Fig. 3(c)] the lowest energy excitations seem to be quite
similar in the two cases. Figure 4(a) displays the variational
S33(k, ω) for a 72-site cluster. We can recognize towers at low
energies centered at the M and M ′ points in the Brillouin zone
and at higher energies at the �′ points. We will discuss these
features in more detail in the next section.

IV. MEAN-FIELD DYNAMICAL STRUCTURE FACTOR

To get an insight into the structure of S33(k, ω), we cal-
culated the dynamical structure factor for the mean-field
Hamiltonian (3). Since the HMF describes noninteracting
fermions, the S33

MF(k, ω) in Eq. (10) can be evaluated exactly.
The |πFS〉 is a filled sea of one-particle states, and the exci-
tations correspond to moving particles from the Fermi sea to
the unoccupied bands. Thus moving a flavor-α fermion creates
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FIG. 3. (a),(b) The Ns = 16 site clusters with different antiperi-
odic boundaries (dashed green lines) which change the sign of the
hoppings they cross. (c) The S33(k, ω) for the 16-site clusters in
(a), calculated by the variational method (blue circles) and by exact
diagonalization (black circles). The red crosses indicate the lowest
singlets, from which we can see that the variational ground-state
energy of the |πFS〉 state is close to the ED ground-state energy,
which is at ω = 0. (d) The S33(k, ω) for the 16-site clusters in (b); in
this case, the agreement is not so good. We expect the sensitivity to
the boundary conditions to decrease with larger clusters.

the excitation c†
k+q,n,αcq,n′,α|πFS〉 with momentum k, where

the band indices are n′ ∈ {1, 2} and n ∈ {3, . . . , 8} [the bands
are twofold degenerate, in Fig. 1(b) the color of the lowest
energy band with n = 1, 2 is green, the second band with n =
3, 4 is cyan, the third one with n = 5, 6 is red, and the highest
band with n = 7, 8 is yellow]. As shown in Appendix A, using
the

c†
R,d,α

=
√

8

Ns

∑
q∈rBZ

e−iq·Rc†
q,d,α

, (15)

we get

S33
MF(k, ω) = 1

2Ns

∑
q∈rBZ

n∈{3,...,8}
n′∈{1,2}

∣∣∣∣∣
H∑

d=A

eik·δd v∗
k+q,n,dvq,n′,d

∣∣∣∣∣
2

× δ(ω − λk+q,n + λq,n′ ), (16)

where vq,d,n are the coefficients of the one-particle eigen-
state of HMF created by c†

q,n,α = ∑H
d=A vq,n,d c†

q,d,α
in a band

FIG. 4. The dynamical structure factor (a) S33(k, ω) from the
variational calculation and (b) S33

MF(k, ω) [Eq. (16)] for the mean-field
case for a 72-site cluster, along the magenta path in the reciprocal
space [see Fig. 1(a)]. The area of the circles is proportional to the
weights S33(k, ω). The color of the circles in (b) corresponds to
the colors of the bands of the particle in Fig. 1(b), while the filled
areas denote the support in the thermodynamic limit. The blue +
denotes the lowest-lying excitations of the kind |k; 153; R, d; d̄〉 with
no weight, and the red crosses are the lowest singlets. The mean-
field singlet and 153 particle-hole excitations have equal energies.
(c) Comparison of the static structure factor S33(k) = ∫

S33(k, ω)dω

from the variational and mean-field picture, together with the ED
result for the 24-site cluster from Ref. [27]. The correlations are
smaller in the mean-field case than in the projected case, due to
charge fluctuations in |πFS〉, as explained in Appendix B. The Monte
Carlo errors in (a) and (c) are smaller than the symbol sizes.

with index n, with momentum q and energy λq,n. The in-
dex of the basis sites takes eight values d ∈ {A, . . . , H}, in
accordance with a unit cell of the HMF drawn Fig. 2(b).
The reduced Brillouin zone (rBZ) of the eight-site unit cell
contains Ns/8 momenta and it is the smallest hexagon in
Fig. 1(a); it determines the periodicity of the bands and
the excitation energies. For example, a particle-hole exci-
tation with k = 0 in the reduced Brillouin zone describes
excitations not only at the � point in the reciprocal space
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but also at the M, M ′, �′, etc., points. The eik·δd phases
in the matrix elements make the weight of excitation in
the S33

MF(k, ω) periodic with Q = (4π, 0) and (2π,±2π
√

3),
i.e., S33

MF(k, ω) = S33
MF(k + Q, ω). So it is enough to calculate

the S33(k, ω) and S33
MF(k, ω) within the extended Brillouin

zone; see Fig. 1(a). We evaluated Eq. (16) numerically for
the same cluster used for the variational calculation, and the
resulting S33

MF(k, ω) is presented in Fig. 4(b). As explained in
Appendix B, the mean-field sum rule is smaller than in the
projected case, Eq. (12), due to charge fluctuations in |πFS〉,∑

k∈eBZ

∫
S33

MF(k, ω)dω = 9

64
Ns. (17)

First, we concentrate on the low-energy behavior of S33(k, ω)
and S33

MF(k, ω). The lowest energy peaks are at the M and M ′
points in the extended Brillouin zone, as shown in Figs. 4(a)
and 4(b). In the mean-field picture, they originate from the
particle-hole excitation c†

q,ncq,n′ |πFS〉 from the top of the
Fermi sea (n′ = 1, 2) to the lowest unoccupied states at the
bottom of the Dirac cone in the second band (n = 3, 4), high-
lighted by the arrow labeled ωM in Fig. 1(b). The precise
analysis is complicated by the necessity of the antiperiodic
boundary condition for the mean-field problem; the mo-
menta of the fermions are shifted relative to the momenta in
S33(k, ω). No momentum is available at the � point; the Dirac
point cannot be occupied. Instead, there are two available
momenta near the Dirac Fermi point, both for the holes and
for the particles [the symmetry of the mean-field problem
is the D2, and the dashed green lines in Figs. 1(a) and 1(b)
represent the reflections]. Consequently, instead of a single
peak, three peaks appear at the bottom of each tower at the
M, M ′, and around the � and �′ points. We can see these
peaks along the �′

1-M ′
3-�′

2 path in Fig. 4(b) and at the same
energy for the S33

MF(k, ω). These peaks are also present in the
variational calculation in Fig. 4(a), but compared to the mean-
field case, the weights of the satellite peaks are smaller, and
their energies increased. In the thermodynamic limit, the two
momenta near the Dirac-Fermi point merge; therefore, it is
intuitively clear why the mean-field energy spectrum becomes
gapless. The finite-size scalings of the gaps at the M ′ and �

points for the projected case suggest a 
(k) ∝ L−1 + O(L−3)
scaling (though the error bars are large, as shown in Fig. 5),
which would imply a gapless spectrum, just like in the mean-
field case. The projected spectrum may have a gap if the
Gutzwiller projector is able to open the gap. Since the dif-
ferences between the projected and mean-field calculations
become smaller with increasing N , if the Gutzwiller projector
cannot open a gap in the SU(2) case, we do not expect a
gap in the SU(4) case either. While we are not aware of a
finite-size scaling analysis of the gap in the SU(2) case, the
gapless feature of the projected spectrum is quite convincing
in Refs. [44,47,51–53].

Overall, the energy spectrum is very similar in the
two cases. We can think of the towers as the analogs of
the two-spinon continuum of the one-dimensional S = 1/2
Heisenberg model. Let us also note that for the staggered-
flux SU(2) Dirac spin liquid on the triangular lattice, the
Gutzwiller projector gives rise to a well-pronounced low-

FIG. 5. In the variational calculation, the L
(k) at the M ′ and
� points tend to a finite value, indicating that the gap probably
vanishes as 
(k) ∝ L−1, just like in the mean-field case. Similarly,
the weights at the bottom of the towers at the M ′ and M points
probably scale as S33[k, 
(k)] ∝ L−1, unlike in the mean-field case.
However, the error bars in both cases are too big to draw definitive
conclusions. The straight lines go through the 32- and 72-site results
and serve as a guide to the eye. The number of independent samples
(separated by a number of elementary steps corresponding to the
correlation time) for sizes 32, 72, and 128 were approximately 109,
108, and between 108 and 109, respectively.

energy mode apart from the continuum, which has no
counterpart in the mean-field case [47,54], reflecting the van-
ishing role of charge fluctuations in the large-N limit [33].

The main difference between S33
MF(k, ω) and S33(k, ω) is

in the distribution of the weights. For the projected case,
there is a tendency to intensify the lower energy weights, thus
making the lower edge of the towers more prominent. The
lowest energy weight of S33

MF(k, ω) at the M ′ points scales as
1
3 L−2 + O(L−4), and at the M points as 5

24 L−2 + O(L−4), in
Ns = 2L2 clusters. However, the scaling of the lowest weight
in the projected calculations seems to follow a different
scaling, S33[k,
(k)] ∝ L−1 + O(L−3), as shown in Fig. 5.
Unfortunately, the large error bars do not allow a more precise
determination of the finite-size scalings. We also found that
at low energies, the local S33

MF(ω) = ∑
k

∫
S33

MF(k, ω) within a
tower above the M and M ′ wave vectors is proportional to the
degeneracy (the number of particle-hole excitations with the
same ω), ignoring finite-size corrections. Consequently, the∫ ω

0 S33
MF(ω′)dω′ ∝ ω4 and from this the S33

MF(ω) ∝ ω3 follows.
However, the matrix elements in Eq. (16) are not all equal at
a given ω.

At the �′ points, three excitations with nonzero weight
appear one above the other at relatively high energy for both
the mean-field and the projected cases, shown in Figs. 4(a)
and 4(b). Again, the projected calculations show a weight
shift from higher to lower energies. Analyzing the mean-field
case, the lowest peak with nonzero weight comes from the
particle-hole excitation c†

q,ncq,n′ |πFS〉 with a fermion being
moved from the top of the Fermi sea (n′ ∈ {1, 2}) to the lowest
unoccupied states at the bottom of the Dirac cone in the
highest energy band (n ∈ {7, 8}), indicated by the ω�′ arrow
in Fig. 1, so that ω�′ → 2

√
3t ≈ 2.67J in the thermodynamic

limit.
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Even though the towers are located at the M and M ′ points,
the static spin structure factor

S33(k) =
∫

S33(k, ω)dω

= 〈πFS|PGT 3
−kT 3

k PG|πFS〉 (18)

has maxima only at the M ′ points in the form of a cusp.
Physically, we may attribute the cusp to a short-range four-
sublattice order [27]. We also compared the static structure
factors: the projected one with the exact one for the 24-site
cluster from Ref. [27], and the mean-field and the projected
one for larger system sizes in Fig. 4(c). The mean-field static
spin correlations of |πFS〉 decay as 1/distance4, typical be-
havior for systems with Dirac Fermi points [33,55]. This leads
to a |k − kM′ |2 log |k − kM′ |-like weak singularity in S33

MF(k),
which is not visible in Fig. 4(c). For comparison, according
to [27], the static correlations of PG|πFS〉 decay with distance
with power between −4 and −3, giving a cusp and a notice-
able finite-size dependence at the M ′ point.

V. CONCLUSION

In conclusion, we calculated the dynamical structure factor
S(k, ω) in the SU(4) Heisenberg model on the honeycomb lat-
tice, assuming the π -flux Dirac spin liquid variational ground
state. We find a qualitative agreement between the mean field
and the Gutzwiller projected variational treatment, indicating
the vanishing importance of charge fluctuations as the num-

ber of flavors increases. Besides the gapless continuum of
excitations originating from the Dirac cones, a similar contin-
uum appears at higher energies in S(k, ω). The projection’s
primary effect is shifting the weights to lower energies. In
the mean-field calculation, we recovered the algebraic decay
of the spin correlations SMF(r) ∝ 1/r4 with the distance r
expected for a filled Dirac Fermi sea, and we obtained the
SMF(ω) ∝ ω3 behavior for the local dynamical correlations.
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APPENDIX A: DERIVATION OF S33
MF(k, ω)

The Bravais lattice vectors of the quadrupled unit cell of the
mean-field Hamiltonian HMF are R = R12a1 + R22a2, with
R1, R2 integers, and the indices of the sites in the basis are
d ∈ {A, . . . , H}. Substituting

T 3
k = 1√

Ns

∑
R,d

eik·(R+δd )T 3
R,d

= 1√
Ns

∑
R,d

eik·(R+δd ) 1

2

(
c†

R,d,1cR,d,1 − c†
R,d,2cR,d,2

)
(A1)

into Eq. (10), we get

S33
MF(k, ω) = 1

Ns

∑
f

∣∣∣∣∑
R,d

eik·(R+δd ) 1

2
〈 f |c†

R,d,1cR,d,1 − c†
R,d,2cR,d,2|πFS〉

∣∣∣∣
2

δ(ω + EπFS − E f ), (A2)

where Ns is the number of lattice sites. Using c†
R,d,α

≡ 1√
NC

∑
q e−iq·Rc†

q,d,α
(where NC = Ns/8 is the number of quadrupled unit

cells), we obtain

S33
MF(k, ω) = 1

NsNC

∑
f

∣∣∣∣ ∑
d

q,q′∈rBZ

eik·δd
∑

R

ei(k−q′+q)·R 1

2
〈 f |c†

q′,d,1cq,d,1 − c†
q′,d,2cq,d,2|πFS〉

∣∣∣∣
2

δ(ω + EπFS − E f ), (A3)

where q and q′ are wave vectors in the reduced Brillouin zone (rBZ), but k can be anywhere in the extended Brillouin zone (eBZ),
shown in Fig. 1(a). Therefore, we get

∑
R ei(k−q′+q)·R = NCδq′,k+q+Q, where Q is the reciprocal-lattice vector which maps the

wave vector k + q ∈ eBZ back to the reduced Brillouin zone. Thus, we will hide the wave vector Q and write everywhere k + q,
which is meant to be mapped back into the reduced Brillouin zone. Consequently,

S33
MF(k, ω) = 1

4Ns

∑
f

∣∣∣∣∑
d

eik·δd
∑

q

〈 f |c†
k+q,d,1cq,d,1 − c†

k+q,d,2cq,d,2|πFS〉
∣∣∣∣
2

δ(ω + EπFS − E f ). (A4)

The one-particle eigenstate of HMF in band n with momentum q and energy λq,n can be written as a linear combination
c†

q,n,α|0〉 = ∑H
d=A vq,n,d c†

q,d,α
|0〉, where |0〉 is the vacuum. Inverting this relation, we have c†

q,d,α
|0〉 = ∑8

n=1 v−1
q,d,nc†

q,n,α|0〉 =∑8
n=1 v∗

q,n,d c†
q,n,α|0〉, where we used that the matrix composed of the coefficients vq,n,d is unitary, namely v−1

q,d,n = v∗
q,n,d . From

these relations, we get

c†
k+q,d,α

cq,d,α
|πFS〉 =

(
8∑

n=1

v∗
k+q,n,d c†

k+q,n,α

)(
8∑

n′=1

vq,n′,d cq,n′,α

)
|πFS〉.

Therefore, we can write

S33
MF(k, ω) = 1

4Ns

∑
f

∣∣∣∣∑
d

eik·δd
∑

q

∑
n,n′

v∗
k+q,n,dvq,n′,d〈 f |c†

k+q,n,1cq,n′,1 − c†
k+q,n,2cq,n′,2|πFS〉

∣∣∣∣
2

δ(ω + EπFS − E f ). (A5)
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The states |1〉 = c†
k+q,n,1cq,n′,1|πFS〉 and |2〉 =

c†
k+q,n,2cq,n′,2|πFS〉 are multiparticle eigenstates of
HMF having the same excitation energy E f − EπFS =
λk+q,n − λq,n′ . For k �= 0 these states are orthogonal
because they represent particle-hole excitation of different
flavors. However, for k = 0 they are equal, since then
|α〉 = c†

q,n,αcq,n′,α|πFS〉 = δn,n′nq,n′,α|πFS〉 = δn,n′ |πFS〉 for
both α ∈ {1, 2}, where nq,n′,α is the density of flavor α.
Consequently, S33

MF(k = 0, ω) = 0, reflecting the singlet
nature of the Fermi sea. The c†

k+q,n,αcq,n′,α|πFS〉 may be
finite only when n ∈ {3, . . . , 8} and n′ ∈ {1, 2}, because
only the twofold-degenerate lowest energy band fills the
Fermi sea, |πFS〉 = �q�

2
n=1�

4
α=1c†

q,n,α|0〉. Therefore, we

can restrict the values of n and n′ in
∑

n,n′ to
∑8

n=3

∑2
n′=1.

The states | f 〉 giving a nonzero value are of the form
| f 〉 = |k, q̃, ñ, ñ′, α̃〉 = c†

k+q̃,ñ,α̃cq̃,ñ′,α̃|πFS〉, for which we get

〈 f |(c†
k+q,n,1cq,n′,1 − c†

k+q,n,2cq,n′,2)|πFS〉
= (1 − δk,0)δq̃,qδñ,nδñ′,n′ (δα̃,1 − δα̃,2). (A6)

The sum
∑

f can be replaced by
∑

q̃

∑8
ñ=3

∑2
ñ′=1

∑
α̃=1,2,

and the sums
∑

q

∑8
n=3

∑2
n′=1 in the absolute value squared

disappear due to δq̃,qδñ,nδñ′,n′ in Eq. (A6). The sum over
∑2

α̃=1
gives a factor of 2 since the absolute value squared is the same
for both α̃ = 1, 2. Eventually, the dynamical structure factor
in the mean-field approach reads

S33
MF(k, ω) = 1

2Ns

∑
q̃

8∑
ñ=3

2∑
ñ′=1

∣∣∣∣∣
∑

d

eik·δd v∗
k+q̃,ñ,dvq̃,ñ′,d

∣∣∣∣∣
2

× δ(ω − λk+q̃,ñ + λq̃,ñ′ ), (A7)

where we can leave off the˜notation for convenience.

APPENDIX B: SUM RULES

As we stated in Eqs. (12) and (17), the sum rules are
different in the projected and the mean-field cases. This
Appendix shows how the charge fluctuations affect the sum
rule for the mean-field case for a general SU(N ) model in the
fundamental representation. The sum rule is defined as∑
k∈eBZ

S33(k) =
∑

k∈eBZ

〈GS|T 3
−kT 3

k |GS〉 (B1)

=
∑

k∈eBZ

1

Ns

∑
R,d
R̄,d̄

eik·(R+δd −R̄−δd̄ )〈GS|T 3
R,d T 3

R̄,d̄ |GS〉.

Using the relation∑
k∈eBZ

eik·(R+δd −R̄−δd̄ ) = NkδR,R̄δd,d̄ , (B2)

where Nk = 3
2 Ns is the number of wave vectors in the ex-

tended Brillouin zone, we get∑
k∈eBZ

S33(k) = 3

2

∑
R,d

〈GS|T 3
R,d T 3

R,d |GS〉 (B3)

= 3

2

∑
R,d

1

N2 − 1

N2−1∑
a=1

〈GS|T a
R,d T a

R,d |GS〉,

where in the last step we assume that the ground state does not
break the SU(N ) symmetry [i.e., it is an SU(N ) singlet]. The
sum rule is proportional to the value of the quadratic Casimir
operator, defined as

Ĉ2 =
N2−1∑
a=1

T aT a. (B4)

The Casimir operator is diagonal in an irreducible representa-
tion, Ĉ2 = C2I, where the identity matrix I has the dimension
of the irreducible representation, which is N in the funda-
mental one. We can get the value of C2 by taking the trace
Tr Ĉ2 = C2Tr I = C2N . Furthermore, using the normalization
of spin operators [56]

Tr T aT b = 1
2δa,b, (B5)

we get that Tr Ĉ2 = ∑N2−1
a=1 Tr T aT a = (N2 − 1)/2. Thus, in

the fundamental representation of SU(N ), the Casimir opera-
tor takes the value

C2 = N2 − 1

2N
. (B6)

The sum rule then reads∑
k∈eBZ

S33(k) = 3

2

∑
R,d

1

N2 − 1
C2 = 3Ns

4N
, (B7)

resulting in Eq. (12) for N = 4.
In the case of the mean-field hopping Hamiltonian of

Eq. (3), the value of the quadratic Casimir operator is reduced
due to the charge fluctuations in |πFS〉. To calculate its precise
value, let us substitute the fermionic parton representation of
the SU(N ) spin operators [Eq. (2) for N = 4] into the Casimir
operator

N2−1∑
a=1

T aT a = 1

4

N2−1∑
a=1

N∑
α,β,

γ ,ε=1

c†
αλa

α,βcβc†
γ λa

γ ,εcε , (B8)

where we omit the site indices for convenience. Using the
relation

∑N2−1
a=1 λa

α,βλa
γ ,ε = 2δα,εδβ,γ − 2

N δα,βδγ ,ε [56], we get

N2−1∑
a=1

T aT a =
N∑

α,γ=1

(
1

2
c†
αcγ c†

γ cα − 1

2N
c†
αcαc†

γ cγ

)
. (B9)

Rearranging the order of the fermionic operators results in

N2−1∑
a=1

T a
R,d T a

R,d = N + 1

2
nR,d − N + 1

2N
n2

R,d , (B10)

where nR,d ≡ ∑N
α=1 c†

R,d,α
cR,d,α

is the fermionic density oper-
ator on the site r = R + δd . For a singly occupied site (nR,d =
1), we get

∑N2−1
a=1 T a

R,d T a
R,d = N2−1

2N , implying that a singly
occupied site represents a spin correctly (strictly speaking,
one would also check the higher-order Casimir operators).
However, we get different values for the Casimir operator for
other occupation numbers. To calculate the expectation value∑N2−1

a=1 〈πFS|T a
R,d T a

R,d |πFS〉 we have to consider all the pos-
sible occupations with their probabilities. Since the fermions
are uncorrelated in the mean-field approach (i.e., each flavor
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of fermions occupies a site independently of the other flavors),
the probability that r fermions occupy a site is determined by
the binomial distribution Pbinom(r) = (N

r

)
pr (1 − p)N−r , where

p = 1/N is the probability that one of the flavors occupies this
site. Thus

N2−1∑
a=1

〈πFS|T a
R,d T a

R,d |πFS〉

=
N∑

r=0

Pbinom(r)

(
N + 1

2
r − N + 1

2N
r2

)
(B11)

=
(

N2 − 1

2N

)(
1 − 1

N

)
(B12)

for any site. The above equation shows that the deviation
from the proper value of the quadratic Casimir operator in
the fundamental representation is a factor 1 − 1

N . We note that
this is an average, as the probability of multiply occupied sites
(r > 1) is nonzero even in the large-N limit, since the bino-
mial distribution Pbinom(r) approaches the Poisson distribution
with parameter λ = N p = 1. For N = 4, the expectation value
of the Casimir operator is 45/32. Therefore, the sum rule is

∑
k∈eBZ

S33
MF(k) = 3

2

∑
R,d

1

15

45

32
= 9

64
Ns, (B13)

as written in Eq. (17).

APPENDIX C: PROJECTIVE SYMMETRY IN THE CASE
OF ANTIPERIODIC BOUNDARY CONDITION

We impose antiperiodic boundary conditions as shown in
Figs. 2(c) and 6(a), which changes the sign of the hoppings
crossing one of the cluster’s boundaries. After these sign
changes, Eq. (7) will still hold for the T2 translations and
the two reflections about the antiperiodic boundary and per-
pendicular to it (the two reflections generate the D2 point
group, which also includes a C2 rotation), but it will no longer
hold for the T1, C6, and the remaining reflections if we use
the same gauge transformations as we used in the case of
periodic boundary conditions. However, we can satisfy Eq. (7)
for T1 if we multiply by −1 the gauge phases eiφT1 ( j) at the

FIG. 6. (a) A 32-site cluster containing four quadrupled unit
cells shown in Fig. 2(b), where the black and white bonds repre-
sent hopping amplitudes of opposite sign. The green line shows
the antiperiodic boundary, which flips the sign of the hoppings ti, j

crossing it (highlighted in green). (b) The translation T1 by the
primitive vector a1 acts on the fermionic operators as T1c†

i = c†
T1(i)

and all the hoppings are shifted to the right, in the direction of
a1. For periodic boundaries, the gauge transformation GPBC

T1
, which

multiplies by −1 the fermionic operators on the sublattices B, C,
F, and G, restores the original hopping configuration, according to
Fig. 2(g) and Eq. (7). However, for an antiperiodic boundary, we must
consider the hoppings crossing the green line that were flipped in
(a) and shifted to the right in (b). Combining the GPBC

T1
with the sign

reversal of the fermionic operators highlighted by green along the
boundary, we get the gauge transformation GAPBC

T1
. The sign reversal

of the fermionic operators marked with solid circles restores the
initial hopping configuration of (a) and provides the phases in Eq. (7)
for the antiperiodic case.

locations marked by green circles in Fig. 6(d). Regarding the
C6 rotations and the reflections about the other axis, we could
not find a way to restore the projective symmetry. Indeed, the
numerical calculation of the structure factor confirms the D2

point group symmetry for antiperiodic boundary conditions,
providing further support for the absence of gauge transfor-
mations that would restore the full D6 point group.

Note that the boundary conditions of the fermionic opera-
tors do not affect the periodic boundary condition of the spin
operators, as can be understood from Eq. (2).
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