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Resonant inelastic x-ray spectroscopy (RIXS) has emerged as an important tool to explore magnetism in two-
dimensional (2D) antiferromagnets realized in strongly correlated materials. Here, we consider the Heisenberg
model with nearest- and next-nearest-neighbor hopping relevant to the study of magnetic excitations of the
cuprate family. We compute the RIXS cross-section within the ultrashort core-hole lifetime expansion of the
Kramers-Heisenberg scattering amplitude that allows a perturbative solution within linear spin wave theory
(LSWT). We report detailed results for both spin-conserving and nonconserving channels. Apart from the widely
discussed single-magnon and bimagnon contributions, we show that three-magnon contributions in the spin-
nonconserving channel are useful to explain certain features of the RIXS data for 2D cuprates. We confirm the
qualitative correctness of the LSWT conclusions for the three-magnon excitation with exact diagonalization. In
this paper, we put constraints on the dispersion of the three-magnon in the Brillouin zone, opening avenues for
realizing higher modes of quasiparticles using RIXS.
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I. INTRODUCTION

Strongly correlated materials are known to host
exotic quantum phenomena such as superconductivity,
strange metallicity, confinement, and deconfinement.
Two-dimensional (2D) cuprates are known to host a number
of such properties and are one of the most studied materials
in the condensed matter community [1,2]. More recently,
superconductivity has also been discovered in the infinite
layer (IL) nickelates, which is proposed as a cuprate analog
[3]. Superconductivity in 2D iridates has also been proposed
due to their similarity to cuprates but has yet to be realized
[4]. The magnetism in these 2D materials is understood to
play a central role in these exotic phenomena [5–7].

Resonant inelastic x-ray scattering (RIXS) has become
an important tool in the recent past to explore magnetism
in such strongly correlated materials [8,9]. The Kramers-
Heisenberg (KH) formalism employed to simulate the RIXS
cross-section is complex and makes interpreting RIXS data
challenging [9–15]. Significant progress has been made in
exploring quantum magnets using RIXS after the realization
that it can allow for single spin-flip excitations at the L edge
in cuprates [16–18] The ultrashort core-hole life (UCL) ex-
pansion of RIXS maps the cross-section to spin-conserving
(SC) and nonspin-conserving (NSC) channels at the Cu L
edge [13,19–22]. On the experimental side, progress has been
made to resolve the polarization of the scattered RIXS spec-
tra, therefore allowing for the filtering of spin-flip excitations
[23,24]. Significant progress has been made in exploring the
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higher-order corrections in the SC channel RIXS, as this
channel dominates the edge that does not allow for single
spin flips [12,25,26]. However, there is limited work explor-
ing the higher-order corrections in the NSC channel. The
SC channel has been successful in identifying four-spinons
in one-dimensional (1D) cuprates [12,26,27], multitriplons
in a spin ladder [28–30], and multimagnons in 2D cuprates
[31] in the phase space beyond traditional probes such as
inelastic neutron scattering (INS), as this channel is usually
inaccessible. On the other hand, the NSC channel of RIXS
is usually understood to be equivalent to the INS probe, and
the higher-order contributions have not been explored in the
literature for the 2D cuprates. Recently, a number of exper-
iments have reported multimagnons, attributing higher-order
multimagnons in the RIXS cross-section [31,32].

Exploring the contributions of higher-order excitations
has also greatly interested the INS community. For ex-
ample, four-spinon contributions were reported in the INS
response of 1D cuprates [33,34] and multitriplons in spin
ladder cuprates [35,36]. The features beyond the conventional
magnons were interpreted as fractionalized magnon excita-
tions in 2D cuprates [37].

There has been a renewed interest in exploring the RIXS
cross-section for the 2D cuprates [31,38–41]. Recently, RIXS
has been used to characterize the influence of apical oxygen
in different cuprates [39] by characterizing the features at
higher energies at (π, 0), using further nearest neighbors.
The anomalous feature in 2D cuprates has been identified
as fractional spin excitations [41]. In the past, some of the
features in the inelastic neutron spectra have been attributed
to fractionalized spin excitations arising from magnon-
magnon interactions [37]. This leads to complications in
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interpreting the additional features observed in RIXS ex-
periments. Motivated by the recent identification of various
correlation functions for the higher-order contributions in the
UCL expansion of the KH formalism in 1D cuprates [19], we
here explore these correlation functions in the context of 2D
Heisenberg antiferromagnets (AFMs), realized in 2D cuprates
[31] and IL nickelates [6].

In this paper, we report the distinct magnetic excitations
realized in the SC and NSC channels of the UCL expansion of
the RIXS cross-section employing standard linear spin-wave
theory (LSWT) for 2D AFM Heisenberg Hamiltonian. We
find the weakly dispersing multimagnon excitation reported
for La2CuO4 in Ref. [31] can be qualitatively understood as
originating from three-magnon excitation from our analysis.
We further validate these conclusions with exact diagonaliza-
tion (ED).

Our paper is organized as follows. In Sec. II, we intro-
duce the spin model for the 2D Heisenberg AFMs explored
in this paper and present the mapping of the spin Hamilto-
nian to magnons. We also introduce the response functions
for the corrections in UCL expansion of the RIXS cross-
section explored in this paper. In Sec. III, we present and
discuss the results for the NSC and SC channels of RIXS
cross-section evaluated using LSWT. We also compare the
NSC channel LSWT results with ED for consistency. Finally,
in Sec. IV, we conclude our findings and comment on the
recent Cu L-edge data of 2D cuprates reported in the literature.

II. METHOD

The 2D AFMs realized in 2D cuprates consist of CuO2 pla-
quettes. The corresponding one-band Hubbard model can be
mapped to the spin-half Heisenberg model and can very well
capture the low-energy spin dynamics realized in materials
[11,42–44]. We, therefore, start with the 2D spin model on
a square lattice given by

H0 = J1

∑
〈i j〉

Si · S j + J2

∑
〈〈i j〉〉

Si · S j . (1)

Here, 〈· · · 〉 and 〈〈· · · 〉〉 indicate the sum over nearest-neighbor
(NN) and next-nearest-neighbors (NNN) sites, respectively.
J1 and J2 are the superexchange couplings between NN and
NNN sites. Also, Si is the spin at site i. We assume the z axis
as the quantization axis for the AFM and consider a bipartite
lattice for the AFMs, with sublattices A and B. In this paper,
we consider an AFM NN exchange. While the AFM NNN
exchange is well established for the cuprate family from a
theoretical standpoint, we also consider ferromagnetic (FM)
NNN exchanges in this paper for completeness.

A. LSWT for H0

We map the spin Hamiltonian to magnons using LSWT,
using the usual notion of the bipartite lattice with sublattices
A and B. In the AFM ground state, the Hamiltonian can be

bosonized in LSWT, for which we introduce the standard
Holstein-Primakoff (HP) transformation as follows:

For sublattice A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ŝ+
i = √

2S
√

1 − a†
i ai

2S ai

Ŝ−
i = √

2Sa†
i

√
1 − a†

i ai

2S

Ŝz
i = S − a†

i ai.

(2)

For sublattice B =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ŝ+
i = √

2Sb†
i

√
1 − b†

i bi

2S

Ŝ−
i = √

2S
√

1 − b†
i bi

2S bi

Ŝz
i = −S + b†

i bi.

(3)

To diagonalize the Hamiltonian Ĥ0 in Eq. (1), we need to
introduce the Bogoliubov transformation, which in reciprocal
space is defined as[

αk

β
†
−k

]
=

[
uk vk
v−k u−k

][
ak

b†
−k

]
, (4)

where

uk =
√√√√1

2
+

(
JAB

0 − JAA
0 + JAA

k

)
2
√(

JAB
0 − JAA

0 + JAA
k

)2 − (
JAB

k

)2
,

vk = sign
(
JAB

k

)√
u2

k − 1

2
(5)

JAB
k = J1[cos(kxa) + cos(kya)],

JAA
k = JAA

k = 2J2[cos(kxa) cos(kya)]. (6)

Here, a is the lattice constant. Hence,

Ĥ =
∑

k

εk(α†
kαk + β

†
kβk ) + const., (7)

εk = 2S
√(

JAB
0 − JAA

0 + JAA
k

)2 − (
JAB

k

)2
. (8)

In this paper, we use S = 1
2 , as 2D cuprates are known to host

spin- 1
2 in the 2D Heisenberg model.

B. RIXS intensity

The RIXS cross-section is given by the KH formalism;
IRIXS = ∑

f |〈 f |DoutODin|g〉|2δ(E f − Eg − ω). Here, |g〉(| f 〉)
are the ground (final) states from the Hamiltonian H0 with
energy Eg (E f ), and ω is the energy loss. Also, Din(out) is
the dipole operator, and O accounts for the evolution of the
system given in the presence of the core hole. We refer to
recent literature for a detailed exposition of the simplification
of the cross-section (see Ref. [19]). Following the literature
[19,20], we employ UCL approximation. This introduces a
broadening factor (�), which is the inverse of the core-hole
lifetime. In Appendix A, we outline that a perturbation in
(J/�) leads to two distinct contributions to the RIXS inten-
sity, namely, the NSC (	S = 1) and SC (	S = 0) channels.
In what follows, we set h̄ = 1. The RIXS intensity IRIXS ∝∑

l SNSC
l (q, ω) + ∑

l SSC
l (q, ω). Here, q(= kout − kin) is the

momentum transfer to the lattice. The proportionality constant
involves polarization-dependent matrix elements arising out
of the dipole operators which are different for the NSC and SC
channels (see Ref. [16]). In Appendix A, we provide the SC
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and NSC UCL expansions based on the contributions to the
RIXS intensity. We explore both channels using the following
response functions in this paper.

1. NSC channel

The RIXS intensity can be decomposed into a sum of terms
of O( 1

�2l ) with the lth-order contribution to the intensity given
by

SNSC
l (q, ω) = 1

�2l+2

∑
f

∣∣∣∣∣〈 f | 1√
N

∑
i

exp(iq · Ri )O
NSC
i,l |g〉

∣∣∣∣∣
2

× δ(E f − Eg − ω),

where N is the total number of lattice sites. From
Eq. (A1), we have (i) ONSC

i,0 = Sx
i for l = 0; (ii)

ONSC
i,1 = ∑

j∈ NN +NNN of i Ji, jSx
i Si · S j , where i is the

location where the core-hole is created; and (iii)
ONSC

i,2 = ∑
j �=k; j,k∈ NN of i Ji, jJi,kSx

i S j · Sk for l = 2. We
pictorially represent the summed-over bonds around i
considered in ONSC

i,1 and ONSC
i,2 later in the paper.

2. SC channel

The lth-order contribution to the RIXS intensity in the SC
channel is

SSC
l (q, ω) = 1

�2l+2

∑
f

∣∣∣∣∣〈 f | 1√
N

∑
i

exp(iq · Ri )O
SC
i,l |g〉

∣∣∣∣∣
2

× δ(E f − Eg − ω),

From Eq. (A2), we have (i) OSC
i,0 = ni, (ii)

OSC
i,1 = ∑

j∈ NN +NNN of i Ji, jSi · S j , and (iii) OSC
i,2 =∑

j �=k; j,k∈ NN of i Ji, jJi,k (Si · S j )(Si · Sk ), as above. Notice that
the l = 0 order term does not lead to magnetic excitations
and contributes to only the elastic scattering in the RIXS
cross-section.

III. RESULTS AND DISCUSSIONS

We investigate the spin Hamiltonian given by Eq. (1) and
limit ourselves to the LSWT approach. Within the UCL ap-
proximation of the KH formalism, the RIXS spectra can be
mapped to a set of correlation functions in the SC and NSC
channels, as presented above. We here report the responses
until the second-order corrections of the UCL approximation.
In this paper, we set the work in the regime |J2| < J1. We
consider positive (negative) J2 suppressing (promoting) the
overall J2 = 0 AFM order.

We present the Brillouin zone and momentum path for the
2D lattice in Fig. 1(a) explored for the ease of the readers. We
plot our results in �(0, 0) − X (π, 0) − M(π, π ) − �(0, 0) as
highlighted in the figure unless otherwise stated.

As there is limited discussion on the higher-order correc-
tions in the NSC channel, we start by presenting our results
in this channel. Later, we report the results in the relative
SC channel, extending it with long-range interactions in the
correlation functions.

FIG. 1. Dashed lines in (a) show the magnetic Brillouin zone
boundary. (b) Magnon dispersion (dashed line) and the momen-
tum dependence of one magnon integrated resonant inelastic x-ray
spectroscopy (RIXS) intensity (solid lines) for the two-dimensional
(2D) extended Heisenberg model. The momentum is taken along the
arrows, shown in (a).

A. NSC channel

In this section, we present results until the second-order
correction in the UCL approximations. One peculiar feature
of this channel is that there are an odd number of spin flips due
to additional spin-flip mediated by the core-hole orbital with
large spin-orbit coupling. Therefore, this channel is usually
forbidden at the K edge.

1. Zeroth order

At the zeroth order in the UCL expansion, the NSC channel
allows for a single spin-flip mediated by the core-hole orbital.
The scattering operator is, therefore, given by

ONSC
q,0 =

∑
i

exp(iq · ri )S
x
i . (9)

We have preferentially chosen the spin-flip along the plane
(along the x direction, here). We must do this, as the bipartite
lattice used for the evaluating ground state fixes a quantization
axis. If we can write the ground state without this, then one
can consider either component of the operator for spin [19].
Using the LSWT approach discussed above, the operator can
be mapped to the AFM magnon basis and is given by

ONSC
q,0 ≈

√
2SN

2
(uq − vq)(αq + βq + α

†
−q + β

†
−q). (10)

Notice that the operator can create a magnon in the vacuum,
leading to a single-magnon scattering.

Figure 1(b) shows the zeroth-order response for a 2D AFM
lattice with NNN couplings. This is also equivalent to the dy-
namical spin structure factor S(q, ω) observed in INS. We plot
the magnon dispersion, evaluated using LSWT and the inte-
grated intensity for the S(q, ω) response. We notice hardening
of magnon dispersion for negative J2, prominently at (π, 0)
and (π/2, π/2). The hardening at (π, 0) is relatively larger
than (π/2, π/2). Conversely, there is softening for positive
J2. The signatures of these are also seen in the sharpening of
the intensity around (π, π ) for J2 < 0 compared with J2 = 0.
Our negative J2 results are consistent with the literature [16].
Also, positive J2 results clearly weaken the AFM order. Such
studies by varying the relative magnitude of J2/J1 have been
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FIG. 2. Resonant inelastic x-ray spectroscopy (RIXS) spectra in the nonspin-conserving (NSC) channel. Schematic of contributions of
(a) first-order and (b) second-order terms to the RIXS spectra, in the NSC channels corresponding to Eqs. (11) and (16). Three-magnon
density of states (DOS) for the extended Heisenberg antiferromagnet for (c) J2 = −0.1J1, (d) J2 = 0, and (e) J2 = 0.1J1. First-order correction
of spectra for (f) J2 = −0.1J1, (g) J2 = 0, and (h) J2 = 0.1J1. Second-order correction of RIXS spectra for (i) J2 = −0.1J1, (j) J2 = 0, and
(k) J2 = 0.1J1. To faithfully reproduce the data in the colormaps, we use a piecewise function with a boundary U0, marked in black in
the color bars of the respective plots. Below U0, a linear map is used to represent the data. Above U0, a logarithmic scale is used U =
U0 + ln10[ f (q, ω)] − ln10(U0 ). Here, f (q, ω) denotes the (q, ω)-dependent three-magnon DOS in (c) to (e) and RIXS spectra in (f) to (k).

used to explain certain aspects of the RIXS features of 2D
cuprates [39] in the recent past.

B. NSC channel: Higher orders

As mentioned earlier, the NSC channel involves an odd
number of spin flips. The higher-order correction can be
described as a product of the single and double spin-flip op-
erators. In principle, single and bimagnon excitations can be
created both independently as well as combined. Figures 2(a)
and 2(b) depict the first- and second-order NSC excitations,
as discussed below. Since these excitations depend on the
three-magnon density of states (DOS), we first discuss them.

The three-magnon DOS A3M (ω), is given by the convolu-
tion of three one-magnon DOSs and is given by A3M (ω) =∑

ω′,ω′′ A1M (ω − ω′ − ω′′)A1M (ω′)A1M (ω′′). Here, A1M (ω) =∑
k δ(ω − εk), and the dispersion εk is given in Eq. (8).

The three-magnon DOSs are shown in Figs. 2(c)–2(e). They
result from the convolution of three one-magnon DOSs for
J2 = −0.1, 0.0, and 0.1, respectively. We notice hardening in
both the energy of the DOS as well as spectral weight of the
three-magnon for negative J2 but softening for positive J2. In

addition, we observe that the three-magnon DOS shows weak
q dependence compared with the other cases discussed above.

1. First order

The first-order correction in the UCL expansion of the
NSC channel leads to correction with a prefactor at O(J2/�4)
(where J is the typical magnetic-exchange J1), as shown in
Eq. (A1). The scattering operator is given by

ONSC
q,1 =

∑
i, j

exp(iq · ri)Ji, jS
x
i (Si · S j ). (11)

Here, the sum over i, j runs over the NN and NNN sites, as in
the Hamiltonian H0. Notice that the operator involves a single
spin flip along with double spin flips. The schematic is shown
in Fig. 2(a). Solid and dotted lines represent the NN and NNN
terms, respectively. Keeping only the linear terms in LSWT,
the operator (at A) can be mapped to bipartite bosons as

Sx
i Si · S j ≈

√
2S(a†

i + ai )

× [−S2 + S(ai b j + a†
i b†

j + a†
i ai + b†

jb j )]. (12)
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We can rewrite the operator as ONSC
q,1 = ONSC

q,1′ + ONSC
q,1′′ . The

first term ONSC
q,1′ consists of only a single bosonic operator and

can be mapped to a single magnon operator. The second term
ONSC

q,1′′ consists of three bosonic operators and can be mapped
to three-magnons which are given by

ONSC
q,1′′ = S3/2

√
2N

∑
k,p

[ f0(k, p, q)α†
−pβ

†
−kα

†
k+p+q

+ f1(k, p, q)β†
−pβ

†
−kα

†
k+p+q]. (13)

The detailed expressions for f0(k, p, q) and f1(k, p, q) terms
are presented in Appendix B.

Figures 2(f)–2(h) show the response for the first-order
correction given from the first-order corrections for J2 =
−0.1J1, J1, and 0.1J1, respectively. This has a weak one-
magnon feature and a three-magnon. The three-magnon
(J2 = 0) has three primary features: (i) a dispersing band up to
4J1 with a spread of 4J1, (ii) a band localized at 4J1, and (iii)
a band that appears to disperse up to 5J1. Panels (f) and (h)
show the results of finite J2 and highlight that these features
are pushed to higher and lower energy for J2 < 0 and J2 > 0,
akin to the single-magnon case discussed previously.

2. Second Order

The second-order correction consists of a single spin flip
along with a square of the double spin flips and contributes at
∼O(J4/�6). The scattering operator is given by

ONSC
q,2 =

∑
〈i, j,k〉

exp(iq · ri)Ji jJikSx
i (Si · S j )(Si · Sk ). (14)

The double spin-flip part can be rewritten as [19,25]

Ji, jJi,k (Si · S j )(Si · Sk )

≈ − 1
2 J2

i, j (Si · S j ) + 1
4 Ji, jJi,k (S j · Sk ). (15)

The four-spin can effectively be mapped to two two-spins,
with NN interactions and longer-range interactions. The first
term has the spin-operator indices as i, j run over the NN.
Since this term has the same form as that in the operator in
the first order except for a different prefactor, it gives rise
to no new features. We thus focus only on the second term
of Eq. (15). The second term in the expression consists of
long-range double spin flips, j and k indices, which are NN
of the core-hole site i. The schematic for this is shown in
Fig. 2(b).

The new correlation in this order, therefore, is given by

ONSC
q,2′ =

∑
i, j,k

exp(iq · ri )Ji, jJi,kSx
i (Sj · Sk ). (16)

As discussed for the first order, the HP transformation for this
also yields two terms:

Sx
i S j · Sk ≈

√
2S(a†

i + ai )

×[−S2 + S(a j bk + a†
j b

†
k + a†

j a j + b†
kbk )]. (17)

Again, the operator can be rewritten as ONSC
q,2′ = ONSC,1

q,2′ +
ONSC,2

q,2′ . The first term ONSC,1
q,2′ turns out to contribute to only

single spin-flip excitations akin to the zeroth order. The
second term has a distinct form and can contribute to multi-
particle excitations. After the Bogoliubov transformation, the
second term is given by

ONSC,2
q,2′ ≈ S3/2

√
2N

∑
k,p

f (k, p, q)[(vpuk+q−pvk − upvk+q−puk )α†
pα

†
k+q−pβ

†
−k + (vpvk+q−puk − upuk+q−pvk )β†

pα
†
k+q−pβ

†
−k], (18)

where f (k, p, q) = (J1)2[−6{cos(qx − px ) + cos(qy − py)}
+ 2{cos(2kx + qx − px ) + cos(2ky + qy − py)} +
4{cos(ky) cos(kx + qx − px ) + cos(kx ) cos(ky + qy − py)}].

We have, therefore, mapped this order to three-magnon
excitations in the AFM lattice akin to the first order but with a
distinct form.

Figures 2(i)–2(k) show the corresponding three-magnon
response function for Eq. (16). The three-magnon spectral
weight has a clear feature peak around ω = 4J1 and at q = 0
for J2 = 0 that remains finite for all q values in the Brillouin
zone. The signature of one-magnon excitation is clearly seen
in the sharp band in (i) dispersing through the Brillouin zone
whose energy spread agrees with the single-magnon spectrum
in Fig. 1(b). The intensity is, however, strongly suppressed.
This feature has no contribution at q = 0 due to vanishing one-
magnon DOS. Similar features are also seen in Figs. 2(j) and
2(k). The continuumlike feature in (i)–(k) with finite spread
across the full Brillouin zone arises from O2

q, which does not
commute with H0 at any q.

Like the first-order case, the responses with finite J2 shown
in panels (i) and (k) reveal softening (hardening) for J2 > 0
(J2 < 0). However, the intensity is stronger for J2 > 0 and

weakened for J2 < 0. The latter is true because, for J2 < 0,
the AFM order is strengthened, and thus, spin-flip excitation
arising from the AFM is more dominant than for J2 < 0.
We conclude the LSWT discussion on the NSC channel by
presenting in Fig. 3(a) the consolidated contributions from the
NSC channel up to second order of the RIXS intensity. For
this plot, we set �/J1 to 5 [25]. We observe that, relative to
the one-magnon contribution, the higher-order contributions
are significant.

C. NSC channel: ED

We have also checked the consistency of the LSWT results
against small-cluster ED. In Figs. 3(b) and 3(c), we show
the three-magnon susceptibility on a 4 × 4 lattice at first and
second order, respectively. In (b), we clearly see a small peak
at [q = (0, 0)] that disperses across the full Brillouin zone,
as we have concluded from the LSWT. We also see a clear
energy gap between the low-energy excitation, lying between
ω = 0 to ∼2J1, and the higher-energy excitations >4J1. Sim-
ilarly, in (c), we observe that the low-energy excitations are
slightly pushed down <2J1 but separated from the higher-
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FIG. 3. Comparison of linear spin-wave theory (LSWT) with the small cluster (4×4 lattice) exact diagonalization (ED) results in the
nonspin-conserving (NSC) channel. (a) Total contribution to the NSC channel up to the second order in the ultrashort core-hole lifetime
(UCL) expansion evaluated using LSWT. Here, � is set equal to 5J1. ED results of the (b) first-order and (c) second-order contributions, for
J2 = 0.1J1, corresponding to Eqs. (11) and (16), respectively. The vertical lines in (b) and (c) denote the allowed values of momentum transfer.
The colormaps are generated using the same scheme as discussed in Fig. 2. The boundary value U0 is indicated in black in the respective color
bars.

energy excitations. By examining the basis-state contributions
to the various peaks over the Brillouin zone, we find that the
features below ω/J1 = 2 are primarily made out of one-flip
basis states. This strongly suggests that the low-energy LSWT
spectra are indeed generated by single-magnon excitations.
Similarly, the high-energy features are made up of multiple
spin-flip basis states. However, due to severe size limitations,
the excitation energies are quite high, so the ED results simply
provide a qualitative check of the contributions in the NSC
channel. Thus, the broad takeaway from the ED results is
that the NSC channel produces high-energy excitation that has
finite spectral weight over the entire Brillouin zone.

D. SC channel

Here, we discuss the contributions from the SC channel of
the UCL approximation of the KH formalism. This channel
has been discussed in the context of SC edges in RIXS. For ex-
ample, a two-magnon at the oxygen K-edge RIXS of a cuprate
was reported [45]. With the improved RIXS resolution, the SC
channel can also be realized at the Cu L edge and has been ex-
plored in 1D chains [13,19]. Therefore, we revisit this channel
in the context of the L edge and provide results for J2 �= 0 for
a 2D lattice. The computed three-magnon excitations overlap
with two-magnon DOS; these results help us rule out whether
these NNN terms can contribute to the new phase allowed in
the NSC channel.

1. Zeroth order

The SC channel does not allow any spin flip at the zeroth
order. Therefore, magnetic excitation is forbidden, and it con-
tributes only to elastic scattering for the spin model.

E. SC channel: Higher orders

The higher-order corrections in the SC channel is given by
an even number of multiple spin flips and can lead to magnetic

excitations. Here, we investigate the dynamical correlation
functions relevant to the two-magnon excitations in this chan-
nel. In this channel, for completeness, we also explore the
correlation function with the NNN. This will further highlight
why one needs the NSC channel to reproduce the features in
the RIXS spectra of 2D AFMS.

The leading corrections in this channel map to the two-
magnon. The two-magnon DOS A2M (ω) is given by the con-
volution of two one-magnon DOSs, A2M (ω) = ∑

ω′ A1M (ω −
ω′)A1M (ω′), with A1M (ω) = ∑

k δ(ω − εk), see Eq. (8) We
show the two-magnon DOS for J2 = −0.1, 0 and 0.1 in
Figs. 4(c)–4(e).

1. First order

The first-order correction in the UCL expansion of
O(J2/�4) is given by double spin flips. The scattering opera-
tor for this is given by

OSC
q,1 =

∑
i, j

exp(iq · ri )Ji, jSi · S j . (19)

Here, the sum over i, j runs over the NN and NNN sites as
in the Hamiltonian H0. These NN (solid) and NNN (dashed)
bonds are shown in Fig. 4(a).

With the HP transformation, Eq. (19) can be expressed as

OSC
q,1 ≈ S

∑
k∈BZ

[ f0(k, q)(a†
k−q/2ak+q/2 + b†

k−q/2bk+q/2)

+ f1(k, q)(ak−q/2b−k−q/2 + a†
k+q/2b†

−k−q/2)]. (20)

Finally, the Bogoliubov transformation yields Eq. (19) in
the form:

OSC
q,1 ≈ S

∑
k∈BZ

[− f0(k, q)(uk+q/2vk−q/2 + uk−q/2vk+q/2)

+ f1(k, q)
(
uk+q/2uk−q/2 + vk+q/2v

†
k−q/2)]

× (αk+q/2β−k+q/2 + α
†
k−q/2β

†
−k−q/2), (21)
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FIG. 4. Resonant inelastic x-ray spectroscopy (RIXS) spectra in the spin-conserving (SC) channel. Schematic of contributions of (a) first-
order and (b) second-order terms of SC channel to the RIXS spectra, corresponding to Eqs. (19) and (22), respectively. Two-magnon density of
states (DOS) for the extended Heisenberg antiferromagnet for (c) J2 = −0.1J1, (d) J2 = 0, and (e) J2 = 0.1J1. First-order correction of spectra
for (f) J2 = −0.1J1, (g) J2 = 0, and (h) J2 = 0.1J1. Second-order correction of RIXS spectra for (i) J2 = −0.1J1, (j) J2 = 0, and (k) J2 = 0.1J1.
(l) Consolidated intensity for the SC channel that contains the total contribution to the SC channel from first and second orders in the ultrashort
core-hole lifetime (UCL) expansion evaluated for � = 5J1. The colormaps are generated using the same scheme as discussed in Fig. 2.
The boundary value U0 is indicated in black in the respective color bars.

where f0(k, q) = (JAA
k+q/2 + JAA

k−q/2 + JAA
0 + JAA

q + JAB
0 +

JAB
q ) and f1(k, q) = (JAB

k+q/2 + JAB
k−q/2).

The first-order scattering operator in UCL approximation
within the LSWT can be mapped to the two-magnon, as dis-
cussed above.

Figures 4(f)–4(h) show the response for the first-order
correction in this channel. A number of striking features
can be observed. The spectral weight vanishes at q = (0, 0)
and (π, π ), which follows from Eq. (20). More intuitively,
since [H0, Oq=(0,0)] = 0, they have the same eigenbasis, and
hence, the matrix element 〈 f |Oq=(0,0)|g〉 is zero. Thus, the
intensity vanishes at the zero transferred momentum, in agree-
ment with the experimental observation [46]. Because of the
AFM ground state, the RIXS intensity always vanishes at
q = (π, π ). The q = (π, π ) is the reciprocal magnetic lattice
vector for AFM order. Setting q = (π, π ) in Eq. (19), we find
that Oq=(π,π ) = ∑

i∈A, j Si · S j − ∑
i∈B, j Si · S j , where A and B

are two sublattice indexes. The initial state |g〉 (ground state)

is symmetric under the interchange of the sublattice, whereas
Oq=(π,π ) is antisymmetric under the interchange of the sublat-
tice. Therefore, 〈 f | Oq=(π,π ) |g〉 vanished identically. We also
notice an overall hardening in both two-magnon DOSs as well
as spectral weight for negative J2 and softening for positive J2.

2. Second order

The second-order correction in the UCL expansion of
O(J4/�6) is given by

OSC
q,2 =

∑
i, j,k

exp(iq · ri )Ji, jJi,k (Si · S j )(Si · Sk ). (22)

Simplifying Ji, jJi,k (Si · S j )(Si · Sk ), like the NSC channel
[see Eq. (15)], there are two terms. One is the two-magnon
term (Si.S j ) with a different prefactor, and a second term is
1
4 Ji, jJi,k (S j · Sk ). As in the NSC channel, the first term does
not contribute to any new feature. The summations over the
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j, k indices in the second term are shown in Fig. 4(b). Follow-
ing the approach discussed above, this term can be expressed
as

OSC
q,2′ ≈ 2S

∑
k

f (k, q)(ukvk+q + uk+qvk )α†
kβ

†
−k−q, (23)

where f (k, q) = (J1)2[−6{cos(qx ) + cos(qy)} + 2{cos(2kx +
qx ) + cos(2ky + qy)} + 4{cos(ky) cos(kx + qx ) + cos(kx ) cos
(ky + qy)}].

Figures 4(i)–4(k) show the spectra for this response func-
tion for J2 = −0.1J1, J1, and 0.1J1, respectively. For J2 = 0
shown in panel (j), we notice dispersive features exist over the
energy window allowed by the two-magnon DOS. However,
unlike at the previous order contribution to the SC channel,
we now observe clear weight at q = (0, 0) spread between
ω/J1 = 3 and 4. This weight, however, is limited between
q = (0, 0) and (∼π/2, 0). The other feature in the middle of
the plot resembles the two-magnon features in the first-order
correction. Thus, the main correction to the two-magnon spec-
tra coming from the second order are new spectral weights
around q = (0, 0). The two-magnon term discussed above
commutes with H0 at both the first and second orders of the
SC channel at q = (0, 0). However, the term 1

4 Ji, jJi,k (S j · Sk )
does not commute with H0 at q = 0 and gives rise to a finite
spectral weight at the second order. The same features carry
over to the cases with J2 = ±0.1J1, with J2 > 0 (J2 < 0),
making the features much more dominant (suppressed), as is
expected.

We conclude the discussion on the SC channel by present-
ing in Fig. 4(l) the consolidated contributions from the SC
channel containing the first- and second-order contributions
to the RIXS intensity. Unlike the NSC channel, the zeroth
order does not contribute to spin excitations. As for the NSC
channel, we set J1/� to 5. We observe that the q = (0, 0)
second-order feature is highly suppressed.

IV. CONCLUSIONS

We have provided a comprehensive study of the RIXS
cross-section for a 2D AFM in both the NSC and SC channels
up to the second-order corrections in the UCL expansion of
the KH formalism relevant for the Cu L edge of 2D cuprates.
We explore these corrections using LSWT. We report the
observation of three-magnon excitations in the NSC channel.
We find that the three-magnon has finite weights in both the
first- and second-order corrections in the NSC channels, albeit
the weights are larger in the second-order correction. These
three-magnon excitations have a clear high-energy feature
with a quasiflat band extending over the entire Brillouin zone,
very distinct from the two-magnons reported in the literature.

We further report that the LSWT results of the NSC channel
agree qualitatively with the ED results on a small cluster.

The Cu L-edge RIXS in 2D cuprates has a large contri-
bution from the NSC channel. We, therefore, compare our
results with the Cu L3-edge RIXS data of La2CuO4 reported
in Ref. [31]. It shows a peculiar excitation at around ω =
350 meV, which weakly disperses in energy over the Bril-
louin zone center and extends up to q = (0, 0), in addition to
the one-magnon and two-magnon. Using J1 ≈ 150 meV, we
find that the spread of the RIXS spectra qualitatively agrees
with the RIXS experiment, and this feature can, therefore, be
interpreted as a three-magnon. Nevertheless, our calculations
restricted to the LSWT predict higher energy for the observed
three-magnon than the RIXS data. This is not unexpected as
three-magnons are expected to soften these excitations with
the inclusion of magnon-magnon interaction in comparison
with other excitations. Reference [47] reported a large soften-
ing for a three-magnon in the dynamical spin structure factor,
but such an analysis for a RIXS cross-section is beyond the
scope of this paper.

We further report the SC channel of the RIXS and ex-
tend the correlation functions with a long-range interaction
relevant for the Cu L edge in cuprates. We find that the longer-
range interaction in this channel does not qualitatively alter
the features of the first- and second-order corrections. This
suggests that the higher-order corrections of the NSC channel
are critical to reproduce the magnetic excitations in the new
phase space observed at the L edge with improved resolution
of RIXS.

Thus, our result is an important step in identifying the na-
ture of multimagnon excitations observed in the RIXS spectra
of 2D AFMs [31]. We note that LSWT can be used to study
both indirect and direct RIXS, although our focus here was
on direct RIXS for the Cu L edge in cuprates. For example,
it is understood that the SC channel is equivalent to indirect
RIXS [25]. The relevance of higher-order correction in the
RIXS cross-section in the 2D AFMs opens up pathways to
explore the higher modes of magnetic excitations in quantum
materials using RIXS. Importantly, these excitations persist at
small momentum transfer, therefore, opening up pathways for
exploring quantum magnets where large momentum transfer
is inaccessible.
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APPENDIX A: UCL EXPANSION FOR KH FORMALISM

Here, we provide the relevant expressions for the NSC and SC scattering cross-sections. We refer the reader to recent literature
for details [19,20]. At the L edge, the dipole operator can allow for single spin-flip excitations, leading to the following NSC
contributions to the RIXS cross-section at various orders of the inverse core-hole lifetime parameter (�):

INSC(q, ω) ∝
[

1

�2

∑
f

∣∣∣∣∣〈 f | 1√
N

∑
i

exp(iq · Ri )S
x
i |g〉

∣∣∣∣∣
2

+ 1

�4

∑
f

∣∣∣∣∣∣〈 f | 1√
N

∑
i, j

exp(iq · Ri )Ji, jS
x
i

(
Ŝi · Ŝ j

)|g〉
∣∣∣∣∣∣
2

214405-8



THEORETICAL ANALYSIS OF MULTIMAGNON … PHYSICAL REVIEW B 108, 214405 (2023)

+ 1

�6

∑
f

∣∣∣∣∣∣〈 f | 1√
N

∑
i, j,k

exp(iq · Ri )Ji, jJi,kSx
i (Ŝi · Ŝ j )(Ŝi · Ŝk )|g〉

∣∣∣∣∣∣
2

+ · · ·
]
δ(E f − Eg − ω)

=
∑

l

SNSC
l (q, ω). (A1)

In the above, the O[(1/�)2] term is the single spin-flip spin+-excitation scattering, and the O[(1/�)4] term is a combination
single spin flip at the site where the core-hole is created and a bimagnon lives at either the j or k site NN to i, or a bimagnon
involves i and j or i and k, as discussed in the paper.

For the SC channel, the contributions to the RIXS intensity are given by

ISC(q, ω) ∝
[

1

�2

∑
f

∣∣∣∣∣〈 f | 1√
N

∑
i

exp(iq · Ri )ni,σ |g〉
∣∣∣∣∣
2

+ 1

�4

∑
f

∣∣∣∣∣∣〈 f | 1√
N

∑
i, j

exp(iq · Ri )Ji, j Ŝi · Ŝ j |g〉
∣∣∣∣∣∣
2

+ 1

�6

∑
f

∣∣∣∣∣∣〈 f | 1√
N

∑
i, j,k

exp(iq · Ri )Ji, jJi,k (Ŝi · Ŝ j )(Ŝi · Ŝk )|g〉
∣∣∣∣∣∣
2

+ · · ·
]
δ(E f − Eg − ω)

=
∑

l

SSC
l (q, ω). (A2)

We note that the O[(1/�)2] term does not contribute to spin excitations. The higher-order terms lead to magnetic excitations.
The bimagnon excitations from these higher orders are calculated and discussed in the paper.

APPENDIX B: CALCULATION DETAILS

The detailed expressions for f0(k, p, q) and f1(k, p, q) used in Eq. (13) in the paper are provided below, with JNNN
k,p,q =

JAA
k+p+q + JAA

k − JAA
0 − JAA

p+q:

f0(k, p, q) = −{[(
JAB

p+q + JNNN
k,p,q

)
up − (

JAB
0 + JNNN

k,p,q

)
vp

]
ukvk+p+q + [(

JAB
0 + JNNN

k,p,q

)
up − (

JAB
p+q + JNNN

k,p,q

)
vp

]
vkuk+p+q

}
+ (

JAB
k+p+qup − JAB

k vp
)
vk+p+qvk + (

JAB
k up − JAB

k+p+qvp
)
uk+p+quk, (B1)

f1(k, p, q) = −{[(
JAB

0 + JNNN
k,p,q

)
up − (

JAB
p+q + JNNN

k,p,q

)
vp

]
ukvk+p+q + [(

JAB
p+q + JNNN

k,p,q

)
up − (

JAB
0 + JNNN

k,p,q

)
vp

]
vkuk+p+q

}
+ (

JAB
k up − JAB

k+p+qvp
)
vk+p+qvk + (

JAB
k+p+qup − JAB

k vp
)
uk+p+quk. (B2)

[1] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
[2] D. J. Scalapino, Phys. Rep. 250, 329 (1995).
[3] D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee,

Y. Cui, Y. Hikita, and H. Y. Hwang, Nature (London) 572, 624
(2019).

[4] J. Bertinshaw, Y. K. Kim, G. Khaliullin, and B. J. Kim, Annu.
Rev. Condens. Matter Phys. 10, 315 (2019).

[5] P. W. Anderson, Science 235, 1196 (1987).
[6] H. Lu, M. Rossi, A. Nag, M. Osada, D. F. Li, K. Lee, B. Y.

Wang, M. Garcia-Fernandez, S. Agrestini, Z. X. Shen et al.,
Science 373, 213 (2021).

[7] J. Kim, D. Casa, M. H. Upton, T. Gog, Y.-J. Kim, J. F.
Mitchell, M. van Veenendaal, M. Daghofer, J. van den Brink,
G. Khaliullin et al., Phys. Rev. Lett. 108, 177003 (2012).

[8] F. Gel’mukhanov, M. Odelius, S. P. Polyutov, A. Föhlisch, and
V. Kimberg, Rev. Mod. Phys. 93, 035001 (2021).

[9] L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill,
and J. van den Brink, Rev. Mod. Phys. 83, 705 (2011).

[10] S. Kourtis, J. van den Brink, and M. Daghofer, Phys. Rev. B 85,
064423 (2012).

[11] A. Nocera, U. Kumar, N. Kaushal, G. Alvarez, E. Dagotto, and
S. Johnston, Sci. Rep. 8, 11080 (2018).

[12] J. Schlappa, U. Kumar, K. J. Zhou, S. Singh, M. Mourigal,
V. N. Strocov, A. Revcolevschi, L. Patthey, H. M. Rønnow, S.
Johnston et al., Nat. Commun. 9, 5394 (2018).

[13] V. Bisogni, S. Kourtis, C. Monney, K. Zhou, R. Kraus, C. Sekar,
V. Strocov, B. Büchner, J. van den Brink, L. Braicovich et al.,
Phys. Rev. Lett. 112, 147401 (2014).

[14] K. Wohlfeld, S. Nishimoto, M. W. Haverkort, and J. van den
Brink, Phys. Rev. B 88, 195138 (2013).

[15] D. Benjamin, I. Klich, and E. Demler, Phys. Rev. Lett. 112,
247002 (2014).

[16] L. J. P. Ament, G. Ghiringhelli, M. M. Sala, L. Braicovich, and
J. van den Brink, Phys. Rev. Lett. 103, 117003 (2009).

[17] L. Braicovich, J. van den Brink, V. Bisogni, M. M. Sala,
L. J. P. Ament, N. B. Brookes, G. M. De Luca, M. Salluzzo,

214405-9

https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1016/0370-1573(94)00086-I
https://doi.org/10.1038/s41586-019-1496-5
https://doi.org/10.1146/annurev-conmatphys-031218-013113
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1126/science.abd7726
https://doi.org/10.1103/PhysRevLett.108.177003
https://doi.org/10.1103/RevModPhys.93.035001
https://doi.org/10.1103/RevModPhys.83.705
https://doi.org/10.1103/PhysRevB.85.064423
https://doi.org/10.1038/s41598-018-29218-8
https://doi.org/10.1038/s41467-018-07838-y
https://doi.org/10.1103/PhysRevLett.112.147401
https://doi.org/10.1103/PhysRevB.88.195138
https://doi.org/10.1103/PhysRevLett.112.247002
https://doi.org/10.1103/PhysRevLett.103.117003


PAL, KUMAR, PRABHAKAR, AND MUKHERJEE PHYSICAL REVIEW B 108, 214405 (2023)

T. Schmitt, V. N. Strocov et al., Phys. Rev. Lett. 104, 077002
(2010).

[18] M. M. Sala, V. Bisogni, C. Aruta, G. Balestrino, H. Berger,
N. B. Brookes, G. M. de Luca, D. D. Castro, M. Grioni, M.
Guarise et al., New J. Phys. 13, 043026 (2011).

[19] U. Kumar, A. Nag, J. Li, H. C. Robarts, A. C. Walters,
M. García-Fernández, R. Saint-Martin, A. Revcolevschi, J.
Schlappa, T. Schmitt et al., Phys. Rev. B 106, L060406 (2022).

[20] C. Jia, K. Wohlfeld, Y. Wang, B. Moritz, and T. P. Devereaux,
Phys. Rev. X 6, 021020 (2016).

[21] J.-i. Igarashi and T. Nagao, Phys. Rev. B 85, 064421 (2012).
[22] F. Forte, M. Cuoco, C. Noce, and J. van den Brink, Phys. Rev.

B 83, 245133 (2011).
[23] L. Braicovich, M. Minola, G. Dellea, M. Le Tacon, M. Moretti

Sala, C. Morawe, J.-C. Peffen, R. Supruangnet, F. Yakhou, G.
Ghiringhelli et al., Rev. Sci. Instrum. 85, 115104 (2014).

[24] R. Fumagalli, L. Braicovich, M. Minola, Y. Y. Peng, K.
Kummer, D. Betto, M. Rossi, E. Lefrançois, C. Morawe, M.
Salluzzo et al., Phys. Rev. B 99, 134517 (2019).

[25] F. Forte, L. J. P. Ament, and J. van den Brink, Phys. Rev. B 77,
134428 (2008).

[26] U. Kumar, A. Nocera, E. Dagotto, and S. Johnston, New J. Phys.
20, 073019 (2018).

[27] U. Kumar, A. Nocera, G. Price, K. Stiwinter, S. Johnston, and
T. Datta, Phys. Rev. B 102, 075134 (2020).

[28] G. Schmiedinghoff, L. Müller, U. Kumar, G. S. Uhrig, and B.
Fauseweh, Commun. Phys. 5, 218 (2022).

[29] U. Kumar, A. Nocera, E. Dagotto, and S. Johnston, Phys. Rev.
B 99, 205130 (2019).

[30] Y. Tseng, J. Thomas, W. Zhang, E. Paris, P. Puphal, R. Bag, G.
Deng, T. C. Asmara, V. N. Strocov, S. Singh et al., npj Quantum
Mater. 7, 92 (2022).

[31] H. C. Robarts, M. García-Fernández, J. Li, A. Nag, A. C.
Walters, N. E. Headings, S. M. Hayden, and K.-J. Zhou, Phys.
Rev. B 103, 224427 (2021).

[32] D. Betto, R. Fumagalli, L. Martinelli, M. Rossi, R. Piombo, K.
Yoshimi, D. Di Castro, E. Di Gennaro, A. Sambri, D. Bonn
et al., Phys. Rev. B 103, L140409 (2021).

[33] M. Mourigal, M. Enderle, A. Klöpperpieper, J.-S. Caux, A.
Stunault, and H. M. Rønnow, Nat. Phys. 9, 435 (2013).

[34] B. Lake, D. A. Tennant, J.-S. Caux, T. Barthel, U. Schollwöck,
S. E. Nagler, and C. D. Frost, Phys. Rev. Lett. 111, 137205
(2013).

[35] S. Notbohm, P. Ribeiro, B. Lake, D. A. Tennant, K. P. Schmidt,
G. S. Uhrig, C. Hess, R. Klingeler, G. Behr, B. Büchner et al.,
Phys. Rev. Lett. 98, 027403 (2007).

[36] M. Windt, M. Grüninger, T. Nunner, C. Knetter, K. P. Schmidt,
G. S. Uhrig, T. Kopp, A. Freimuth, U. Ammerahl, B. Büchner
et al., Phys. Rev. Lett. 87, 127002 (2001).

[37] B. Dalla Piazza, M. Mourigal, N. B. Christensen, G. J.
Nilsen, P. Tregenna-Piggott, T. G. Perring, M. Enderle, D. F.
McMorrow, D. A. Ivanov, and H. M. Rønnow, Nat. Phys. 11, 62
(2015).

[38] C. Luo, T. Datta, and D.-X. Yao, Phys. Rev. B 89, 165103
(2014).

[39] Y. Y. Peng, G. Dellea, M. Minola, M. Conni, A. Amorese, D.
Di Castro, G. M. De Luca, K. Kummer, M. Salluzzo, X. Sun
et al., Nat. Phys. 13, 1201 (2017).

[40] M. He, T. Datta, and D.-X. Yao, Phys. Rev. B 101, 024426
(2020).

[41] L. Martinelli, D. Betto, K. Kummer, R. Arpaia, L. Braicovich,
D. Di Castro, N. B. Brookes, M. Moretti Sala, and G.
Ghiringhelli, Phys. Rev. X 12, 021041 (2022).

[42] U. Kumar and S.-Z. Lin, Phys. Rev. B 103, 064508 (2021).
[43] S. Li, A. Nocera, U. Kumar, and S. Johnston, Commun. Phys.

4, 217 (2021).
[44] A. H. MacDonald, S. M. Girvin, and D. Yoshioka, Phys. Rev. B

37, 9753 (1988).
[45] V. Bisogni, L. Simonelli, L. J. P. Ament, F. Forte, M. Moretti

Sala, M. Minola, S. Huotari, J. van den Brink, G. Ghiringhelli,
N. B. Brookes et al., Phys. Rev. B 85, 214527 (2012).

[46] J. P. Hill, G. Blumberg, Y.-J. Kim, D. S. Ellis, S. Wakimoto,
R. J. Birgeneau, S. Komiya, Y. Ando, B. Liang, R. L. Greene et
al., Phys. Rev. Lett. 100, 097001 (2008).

[47] M. Powalski, K. P. Schmidt, and G. S. Uhrig, SciPost Phys. 4,
001 (2018).

214405-10

https://doi.org/10.1103/PhysRevLett.104.077002
https://doi.org/10.1088/1367-2630/13/4/043026
https://doi.org/10.1103/PhysRevB.106.L060406
https://doi.org/10.1103/PhysRevX.6.021020
https://doi.org/10.1103/PhysRevB.85.064421
https://doi.org/10.1103/PhysRevB.83.245133
https://doi.org/10.1063/1.4900959
https://doi.org/10.1103/PhysRevB.99.134517
https://doi.org/10.1103/PhysRevB.77.134428
https://doi.org/10.1088/1367-2630/aad00a
https://doi.org/10.1103/PhysRevB.102.075134
https://doi.org/10.1038/s42005-022-00986-0
https://doi.org/10.1103/PhysRevB.99.205130
https://doi.org/10.1038/s41535-022-00502-1
https://doi.org/10.1103/PhysRevB.103.224427
https://doi.org/10.1103/PhysRevB.103.L140409
https://doi.org/10.1038/nphys2652
https://doi.org/10.1103/PhysRevLett.111.137205
https://doi.org/10.1103/PhysRevLett.98.027403
https://doi.org/10.1103/PhysRevLett.87.127002
https://doi.org/10.1038/nphys3172
https://doi.org/10.1103/PhysRevB.89.165103
https://doi.org/10.1038/nphys4248
https://doi.org/10.1103/PhysRevB.101.024426
https://doi.org/10.1103/PhysRevX.12.021041
https://doi.org/10.1103/PhysRevB.103.064508
https://doi.org/10.1038/s42005-021-00718-w
https://doi.org/10.1103/PhysRevB.37.9753
https://doi.org/10.1103/PhysRevB.85.214527
https://doi.org/10.1103/PhysRevLett.100.097001
https://doi.org/10.21468/SciPostPhys.4.1.001

