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Magnon orbital angular momentum of ferromagnetic honeycomb and zigzag lattice models
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By expanding the gauge λn(k) for magnon band n in harmonics of momentum k = (k, φ), we demonstrate that
the only observable component of the magnon orbital angular momentum On(k) is its angular average over all
angles φ, denoted by Fn(k). Although Fn(k) vanishes for antiferromagnetic honeycomb and zigzag (0 < J1 < J2)
lattices, it is nonzero for the ferromagnetic (FM) versions of those lattices in the presence of Dzyaloshinskii-
Moriya interactions. For a FM zigzag model with equal exchange interactions J1x and J1y along the x and y axes,
the magnon bands are degenerate along the boundaries of the Brillouin zone with kx − ky = ±π/a and the Chern
numbers Cn are not well defined. However, a revised model with J1y �= J1x lifts those degeneracies and produces
well-defined Chern numbers of Cn = ±1 for the two magnon bands. When J1y = J1x , the thermal conductivity
κxy(T ) of the FM zigzag lattice is largest for J2/J1 > 6 but is still about four times smaller than that of the FM
honeycomb lattice at high temperatures. Due to the removal of band degeneracies, κxy(T ) is slightly enhanced
when J1y �= J1x .

DOI: 10.1103/PhysRevB.108.214402

I. INTRODUCTION

The past 13 years have seen remarkable advances in the
field of “magnonics” [1–3], which focuses on the quanta of
spin excitations known as magnons. One of the main goals
of magnonics is the storage and processing of information.
Because they can travel over centimeter distances without
incurring any costs in Joule heating [4], magnons offer many
advantages over electrons in the next generation of techno-
logical devices. Due to their much lower velocities, magnons
are also better suited than electrons to creating small devices.
In quick succession, experimentalists have discovered that
magnons can produce the thermal Hall [5–10] and Seebeck
[11,12] effects.

Almost all previous theoretical work in magnonics has
been based on the Berry curvature, which produces a fic-
titious magnetic field in the presence of dipole [13] or
Dzyaloshinkskii-Moriya (DM) [14] interactions. DM interac-
tions are created by spin-orbit (SO) coupling. Because it was
borrowed from the theory of electronic structure [15–17], the
Berry phase is usually formulated in a semiclassical language.
For a Bloch function |un(k)〉 with energy εn(k) = h̄ωn(k), the
Berry curvature

�n(k) = i

2π

{
∂

∂k
× 〈un(k)| ∂

∂k
|un(k)〉

}
(1)

of a ferromagnetic (FM) insulator requires that a magnon
wave packet centered at rc obeys the equation of motion
[15–17]

drc

dt
= ∂εn(k)

h̄ ∂k
− dk

dt
× �n(k). (2)

*Corresponding author: fishmanrs@ornl.gov

Therefore, the Berry curvature causes the wave packet to
bend away from the expected direction ∂εn(k)/∂k for a free
magnon with �n(k) = 0.

Prior to the first observation of the magnon Hall effect in
the FM insulator Lu2V2O7 [5], it was predicted by Katsura
et al. [18] based on a Kubo formula for the temperature
dependence of the thermal conductivity κxy(T ). This Kubo
formula involves an integral of the Berry curvature 	nz(k)
perpendicular to the sample over the first Brillouin zone (BZ):

κxy(T ) = − k2
BT

2π h̄

∑
n

∫
BZ

d2k c2(ρ(εn(k))) 	nz(k), (3)

where ρ(ε) = 1/[exp(ε/kBT ) − 1] is the Boltzmann distribu-
tion with zero chemical potential for magnons, and c2(ρ) is
defined in Sec. V. The above expression includes the effects of
the magnon edge currents traveling around the sample as well
as the effects of the magnon wave-packet “self-rotation” due
to its orbital motion [19,20]. The prediction and subsequent
observation of the magnon Hall effect based on the Berry
curvature was one of the great early achievements in the field
of magnonics.

Because of SO coupling, magnons carry both spin and
orbital angular momentum. By constructing a Lagrangian that
produces the correct equation of motion for the magnetization
Mi = 2μBSi at site i, Tsukernik et al. [21,22] demonstrated
that the orbital angular momentum (OAM) of magnons along
z can be written in terms of Bloch functions as

On(k) = − ih̄

2

{
k × 〈un(k)| ∂

∂k
|un(k)〉

}
· z. (4)

But Tsukernik and co-workers failed to realize that the OAM
defined above is not directly observable because, unlike the
Berry curvature �n(k), On(k) is not gauge-invariant [23].
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This can be seen by expanding the spin Hamiltonian H to
second order in powers of the deviation of the spin operators
Si from their equilibrium values. Then the Bloch functions
|un(k)〉 satisfy the eigenvalue equation

H2|un(k)〉 = εn(k)|un(k)〉. (5)

Because H2 is translationally invariant, a new Bloch function
obtained by the transformation

|un(k)〉 → |un(k)〉 e−iλn (k) (6)

also satisfies the above eigenvalue equation. Under this gauge
transformation, the Berry curvature �n(k) of Eq. (1) remains
unchanged, but the OAM of Eq. (4) changes to

On(k) → On(k) + h̄

2

(
kx

∂

∂ky
− ky

∂

∂kx

)
λn(k)

= On(k) + h̄

2

∂

∂φ
λn(k, φ), (7)

where the gauge λn(k) = λn(k, φ) depends only on the band
index n and the two-dimensional wave vector k = (k, φ).
Quantities like On(k) that depend on a gauge λn(k) cannot
be physically observed [23]. However, the average of On(k)
over all angles φ,

Fn(k) =
∫ 2π

0

dφ

2π
On(k), (8)

does not depend on the gauge λn(k) [24]. Therefore, Fn(k) can
be physically observed.

Regarding the magnon Hall effect as an indirect observa-
tion of the magnon OAM, direct observation of the magnon
OAM through the angular average Fn(k) should then be possi-
ble by coupling magnons to other particles and quasiparticles
that carry OAM. For example, magnons may couple to chiral
phonons [25] in crystals with broken inversion symmetry.
High-energy electron beams separated into orbital compo-
nents by a grating [26] may also couple directly to the magnon
OAM.

In this paper, we demonstrate that Fn(k) is the only ob-
servable component of the OAM. We then evaluate Fn(k) for
FM honeycomb (HC) and square zigzag (ZZ) lattices with
DM interaction D. Along with their antiferromagnetic (AF)
counterparts, these lattices are sketched in Fig. 1. Each model
is described by the general Hamiltonian

H = −1

2

∑
i, j

Ji j Si · S j − D
∑
i, j

(Si × S j ) · z

− K
∑

i

(Si · z)2, (9)

with the DM interaction −D(Si × S j ) · z oriented along bond
i, j with spin S j at the end point and spin Si at the starting
point of the arrow in Fig. 1. For all four models, easy-axis
anisotropy K along z is required to keep the DM interaction
from tilting the spins away from the z axis.

In all four lattices, the DM interactions only act between
sites r of the same kind in each magnetic unit cell. For the FM
lattices of Figs. 1(a) and 1(c), the DM interactions act between
spins of type 1 or of type 2, and similarly for the AF HC
lattice in Fig. 1(b). For the AF ZZ lattice in Fig. 1(d), the DM

FIG. 1. Case studies: HC lattices with (a) FM interaction
J > 0 and (b) AF interaction J < 0 with two sites in the magnetic
unit cell each; ZZ lattices with (c) FM interactions 0 < J1 < J2 and
two sites in the magnetic unit cell, and (d) AF interaction J1 < 0 and
FM interaction J2 > 0 and four sites in the magnetic unit cell. The
DM interaction D and its orientation are shown by the dashed line.
Up spins are solid circles and down spins are empty circles.

interactions act between spins of type 1, 2, 3, or 4. For both
HC and ZZ lattices, DM interactions are allowed by broken
inversion symmetry. For the HC lattices, inversion symmetry
is broken by lattice topology. For the ZZ lattices, inversion
symmetry is broken by the different environment to either
side of an exchange path with |J2/J1| �= 1. By contrast, the
environment around the midway point between neighboring
spins (i.e., spins of different type) is inversion-symmetric on
both lattices.

OAM was earlier predicted [27] to appear in the two ZZ
lattices of Figs. 1(c) and 1(d) with |J2/J1| �= 1 but D = 0.
Unfortunately, OAM without DM interactions cannot be ob-
served due to its lack of gauge invariance [24]. In this paper,
we find that a FM ZZ lattice with a nonzero DM interaction
D �= 0 [see Fig. 1(c)] creates a new class of materials where
the effects of OAM are observable. Due to the inequivalent
DM interactions on either side of each bond, the FM ZZ
lattice then circumvents the “no-go” theorem of Refs. [18] and
[6], which is based on the edge sharing of equivalent cells.
However, because the magnon bands are always degenerate
along the upper left and lower right boundaries of the BZ with
kx − ky = ±π/a, the Chern numbers Cn of the magnon bands
are not well defined.

The degeneracy of the FM ZZ bands along the upper left
and lower right boundaries of the BZ can be lifted by allowing
the FM exchange interaction Jn along the x and y axes (Jnx and
Jny) to be slightly different. The Chern numbers of the magnon
bands for the anisotropic FM ZZ model are then well defined
and given by 0 or ±1.

There are several purposes served by this paper. The next
section extends earlier results for the angular-averaged OAM
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Fn(k). By studying both the FM HC and ZZ lattices, we show
that formal results for Fn(k) and the Berry curvature �n(k) for
the two models are quite similar. We also provide results for
the tiling of the OAM over all k for both models.

This paper is divided into six sections. Section II demon-
strates that Fn(k) is the only component of On(k) that is
physically observable. Section III reviews results for the FM
HC model. Section IV discusses the FM ZZ model, while
Sec. V treats the anisotropic model with J1y/J1x �= 1. Sec-
tion VI compares the predicted magnon Hall effects of the
FM HC and ZZ models and contains a conclusion. To focus
attention on the FM cases where OAM can be observed, we
treat the AF HC and ZZ lattices in Appendixes B and C.
While the FM lattices exhibit nonzero values of Fn(k) when
D �= 0, the AF lattices do not: Fn(k) = 0 even when D �= 0.
Appendix D presents results for the edge modes produced
by the anisotropic FM ZZ model. Because dipole interactions
[13] are neglected in this paper, DM interactions provide the
only source of magnon OAM.

II. COMPONENTS OF THE OAM

To set the stage for the results provided in the next two
sections, we briefly review the spin-wave (SW) formalism for
the OAM and Berry curvature, specializing to collinear spin
systems. Rotated into the local spin reference frame with z̄i

pointing along the spin direction, the spins S̄i are given in
terms of the boson SW creation and annihilation operators
ai and a†

i by S̄iz = S − a†
i ai, S̄i+ = Sixniz + iSiy = √

2Sai, and
S̄i− = Sixniz − iSiy = √

2Sa†
i , where niz = 1 for up spins and

niz = −1 for down spins. Then the Hamiltonian H can be
expanded in powers of the Fourier-transformed SW operators
a(r)

k and a(r)†
k (r is one of the M sites in the magnetic unit cell)

as H = E0 + H2 + · · · with second-order Hamiltonian

H2 =
∑

k

′
v†

k · L(k) · vk, (10)

where the prime indicates that the summation over k is
restricted to the first BZ of the magnetic unit cell. The 2M-
dimensional vector operators

vk = (
a(1)

k , a(2)
k , . . . , a(M )

k , a(1)†
−k , a(2)†

−k , . . . , a(M )†
−k

)
(11)

satisfy [vk, v†
k′ ] = N δk,k′ , where N is defined in terms of the

M-dimensional identity matrix I by

N =
(

I 0
0 −I

)
. (12)

The 2M × 2M matrix L(k) can be compactly written

L(k) =
(

P(k) Q(k)
Q′(k) P′(k)

)
, (13)

where P(k), Q(k), P′(k), and Q′(k) are M × M matrices.
Because L(k) is Hermitian,

P′(k) = P(−k)�, (14)

Q′(k) = Q(−k)�. (15)

These relations will prove useful in the following two
sections and in Appendixes B–D.

Within the quantum SW notation, the semiclassical eigen-
value relation of Eq. (5) is replaced by

(k) · X −1(k) = h̄ωn(k) X −1(k), (16)

where (k) = N · L(k) is non-Hermitian. Hence, the Bloch
functions |un(k)〉 are replaced by the complex matrices
X −1(k)rn, which can be considered the nth eigenfunctions
of the 2M × 2M energy matrix (k). In the quantum SW
language, the Berry curvature and OAM are given by

�n(k) = i

2π

M∑
r=1

{
∂X −1(k)∗rn

∂k
∂X −1(k)rn

∂k

− ∂X −1(k)∗r+M,n

∂k
∂X −1(k)r+M,n

∂k

}
, (17)

On(k) = h̄

2

M∑
r=1

{X −1(k)rn l̂zk X −1(k)∗rn

− X −1(k)r+M,n l̂zk X −1(k)∗r+M,n}, (18)

where

l̂zk = −i

(
kx

∂

∂ky
− ky

∂

∂kx

)
(19)

is the OAM operator. The normalization condition for the
Bloch functions 〈un(k)|un(k)〉 = 1 is then replaced by the
condition

M∑
r=1

{|X −1(k)rn|2 − |X −1(k)r+M,n|2} = 1 (20)

for the complex matrices X −1(k)rn and X −1(k)r+M,n.
With the Berry curvature defined above, the Chern number

for band n is given by

Cn =
∫

BZ
d2k 	nz(k), (21)

where k is integrated over the first BZ [28]. A customary fac-
tor of 1/2π is missing from this expression for Cn because it is
included in Eqs. (1) and (17) for the Berry phases. The Chern
number Cn takes an integer value as long as the magnons in
band n are nondegenerate, i.e., disconnected from all other
magnons in frequency for all k. A nonzero Chern number is
physically associated with edge modes [19,20,29–31] whose
dispersion bridges the gap between bulk magnon bands.
Since the sum of Berry curvatures over all bands vanishes,∑

n Cn = 0.
In the quantum language, each eigenfunction X −1(k)rn can

be multiplied by an arbitrary phase factor so that

X −1(k)rn → X −1(k)rn e−iλn (k), (22)

where the gauge λn(k) may depend on band index n and
k = (k, φ) but not on site r. Of course, λn(k, φ) must also
be a single-valued function of φ so that λn(k, 0) = λn(k, 2π ).
Under a gauge transformation, the OAM changes by

On(k) → On(k) + h̄

2

∂

∂φ
λn(k, φ), (23)

in agreement with the semiclassical expression of Eq. (7).
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Now expand On(k, φ) in powers of cos lφ and sin lφ so that

On(k, φ) =
∑
l=0

{Aln(k) cos lφ + Bln(k) sin lφ}. (24)

Following a gauge transformation, the right-hand side (rhs) of
Eq. (23) becomes∑

l=0

{Aln(k) cos lφ + Bln(k) sin lφ} + h̄

2

∂

∂φ
λn(k, φ)

= A0n(k) +
∑
l=1

{Aln(k) cos lφ + Bln(k) sin lφ}

+ h̄

2

∂

∂φ
λn(k, φ) = A0n(k), (25)

where we have set

λn(k, φ) = − 2

h̄

∑
l=1

1

l
{Aln(k) sin lφ

− Bln(k) cos lφ}. (26)

The l = 0 component cannot be included on the rhs because it
would produce a term proportional to φ, violating the assump-
tion that λn(k, 0) = λn(k, 2π ). Hence, the appropriate gauge
λn(k) can be used to remove all components of the OAM
except for

A0n(k) = Fn(k) ≡
∫ 2π

0

dφ

2π
On(k). (27)

Not only does this prove that Fn(k) is observable, but it also
demonstrates that Fn(k) is the only observable component of
the OAM.

In the absence of DM interactions, the OAM On(k) is an
odd function of k so that On(k) = −On(−k) and Fn(k) =
0. When the DM interaction D enters On(k) linearly, then
On(k) = On(−k) is an even function of k, and Fn(k) can be
nonzero. More generally, we expand On(k) in powers of the
DM interaction as

On(k) = O(0)
n (k) + D O(1)

n (k) + D2 O(2)
n (k)

+ D3 O(3)
n (k) + · · · . (28)

Then, the even components O(2m)
n (k) = −O(2m)

n (−k) are odd
in k and the odd components O(2m+1)

n (k) = O(2m+1)
n (−k) are

even in k. Of course, only the odd components O(2m+1)
n (k)

contribute to Fn(k). If we then write

On(k) = O(odd)
n (k) + O(even)

n (k), (29)

only O(even)
n (k) (containing terms of order D2m+1) contributes

to the physically measurable Fn(k).
Since only wave vectors k within the first BZ of the

magnetic unit cell enter Eq. (10), we use periodic boundary
conditions to evaluate the integral over angles φ in Fn(k)
when required to translate wave vectors k outside the first
BZ to wave vectors inside the first BZ. Alternatively, Fn(k)
can be evaluated by tiling all of k space with the first BZ
of O(even)

n (k). For the FM ZZ lattice, Appendix A shows that
the resulting pattern for O(tiled)

n (k) is both periodic in k and
continuous as a function of k at the zone boundaries. We shall
give examples of the tiling procedure for the FM HC and ZZ
models in the following sections. Nevertheless, bear in mind

that O(tiled)
n (k) is not unique and is just a tool to evaluate the

physically observable quantity Fn(k).

III. FM HONEYCOMB LATTICE

Most details of the solution for the FM HC lattice sketched
in Fig. 1(a) with exchange J > 0 and DM interaction D be-
tween like sites were previously provided in Ref. [24]. The
4 × 4 matrix L(k) defined by Eq. (10) is given by

L(k) = 3JS

2

⎛
⎜⎜⎜⎝

A−
k −�∗

k 0 0
−�k A+

k 0 0
0 0 A+

k −�∗
k

0 0 −�k A−
k

⎞
⎟⎟⎟⎠, (30)

where A±
k = 1 ± d �k + κ , d = −2D/3J , κ = 2K/3J ,

�k = 4 cos(3kxa/2) sin(
√

3kya/2) − 2 sin(
√

3kya), (31)

and

�k = 1
3 {eikxa + 2e−ikxa/2 cos(

√
3kya/2)}. (32)

We caution the reader that matrix element A±
k , DM parameter

d , and anisotropy parameter κ shall be defined differently for
the FM ZZ lattice in the next section. Since �−k = −�k and
�−k = �∗

k, it can be easily shown that the upper and lower
quadrants of L(k) satisfy Eq. (14) or that P′(k) = P(−k)�.

Magnon energies for bands 1 and 2 are given by

h̄ω1(k) = 3JS(1 − ηk + κ ), (33)

h̄ω2(k) = 3JS(1 + ηk + κ ), (34)

where ηk =
√

|�k|2 + (d �k )2. Notice that these energies are
simply shifted by the easy-axis anisotropy κ . The magnon
band gap is given by

h̄�ω(k) = h̄[ω2(k) − ω1(k)] = 6JSηk. (35)

The normalized gap

δ(k) ≡ h̄�ω(k)

6JS
= 2ηk = 2

√
|�k|2 + (d �k )2 (36)

is plotted versus k for d = 0 and −0.4 in Fig. 2. When d = 0,
the magnon gap vanishes in triangular k-space regions at the
corners of the BZ. When d = −0.4, the smallest normalized
gap δ(k) is 2/3. In fact, any nonzero d introduces a gap such
that the δ(k) > 0 and modes 1 and 2 are distinct for all k.

Using a particularly simple form for the gauge, we earlier
found [24] (correcting a minus sign) that

O1(k) = h̄

4

{
1 − d �k

ηk

}
�k

|�k| l̂zk
�∗

k

|�k| , (37)

O2(k) = h̄

4

{
1 + d �k

ηk

}
�k

|�k| l̂zk
�∗

k

|�k| . (38)

Unlike the mode frequencies, however, solutions for the OAM
are not unique. Since the d = 0 portion of the OAM is not
observable, the first terms in the brackets of Eqs. (37) and (38)
can be neglected. Because ηk is an even function of d , we then
find

O(even)
1 (k) = −O(even)

2 (k) = −d h̄

4

�k

ηk

�k

|�k| l̂zk
�∗

k

|�k| (39)
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FIG. 2. The normalized gap δ(k) = 2ηk for the FM HC lattice vs k for d = (a) 0 and (b) −0.4.

and

F1(k) = −F2(k) = −d h̄

4

∫
dφ

2π

�k

ηk

�k

|�k| l̂zk
�∗

k

|�k| . (40)

Figure 3 uses O(even)
1 (k)/h̄ with d = −0.1 to construct

O(tiled)
1 (k)/h̄. Notice that the tiled pattern is both a periodic

function of k and a continuous function of k at the boundaries
of the first BZ, denoted by the solid lines. The solutions
for F1(k)/h̄ for d running from −0.01 to −0.1 are plotted
in Fig. 4. We find that F1(k)/h̄ grows quite rapidly with d
and peaks when ka/2π = 2

√
3/9 = 0.385, which coincides

with the corners of the first BZ. The value of F1(k)/h̄ at
ka/2π = 2

√
3/9 diverges as |d| → ∞.

While Fig. 3 suggests that the OAM is largest at the corners
of the BZ and Fig. 4 does not disallow that claim, we remind
the reader that Fig. 4 only states that the angular average of
the OAM is largest when ka/2π intercepts the corners of the
BZ. It does not imply that the largest OAM lies for φ at the
BZ corners.

FIG. 3. The pattern O(tiled)
1 (k)/h̄ for the FM HC lattice with d =

−0.1. The first BZ of the magnetic unit cell is denoted by the solid
white lines.

Again correcting a minus sign, the Berry curvatures of the
FM HC lattice are given analytically by

	1z(k) = −	2z(k)

= i
d

4π

�∗
k

|�k|

{
∂�k/ηk

∂k
× ∂�k/|�k|

∂k

}
· z. (41)

For the lower band, 	1z(k) is plotted in Fig. 5 for d =
−0.1 and −0.4. The Chern numbers Cn of the lower
and upper magnon bands are −1 and +1, respectively,
for all d < 0. The Chern number is an integer due
to the nonzero gap [28] between the magnon modes
for all k.

IV. FM ZIGZAG LATTICE

The FM ZZ lattice is sketched in Fig. 1(c) with exchange
interactions 0 < J1 < J2 and DM interaction D between like

FIG. 4. The function F1(k)/h̄ evaluated using O(tiled)
1 (k)/h̄ for the

FM HC lattice with d = −0.01, −0.02, −0.05, and −0.1.
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FIG. 5. The Berry curvature 	1z(k) of the FM HC lattice vs k
for d = (a) −0.1 and (b) −0.4.

sites along (1,−1). Then

L(k) = (J1 + J2)S

⎛
⎜⎜⎜⎝

A−
k −�∗

k 0 0
−�k A+

k 0 0
0 0 A+

k −�∗
k

0 0 −�k A−
k

⎞
⎟⎟⎟⎠, (42)

where A±
k = 1 ± d τk + κ , d = −2D/(J1 + J2), κ = K/(J1 +

J2), τk = sin(kya − kxa), and

�k = J1ξ
∗
k + J2ξk

2(J1 + J2)
(43)

with ξk = exp(ikxa) + exp(ikya). Using τ−k = −τk and
�−k = �∗

k , it is easy to verify that the upper and lower quad-
rants of L(k) satisfy Eq. (14) or that P′(k) = P(−k)�.

The magnon energies are given by

h̄ω1(k) = 2(J1 + J2)S(1 − μk + κ ), (44)

h̄ω2(k) = 2(J1 + J2)S(1 + μk + κ ), (45)

where μk =
√

|�k|2 + (d τk )2. As for the FM HC lattice, the
magnon bands are just shifted by κ . The gap between the
magnons is then given by

h̄�ω(k) = h̄[ω2(k) − ω1(k)] = 4(J1 + J2)Sμk, (46)

with a normalized gap

δ(k) ≡ h̄�ω(k)

2(J1 + J2)S
= 2μk = 2

√
|�k|2 + (d τk )2 (47)

that only depends on d and r = J2/J1. The normalized gap
is plotted versus k on the top two panels of Fig. 6 for d =
0 and r = 8 or 1. For r > 1, δ(k) = 0 at the upper left and
lower right borders of the BZ, which is sketched by the rotated
square. For r = 1, δ(k) = 0 at all four borders of the BZ. The
bottom two panels of Fig. 6 plot δ(k) for the same values of
r with d = −0.4. Even for d �= 0, the gap δ(k) continues to
vanish at the upper left and lower right boundaries of the BZ
with kx − ky = ±π/a because τk = 0.

FIG. 6. The normalized gap δ(k) = 2μk between bands of the FM ZZ lattice evaluated using d = 0 and r = (a) 8 and (b) 1 in the top two
panels or d = −0.4 and r = (c) 8 and (d) 1 in the bottom two panels. The first BZ of the magnetic unit cell is sketched by the solid lines.
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FIG. 7. The pattern O(tiled)
1 (k)/h̄ for the FM ZZ lattice with d = −0.4 and r = (a) 50, (b) 8, (c) 1.5, and (d) 1.1. The first BZ of the magnetic

unit cell is denoted by the solid white lines.

The solutions for O(even)
n (k) and Fn(k) are formally

quite similar to those for the FM HC lattice in Eqs. (39)
and (40):

O(even)
1 (k) = −O(even)

2 (k) = −d h̄

4

τk

μk

�k

|�k| l̂zk
�∗

k

|�k| (48)

and

F1(k) = −F2(k) = −d h̄

4

∫
dφ

2π

τk

μk

�k

|�k| l̂zk
�∗

k

|�k| . (49)

The pattern O(tiled)
1 (k)/h̄ is plotted in Fig. 7 for d = −0.4

and r = 50, 8, 1.5, and 1.1. For r = 50 or 8, O(tiled)
1 (k)/h̄

contains wide troughs of minima close to zero near av-
enues of maxima close to 0.08 or 0.11 h̄, both along (1,1).
Narrow lanes of vanishing OAM appear at the kx − ky =
±π/a boundaries of the BZ where the magnon bands are
degenerate. The OAM also vanishes in a lane along (1,1)
that crosses k = 0. For r = 1.5 and 1.1, peaked regions in
O(tiled)

1 (k)/h̄ appear at the kx + ky = ±π/a boundaries of
the BZ along (1,−1). These regions become increasingly
narrow as r → 1.

The observable function Fn(k)/h̄ for the FM ZZ lattice
is plotted in Fig. 8 for d = −0.4 and these same four val-
ues of r. For r = 1.5 and 1.1, the large maxima of F1(k)/h̄
at ka/2π ≈ 0.4 are associated with the peaked regions of
O(tiled)

1 (k)/h̄ at the lower left and upper right boundaries of the

BZ (kx + ky = ±π/a) in Fig. 7. The observable portion of the
OAM becomes increasingly narrow and disappears as r → 1.

Since the magnon Hall effect may be observed in the FM
ZZ lattice with DM interaction, we also provide results for its
Berry curvature. The Berry curvatures along z may be written

FIG. 8. The function F1(k)/h̄ evaluated using O(tiled)
1 (k)/h̄ for the

FM ZZ lattice with d = −0.4 and r = 50, 8, 1.5 (long-dash curve),
and 1.1. The short-dash curve for r = 1.5 takes J1y/J1x = 1.1 in the
anisotropic ZZ model.
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FIG. 9. The Berry curvature 	1z(k) of the FM ZZ lattice evaluated using d = −0.4 and r = (a) 50, (b) 8, (c) 1.5, and (d) 1.1. The first BZ
of the magnetic unit cell is sketched by the solid lines.

as

	1z(k) = −	2z(k)

= i
d

4π

�∗
k

|�k|

{
∂ τk/μk

∂k
× ∂ �k/|�k|

∂k

}
· z, (50)

which are formally similar to the expressions for the Berry
curvatures of the FM HC lattice given by Eq. (41). Using
the same parameters as in Figs. 7 and 8, we plot 	1z(k) in
Fig. 9.

Comparing Figs. 6 and 9 reveals that the Berry curvature
vanishes at the upper left and lower right boundaries of the
BZ with kx − ky = ±π/a, where the magnon gap δ(k) also
vanishes. For any r, the DM interaction does not affect the gap
at kx = ky = ±0.5π/a, where τk = 0 and δ(k) = 2|�k| =
2|1 − r|/(1 + r). So at r = 1, the gap between the bands
closes at those two points. Close to r = 1, strong peaks in
the Berry curvature are found at those same k points in Fig. 9.
However, the Berry curvature disappears when the exchange
becomes homogeneous as r → 1.

Evaluating the Chern number Cn for the FM ZZ model
by integrating 	nz(k) over all k within the first BZ zone, we
obtain the surprising result that Cn is not well defined. Recall
that the Chern numbers for the FM HC lattice are ±1 for all d .
The Chern numbers for the FM ZZ model are not well defined
due to the degeneracy of the magnon bands at the upper right
and lower left boundaries of the BZ.

V. ANISOTROPIC FM ZIGZAG LATTICE

As mentioned earlier, the degeneracy of the magnon bands
along the BZ boundaries can be lifted by allowing the ex-
changes Jnx along the x axis to be different from the exchanges
Jny along the y axis. Earlier results must then be modified by
defining Jt = J1x + J1y + J2x + J2y, d = −4D/Jt ,

�k = J1xe−ikxa + Jiye−ikya + J2xeikxa + J2yeikya

Jt
, (51)

h̄ω1(k) = Jt S(1 − μk + κ ), (52)

h̄ω2(k) = Jt S(1 + μk + κ ), (53)

r = J2x + J2y

J1x + J1y
> 1, (54)

and δ(k) = h̄�ω(k)/Jt S.
The anisotropic FM ZZ model contains three regimes

depending on the relative values of �J1 = |J1y − J1x| and
�J2 = |J2y − J2x|, with the constraint that r > 1. For the
case �J1 = �J2 = 0 considered in the previous section,
the Chern number is undefined and the gap between the
bands vanishes even when d �= 0. The Chern number
remains undefined when �J1 = �J2 > 0, although the gap
between the bands is then nonzero due to the exchange
anisotropy in the x and y directions. For �J1 > �J2 � 0,
the Chern numbers Cn for the lower and upper bands are
−1 and +1 when d < 0 and reversed when d > 0. When
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FIG. 10. The normalized gap δ(k) = 2μk between bands of the FM ZZ lattice evaluated using J1y/J1x = 1.5, �J2 = 0, r = 8, and (a) d = 0
or (b) −0.4. The first BZ of the magnetic unit cell is sketched by the solid lines.

�J2 > �J1 � 0, Cn = 0. Consequently, the anisotropic FM
ZZ model bears some similarity to the Su-Schrieffer-Heeger
model [32].

For simplicity, we now consider the case in which �J1 �= 0
but �J2 = 0. Using J1y/J1x = 1.5, the normalized gap δ(k)
is plotted versus k in Fig. 10. The minimum value of δ(k)
increases from 2.9 × 10−3 to 2.5 × 10−2 as |d| increases from
0 to 0.4. The short-dash curve in Fig. 8 for r = 1.5 uses

J1y/J1x = 1.1, indicating a redistribution of OAM to values
of k near its peak.

The Berry curvatures of the anisotropic FM ZZ model
with J1y/J1x = 1.5, �J2 = 0, and d = −0.4 are plotted in
Fig. 11 for four different values of r. Notice that the range
of Berry curvatures now extends over both positive and neg-
ative values with the upper negative bounds for d = −0.4
exceeding the range for J1y/J1x = 1 in Fig. 9. These negative

FIG. 11. The Berry curvature 	1z(k) of the FM ZZ lattice evaluated using d = −0.4, J1y/J1x = 1.5, �J2 = 0, and r = (a) 50, (b) 8, (c) 1.5,
and (d) 1.1. The first BZ of the magnetic unit cell is sketched by the solid lines.
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FIG. 12. The normalized thermal conductivity κ̃xy(T̃ ) vs r for
several values of d for the FM ZZ model with temperature T̃ = 0.3
and anisotropy κ = 1.5. The dot-dash curve for d = −0.4 takes
J1y/J1x = 1.5.

bounds for the Berry curvature can be found on the upper
left and lower right boundaries of the BZ where the magnon
modes were degenerate and the Berry curvature vanished
for J1y/J1x = 1.

In Appendix D, we construct a ribbon with edges along the
zigzags to demonstrate that nontrivial topological edge modes
are associated with the model when the Chern numbers are
±1. No such edge modes appear when the Chern numbers are
undefined or 0.

VI. DISCUSSION AND CONCLUSION

The magnon Hall effect was first predicted for a FM
kagomé lattice [18] with DM interactions due to broken in-
version symmetry. The subsequent observation and theory of
the magnon Hall effect was performed for FM pyrochlore
systems [5,6]. Nonzero Berry curvatures and Chern numbers
were also suggested for the FM star lattice [33], which has
similarities to both kagomé and HC lattices. Earlier work
predicted [24,34,35] that OAM can be observed in FM HC
lattices. Our current paper predicts that OAM can also be
observed in FM ZZ lattices with distinct exchange interactions
0 < J1 < J2 and D �= 0. As shown in Appendixes B and C,
OAM is not observable in AF HC and ZZ geometries even
when D �= 0.

The finite Berry curvatures in both FM HC and ZZ mod-
els implies that their transverse thermal conductivities are
nonzero. The magnon Hall effect [28] is evaluated in terms
of the Berry curvature using Eq. (3), where

c2(ρ) = (1 + ρ)
(

log
1 + ρ

ρ

)2
− (log ρ)2 − 2Li2(−ρ) (55)

and Li2(z) is the dilogarithmic function. To account for the
different scaling of the magnon energies εn(k) = h̄ωn(k)
for the two FM models, we define T̃ = kBT/3JS and
κ̃xy = h̄κxy/3kBJS (HC) or T̃ = kBT/2(J1 + J2)S and κ̃xy =
h̄κxy/2kB(J1 + J2)S (ZZ) with the dimensionless thermal

FIG. 13. The normalized thermal conductivity κ̃xy(T̃ ) of the FM
HC (solid) and ZZ (long dash) models vs T̃ . Both models take d =
−0.4 and κ = 1.5, while the FM ZZ model also uses r = 10 and
the upper (small dash) ZZ curve sets J1y/J1x = 1.5. The inset plots
the ratio of the normalized thermal conductivities of the ZZ and HC
lattices vs T̃ with J1y/J1x = 1.

conductivity given by

κ̃xy(T̃ ) = − T̃

2π

∑
n

∫
BZ

d2k c2(ρ(εn(k))) 	nz(k) (56)

for both models.
To examine the effect of the ratio r = J2/J1 > 1 for the

FM ZZ model, we plot κ̃xy(T̃ ) versus r for several values of
d in Fig. 12, which sets T̃ = 0.3, and κ = 1.5. As expected,
κ̃xy(T̃ ) → 0 as r → 1. More unexpectedly, κ̃xy(T̃ ) reaches a
plateau at about r ≈ 6, which implies that the magnon Hall
effect will be most easily observed in materials with large r.

The magnon Hall effect has been observed in experimental
realizations of the pyrochlore [5,6] and kagomé [8] lattices.
Unfortunately, it has not yet been observed in FM HC lattices
like CrBr3 [36] and CrIr3 [37]. Nevertheless, we compare
theoretical values of κ̃xy(T̃ ) for the FM HC and ZZ models
in Fig. 13. Taking r = 10 for the FM ZZ model and setting
T̃ ≈ 0.6, we find that κ̃xy(T̃ ) is about four times larger for the
HC model than for the ZZ model. The suppression of the FM
state with temperature can always be alleviated by increasing
the anisotropy K .

To estimate the effect of the partially gapped magnons
on the ZZ model, we plot the thermal conductivities with
J1y/J1x = 1.5 in Figs. 12 and 13. Notice that the magnon
band gap produced by J1y/J1x = 1.5 enhances κ̃xy(T̃ ) only
slightly, with the largest change at small r in Fig. 12. So the
disappearance of the magnon band gap and the absence of a
well-defined Chern number when J1y/J1x = 1 does not signif-
icantly depress the magnon thermal conductivity at large r.

Due to the low contrast between different FM exchange
couplings, it is difficult to identify materials described by
the FM ZZ geometry. Nevertheless, several cases of FM
ZZ chains coupled by FM exchange interactions have been
discovered: spin-1/2 Heisenberg vanadium chains in CdVO3

[38,39], spin-3/2 chromium chains in LaCrOS2 [40], and

214402-10



MAGNON ORBITAL ANGULAR MOMENTUM OF … PHYSICAL REVIEW B 108, 214402 (2023)

spin-3.4/2 manganese chains in La3MnAs5 [41]. For CdVO3

[38,39], the intrachain coupling J2 ≈ 90 K is significantly
stronger than the interchain coupling J1 ≈ 18 K so that r ≈ 5.
For La3MnAs5 [41], r ≈ 7.6. The exchange ratio r is also
believed to be large in LaCrOS2 [40]. As predicted by Fig. 12,
observation of the magnon Hall effect depends sensitively on
the ratio r = J2/J1. With such large values of r, any of the
materials mentioned above will be good candidates to search
for the magnon Hall effect in FM ZZ geometries.

Edge currents produced by the Berry curvature [19,20,29]
and closely connected with the thermal conductivity and
Chern number [30,31] are only topologically protected in
systems containing a gap between the magnon bands, i.e., in
magnetic insulators. Therefore, the edge currents in FM ZZ
lattices with J1y/J1x = 1 are not topologically protected and
will decay with time due to the degenerate k-space regions
along the kx − ky = ±π/a BZ boundaries where the magnon
bands overlap. The topological protection afforded by the
symmetry breaking J1y/J1x �= 1 of the exchange interaction
J1 may then depend on the size of the resulting magnon
band gap compared to the temperature and the magnon
interactions [42].

Direct observation of the angular-averaged magnon OAM
Fn(k) may be possible in both HC and ZZ lattices by cou-
pling magnons to other particles and quasiparticles. While
the dynamics of Fn(k) remains unexplored, we speculate that
the magnon OAM may appear in inelastic neutron scattering
experiments through the angular-averaged S(k, ω), i.e., the
powder-averaged S(k, ω), when ω crosses a magnon band and
k crosses a peak in Fn(k). Alternatively, it may be possible to
couple magnons to chiral phonons in either FM honeycomb
or zigzag materials. For example, chiral phonons and their
quasiparticle couplings have been observed in the honeycomb
structure WSe2 [25] while the FM zigzag material La3MnAs5

has a 63 screw axis that supports phonons with OAM [43]. It
may also be possible to couple the magnons to a high-energy
electron beam after the electrons are separated into orbital
components by a grating [26]. A STEM can then be used to
probe the coupling between the electron and magnon OAM
when the transverse linear electron momentum matches the
linear magnon momentum.

To conclude, we have studied a new class of materials
associated with FM ZZ geometries where the effects of OAM
are observable. Formally, results for the OAM and Berry
curvature for this geometry are quite similar to well-known
results for the FM HC lattice. While the magnon bands are
not completely gapped, and the Chern numbers are not well
defined for J1y/J1x = 1, those deficits do not significantly
impact the magnon transverse thermal conductivity κxy(T ) in
ZZ lattices. Indeed, opening a magnon band gap and produc-
ing well-defined Chern numbers by setting J1y/J1x �= 1 only
modestly enhances κxy(T ). Although only an infinitesimal
difference J1y/J1x − 1 �= 0 is required to create a magnon gap,
FM ZZ lattice materials with J1y/J1x = 1 are not topological
insulators. Consequently, the usefulness of these materials for
specific applications may depend on the lifetime of the edge
modes. Nonetheless, we are hopeful that future experiments
on some of the materials discussed above will demonstrate
that the effects of OAM may be observed in systems that are
neither topological nor magnetic insulators.

The data that support the findings of this study are available
from the authors upon reasonable request.
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APPENDIX A: TILING OAM

For the FM ZZ lattice, the smoothness of the even part of
the OAM at the zone boundaries is ensured if O(even)

1,2 (kx, ky) =
O(even)

1,2 (ky, kx ), as seen numerically in Figs. 3 and 7. For this
case, a point just outside the BZ can be mapped into the
corresponding point on the opposite side of the boundary just
inside the BZ by using

O(even)
1,2 (k) = O(even)

1,2 (k + G) (A1)

and

O(even)
1,2 (kx, ky) = O(even)

1,2 (−ky,−kx ), (A2)

where G is a reciprocal-lattice vector and we have used the
even property of O(even)

1,2 (k). Thus, in approaching the BZ
edge, the even OAM of point k and its mirror across the
BZ boundary are equivalent, all the way to the limit of the
boundary itself. To show that O(even)

1,2 (kx, ky) = O(even)
1,2 (ky, kx )

for the FM ZZ square lattice, we see that O(even)
1,2 (k) in

Eq. (48) is composed of functions that are symmetric or an-
tisymmetric with respect to switching components: �(kx,ky ) =
�(ky,kx ), τ(kx,ky ) = −τ(ky,kx ), μ(kx,ky ) = μ(ky,kx ), and l̂z(kx, ky) =
−l̂z(ky, kx ). Plugging these into Eq. (48), the negative signs
from the antisymmetric terms cancel and O(even)

1,2 (kx, ky) =
O(even)

1,2 (ky, kx ).

APPENDIX B: AF HONEYCOMB LATTICE

This Appendix considers the HC lattice sketched in
Fig. 1(b) with AF exchange J < 0 between alternating up and
down spins. We then find

L(k) = −3JS

2

⎛
⎜⎜⎜⎝

A+
k 0 0 −�∗

k

0 A+
k −�k 0

0 −�∗
k A−

k 0
−�k 0 0 A−

k

⎞
⎟⎟⎟⎠, (B1)
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where A±
k = 1 ± d �k + κ as in the FM HC lattice but with

κ = 2K/3|J|. It is then easy to show that solutions for the
eigenfunctions X −1

rn (k) are independent of d . The doubly de-
generate magnon energies

h̄ω1,2(k) = 3|J|S
√

(1 + κ )2 − |�k|2 + d �k (B2)

are simply shifted by the DM interaction. As expected, On(k)
is an odd function of k for any gauge. Therefore, the AF HC
lattice does not support an observable OAM and Fn(k) = 0.
However, the AF HC lattice does support the magnon Nernst
effect with a net spin current [45,46].

APPENDIX C: AF ZIGZAG LATTICE

This Appendix treats the AF ZZ lattice with AF coupling
J1 < 0 between chains and FM coupling J2 > 0 within chains.
As seen in Fig. 1(d), the magnetic unit cell contains four spins
so the L(k) matrix is eight-dimensional. Fortunately, we can
write

H2 =
∑

k

′
v†

k · L(k) · vk

=
∑

k

′{v†
1k · L1(k) · v1k + v†

2k · L2(k) · v2k}, (C1)

where

v1k = (
a(1)

k , a(2)
k , a(3)†

−k , a(4)†
−k

)
, (C2)

v2k = (
a(3)

k , a(4)
k , a(1)†

−k , a(2)†
−k

)
, (C3)

L1(k) = S(J2 − J1)

⎛
⎜⎜⎜⎝

A−
k −γ2ξk 0 γ1ξ

∗
k

−γ2ξ
∗
k A+

k γ1ξk 0
0 γ1ξ

∗
k A−

k −γ2ξk

γ1ξk 0 −γ2ξ
∗
k A+

k

⎞
⎟⎟⎟⎠,

(C4)

L2(k) = S(J2 − J1)

⎛
⎜⎜⎜⎝

A+
k −γ2ξk 0 γ1ξ

∗
k

−γ2ξ
∗
k A−

k γ1ξk 0
0 γ1ξ

∗
k A+

k −γ2ξk

γ1ξk 0 −γ2ξ
∗
k A−

k

⎞
⎟⎟⎟⎠,

(C5)

with A±
k = 1 ± d τk, d = 2D/(J2 − J1), and γn = Jn/2(J2 −

J1). The only difference between L1(k) and L2(k) is that D
changes sign. It is straightforward to show that the symmetry
relations of Eqs. (14) and (15) are satisfied by the full matrix
L(k).

The AF ZZ model then contains four magnon bands, which
are doubly degenerate with energies

h̄ω1,3(k) = 2(J2 − J1)S
{
1 − (

γ 2
1 − γ 2

2

)|ξk|2 + 16(d τk )2

±
√

γ 2
2

(
γ 2

1

(
ξ 2

k − ξ ∗2
k

)2 + 4|ξk|2
) + 4(d τk )2

}1/2
,

(C6)

ω2(k) = ω1(k), and ω4(k) = ω3(k). Since the magnon en-
ergy does not depend on the sign of d , lower bands 1 and 2
and upper bands 3 and 4 from L1(k) and L2(k) are degenerate.

FIG. 14. A ribbon with width M = 8 containing weaker bonds
J1n at the outer edges. The termination is only at the top and bottom;
the ribbon propagates to infinity in the other directions.

Additional exchange interactions do not affect the structure
of the Ln(k) matrices. For example, an exchange interaction J3

between spin pairs {1, 3} and {2, 4} along the (1,1) diagonal
does not couple the L1(k) and L2(k) matrices. Nor do any
other complex set of exchange interactions or anisotropies.
So the partition of L(k) into two 4 × 4 matrices remains
unaltered.

Numerical calculation of Fn(k) reveals that F1(k) =
−F2(k) and F3(k) = −F4(k) so that the contributions of the
two Ln(k) matrices with opposite D cancel. Hence, there is no
net observable OAM from the two lower or two upper magnon
bands. Similarly, we find that the Berry curvatures of bands 1
and 2 cancel, as do the Berry curvatures of bands 3 and 4.

APPENDIX D: EDGE MODES FOR THE ANISOTROPIC
FM ZIGZAG LATTICE

The anisotropic FM ZZ model has Chern numbers Cn =
±1 when �J1 > �J2, Cn = 0 when �J2 > �J1, and Cn unde-
fined when �J1 = �J2, all with the understanding that r > 1.
In this Appendix, we show that a ribbon cut along the zigzags
contains topological edge modes only when �J1 > �J2.

There are three ways to construct a ribbon with width M:
with the outer bonds given by the stronger exchange interac-
tions J2n (M even), given by the weaker exchange interactions
J1n (M even), or with J2n on one side and J1n on the other
(M odd). In Fig. 14, we have sketched a ribbon with M = 8
and the outer bonds given by J1n. For this kind of ribbon, the
2M × 2M L(k) matrix is constructed by taking

L11(k) = LMM (k) = S

2
(J1x + J1y)

∓ SJt

2
d sin(kya − kxa), (D1)

Lrr (k) = SJt

2
+ SJt

2
(−1)rd sin(kya − kxa),

r �= 1, M, (D2)

Lr,r+1(k) = −S

2
(Jnxe−ikxa + Jnye−ikya), (D3)

with n = 1 for r odd and n = 2 for r even. We also have
Lr+1,r (k) = Lr,r+1(k)� for r both odd or even. Note that in
all matrix elements Lrs(k), r and s are assumed to be less
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FIG. 15. The frequencies ω/SJt for a ribbon with width M = 20 containing weaker bonds J1n at the outer edges and (a) J1x = J1y = 1,
J2x = J2y = 8; (b) J1x = 0.5, J1y = 1.5, J2x = J2y = 8; or (c) J1x = J1y = 1, J2x = 7, J2y = 8, all with κ = 10 and d = −0.4.

than or equal to M. Then the matrix elements Lr+M,s+M (k)
are determined by using Eq. (14).

The differences between the outer and inner bonds are
that the outer bonds have different diagonal terms L11(k) and
LMM (k) because they only couple to interior sites through the
weaker exchange interactions J1n. Also sites 1 couple only
downwards to sites 2 and sites M only couple upwards to
sites M − 1 through those weaker bonds. Notice that the DM
interaction alternates directions from the top of the ribbon to
the bottom, but its strength remains the same.

Results for the modes of this type of ribbon are shown
in Fig. 15. In Fig. 15(a) with �J1 = �J2 = 0, the Chern

number Cn is undefined and there is no gap due to
the absence of xy anisotropy. In Fig. 15(b) with �J1 >

�J2 = 0, a band gap appears due to the xy anisotropy
in J1n. Topological edge modes are associated with the
Chern numbers C1 = −1 and C2 = +1. In Fig. 15(c) with
�J2 > �J1 = 0, a band gap once again appears due to
the xy anisotropy (now in J2n) but the edge modes are
absent and C1 = C2 = 0. Hence, there is a clear connec-
tion between our earlier results for the Chern numbers
and the appearance of topological edge modes on a rib-
bon. This is called [29] the bulk-edge or bulk-boundary
correspondence.
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