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Topological zero modes and edge symmetries of metastable Markovian bosonic systems
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Tight bosonic analogs of free-fermionic symmetry-protected topological phases, and their associated edge-
localized excitations, have long evaded the grasp of condensed-matter and AMO physics. In this paper, building
on our initial exploration [Phys. Rev. Lett. 127, 245701 (2021)], we identify a broad class of quadratic bosonic
systems subject to Markovian dissipation that realize tight bosonic analogs of the Majorana and Dirac edge
modes characteristic of topological superconductors and insulators, respectively. To this end, we establish a
general framework for topological metastability for these systems, by leveraging pseudospectral theory as
the appropriate mathematical tool for capturing the nonnormality of the Lindbladian generator. The resulting
dynamical paradigm, which is characterized by both a sharp separation between transient and asymptotic
dynamics and a nontrivial topological invariant, is shown to host edge-localized modes, which we dub Majorana
and Dirac bosons. Generically, such modes consist of one conserved mode and a canonically conjugate generator
of an approximate phase-space translation symmetry of the dynamics. The general theory is exemplified through
several representative models exhibiting the full range of exotic boundary physics that topologically metastable
systems can engender. In particular, we explore the extent to which Noether’s theorem is violated in this
dissipative setting and the way in which certain symmetries can nontrivially modify the edge modes. Notably, we
also demonstrate the possibility of anomalous parity dynamics for a bosonic cat state prepared in a topologically
metastable system, whereby an equal distribution between even and odd parity sectors is sustained over a long
transient. For both Majorana and Dirac bosons, observable multitime signatures in the form of anomalously
long-lived quantum correlations and divergent zero-frequency power spectral peaks are proposed and discussed
in detail. Our results point to a paradigm for symmetry-protected topological physics in free bosons, embedded
deeply in the long-lived transient regimes of metastable dynamics.
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I. INTRODUCTION

A. Context and motivation

Indistinguishable quantum particles come in two flavors:
fermions and bosons. While the distinction is kinematical
and, as such, unrelated to any Hamiltonian specification, it
can be explained most clearly when the particles are inde-
pendent, or “free”. Systems of free fermions (bosons) are
described by Hamiltonians that are quadratic in their re-
spective canonical fermionic (bosonic) operators, and have
long played a paradigmatic role as tractable—either genuinely
noninteracting or mean-field—models for both equilibrium
and nonequilibrium many-body physics [1]. For a quadratic
fermionic Hamiltonian (QFH), there is always a state of low-
est energy, the ground state, which captures the statistical
behavior of the system in equilibrium at (and close to) zero
temperature. A quantum phase transition is a phase transition
at zero temperature that occurs as some parameter of the
Hamiltonian is varied. Generically, the phases of free-fermion
quantum matter are gapped, display no local order parameter,
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and the energy gap closes at a phase transition. Since there is
no local order parameter, there is no general Landau theory
of the quantum phases of QFHs. Rather, the general theory
of such phases is based on a different set of notions: that
of protecting global symmetries, space dimension, and topo-
logical invariants. The phases of free fermions are examples
of symmetry-protected topological (SPT) phases of quantum
matter [2].

In the absence of local order parameters, how can one
tell apart the different SPT phases of free fermions? A
compelling answer is provided by the bulk-boundary corre-
spondence. This powerful principle states that the topological
invariant that characterizes an SPT phase also mandates the
emergence of robust zero-energy boundary-localized modes
[3,4]. These zero modes (ZMs) are regarded as the main
experimental manifestation of the underlying SPT phase. For
example, the integer quantum Hall regimes in two (spa-
tial) dimensions are SPT phases. In this case, the protecting
symmetry is particle number and the topological invariant
is the Chern number of the occupied single-particle energy
bands. A measurement of the quantized Hall conductance
probes directly the associated chiral surface modes. In one
dimension, the Su-Schrieffer-Heeger model of polyacetylene
also displays topologically-mandated edge modes [5]. The
protecting symmetries are particle number, spin rotations,
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(spinful) time reversal, and a many-body particle-hole sym-
metry that exchanges fermionic creation and annihilation
operators. Likewise, superconductors can exist in a variety
of SPT phases. While particle number cannot be one of the
protecting symmetries, the superconducting classes are pro-
tected by a combination of spin symmetry, time reversal, and
many-body particle-hole. The celebrated Majorana chain of
Kitaev provides a paradigmatic example for p-wave topolog-
ical superconductivity and can display edge ZMs [6], which
are protected against (weak) perturbations that do not change
the symmetry of the model [4]. Altogether, SPT phases of
free fermions are distinguished by the following key fea-
tures: (i) The translationally invariant (bulk) system is gapped;
(ii) the system displays certain combinations of protecting
many-body symmetries; (iii) the ground state has an asso-
ciated topological number, which can only change across
a quantum phase transition as long the protecting symme-
tries are preserved; and (iv) when the topological number
is nontrivial and the system is terminated by imposing open
(“hard-wall”) boundary conditions, the ground energy level is
degenerate due to low-energy surface quasiparticles [7].

Having said that, if one understands the bulk-boundary
correspondence as the relationship between a topological in-
variant and quasiparticle surface or edge modes, then there
is nothing particularly “fermionic,” or symmetry-protected,
about it. Rather, it is a general property of the Helmoltz wave
equation in a structured medium. The point was forcefully
made in Ref. [8], where a bulk-boundary correspondence for
photonic crystals was identified and experimentally confirmed
only one year later [9]. These advances launched in earnest
the new field of topological photonics, which has since wit-
nessed a dramatic development [10]. From a fundamental
perspective, one may ask whether topological photonics truly
represents the mirror image of topological electronics. If the
answer is in the affirmative, then quantum statistics would
appear to have very little to do with topological physics.
More generally, to what extent can systems of free bosons
exhibit SPT physics analogous to the above? The answer
is complicated, and indeed depends on what concepts are
emphasized.

Consider, for example, the concept of a “quantum phase.”
Unlike a QFH, a quadratic bosonic Hamiltonian (QBH) may
not have a ground state: take a simple two-mode QBH like
H = ω(a†

1a1 − a†
2a2), with frequency ω > 0. For such a QBH

(which can arise, e.g., in cavity QED systems [11]), the en-
ergy eigenvalues En1,n2 = ω(n1 − n2), with n1,2 nonnegative
integers, are unbounded in both directions without external
constraints placed on the total particle number. We say such
Hamiltonians are thermodynamically unstable, in the sense
that no well-defined Gibbs state ρ ∼ e−βH exists. Since the
ground state plays such a crucial role in fermionic SPT
physics, the most conservative extension into the bosonic
realm is to consider only those QBHs that are thermodynam-
ically stable. As it turns out, this subclass fails to exhibit
any of the characteristics of topological free-fermionic matter.
The situation is neatly captured by three no-go theorems [12],
which we summarize as follows. If H is a thermodynamically
stable, gapped, translationally-invariant system, then (i) H can
be adiabatically deformed into any other QBH within the same
class without closing the gap or breaking symmetries; (ii) no

edge-localized ZMs emerge when the system is terminated
at a boundary; and (iii) the ground state of H has always
even bosonic parity [13] No-go (iii) does not require trans-
lation invariance. In other words, there are no SPT phases
of free-boson quantum matter. This is a puzzling conclusion,
because the role of topology for QFHs is precisely to clas-
sify their gapped quantum phases. Fundamentally speaking,
mean-field bosonic matter has very little in common with its
fermionic counterparts from the point of view of quantum
many-body physics. Nonetheless, thermodynamically stable
bosonic systems, such as certain photonic, magnonic, and
phononic crystals, may exhibit topologically mandated edge
modes at higher, nonzero energies [10,14–17]. These topolog-
ical features, however, are completely disconnected from the
low-energy, low-temperature physics.

If one is willing to accept the loss of a many-body ground
state and remove the constraint of thermodynamic stabil-
ity, a gap condition may still be imposed by requiring that
the quasiparticle energies (which are now necessarily not
strictly positive) are gapped. That is, one can require that the
quasiparticle energy bands are bounded away from zero. Ther-
modynamically unstable, “gapped” QBHs can then display
genuinely topological ZMs under open boundary conditions.
At face value, this (rather significant) compromise allows
for the possibility of obtaining tight bosonic analogs of the
ZMs characteristic of fermionic SPT phases. In Ref. [18],
we presented a QBH model hosting Hermitian edge modes
that are canonically conjugate (once properly normalized),
commute with the Hamiltonian in the infinite-size limit, are
determined by a winding number, and exist in a well-defined
(complex) spectral gap. Nonetheless, we are confronted with
another major issue: Due to the intrinsic non-Hermiticity of
the dynamical matrix that govern the system’s behavior, these
bosonic ZMs are intrinsically unstable, in a dynamical sense
[18–20]. Specifically, tools from Krein stability theory [21]
reveal that any QBH hosting bosonic ZMs is either (i) dy-
namically unstable (characterized by unbounded evolution of
observables), or (ii) able to be destabilized by arbitrarily small
perturbations. While the instability of these modes may have
interesting implications in its own [22,23], and the modes
themselves can be thought to as “shadows” of conventional
Majorana ZMs [18], again we find ourselves far removed
from the world of topological many-body physics. What (if
anything) can be done to bring us closer to a bosonic analog
of the rich SPT physics enjoyed by free-fermionic matter?

Our fundamental realization is the need to let go of a
more subtle assumption of the fermionic paradigm: unitarity.
Specifically, in this paper we will provide extensive evi-
dence that open systems of free bosons can display SPT-like
many-body physics that comes as close as possible to the
SPT physics of QFHs [24]. In this sense, our study fully
embraces the idea of “topology by dissipation” introduced
in Refs. [25,26]. However, there is a crucial difference. For
fermions, as considered in these works, dissipation is a twist
that one can add to a very well-developed theory for Hamil-
tonian systems: With dissipation or not, free fermions can be
topological in the many-body sense. As we have emphasized,
bosons do not seem amenable to that. Topology by dissipation
could then very well be the only hope to bring about bosonic
SPT physics without strong interactions.
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The program we undertake begins by appropriately adapt-
ing the key ingredients of free fermionic SPTs to the open
bosonic setting. Focusing on the simplest case of Markovian
dissipation in one spatial dimension, we retain the nonin-
teracting property by restricting to the class of dynamics
described by “quasi-free,” or quadratic (Gaussian) Lindblad
generators [27–29]. Under certain stability assumptions, the
notion of a ground state naturally maps to that of a steady
state (SS), while the many-body gap condition maps to one
placed on the Lindblad, or spectral gap. With these identi-
fications made, we answer the question: To what extent can
SPT-like physics emerge in quadratic bosonic Lindbladians
(QBLs) possessing a unique SS and a finite spectral gap?
Remarkably, signatures of SPT physics are found to emerge
in a newly identified dynamical phase that we deem topo-
logically metastable. Topological metastability is, in turn,
a specific instance of the more general dynamical metasta-
bility, a phenomenon in which the dynamical stability of
the system changes abruptly in the infinite-size limit. As
we have pointed out in Ref. [24], dynamical metastabil-
ity may or may not be topological in nature. Topological
metastability arises precisely from requiring nontrivial bulk
topology, on top of dynamical metastability. The key features
of topologically metastable systems may be summarized as
follows [24]:

(i) A unique SS and a finite spectral gap are maintained
for all finite system sizes. In particular, dynamical stability is
present for all finite system sizes.

(ii) Tight bosonic analogues of Majorana fermions, which
we deem Majorana bosons (MBs), emerge localized on oppo-
site ends of the chain. They consist of an approximate ZM and
an approximate-symmetry generator (SG) and are canonically
conjugate, despite macroscopic spatial separation.

(iii) A manifold of degenerate quasi-steady states man-
ifest in the finite-size chains. Physically, they are displace-
ments (generated by the SG) of the unique steady state.

(iv) Both the ZM, and the quasi-steady states persist in
a transient dynamical regime whose duration diverges with
system size. Further, their existence elicits divergent zero-
frequency peaks in certain power spectra.

Working within the aforementioned identification scheme
for linking closed and dissipative many-body phenomena,
the first three of these features (save for the split roles of
SGs and ZMs) closely resemble the generic features of topo-
logically nontrivial free fermionic systems subject to open
boundary conditions. For instance, in addition to the math-
ematical similarities between the relevant edge modes, the
joint presence of a steady state and a manifold of quasi-
steady states of the third, are reminiscent of the (nearly)
degenerate ground states found in, e.g., the Kitaev chain. A
less-obvious similarity arises by analogizing the long, but
finite lifetimes of the ZM and the quasi-steady states with
the (generically) exponentially small, but nonzero, energies
associated to Majorana fermions in finite systems. Both phe-
nomena are finite-size effects in nature, and may be related to
one another by identifying the exponentially small energies in
the fermionic case to the exponentially small decay rates in the
bosonic case.

Perhaps the most dramatic conceptual difference between
topological fermions and topologically metastable bosons

TABLE I. Comparisons between topologically nontrivial QFHs
and topologically metastable QBLs, both in the absence of total num-
ber symmetry. The first five rows correspond to properties of the edge
modes that arise in finite systems with open boundary conditions.
The next two rows correspond to “low-energy” (ground/steady state)
features for a system with 2 (N finite) or 1 (N → ∞) boundaries. The
last two rows correspond to bulk (i.e., boundaryless) properties.

Topologically nontrivial QFH Topologically metastable QBL

Edge modes (finite N)

Approximate ZM pairs Approximate ZM and SG pairs
Exponentially small energies Exponentially small decay rates
Canonically conjugate Canonically conjugate
Hermitian Hermitian
Robust to weak perturbations Robust to weak perturbations

“Low-energy” boundary physics (finite N)

(Nearly) degenerate ground states Manifold of quasi-steady states

“Low-energy” boundary physics (N → ∞)

Degenerate ground states No steady states, unstable

Bulk physics (N → ∞)

Nonzero bulk invariant Nonzero bulk invariant
Unique ground state No steady state, unstable

arises when one considers their bulk physics. As previously
noted, for free fermions topological transitions are inex-
tricably tied to a bulk quantum phase transition (without
spontaneous symmetry-breaking). In particular, topological
phases retain a unique (bulk) ground state. In sharp contrast,
topologically metastable bosonic systems are necessarily bulk
unstable, despite remaining stable for all finite sizes. Conse-
quently, they lack a bulk steady state altogether. This leads
us to conclude that fair comparisons can only be made by
considering finite systems with open boundary conditions. We
summarize the main comparisons for systems lacking total
number symmetry in Table I.

B. Outline and summary of main results

This paper solidifies and expands greatly on the above
core ideas. From a technical standpoint, a main tool for in-
vestigation is pseudospectral theory [30,31], which provides
the appropriate mathematical framework for convergence and
stability analysis in the presence of nonnormal dynamical
generators. In terms of general results, we identify four major
ones:

(i) We provide a self-contained proof that there exists a
canonical correspondence between ZMs and a class of linear
symmetry generators in QBLs, despite the explicit breakdown
of Noether’s theorem in the dissipative Markovian setting.
That is, a partial restoration of Noether’s theorem is afforded
by QBLs.

(ii) We introduce and apply two design principles for en-
gineering QBLs with desired features. The first constitutes an
explicit mapping from topologically nontrivial QFHs to QBLs
that host MBs. The second provides a reservoir-engineering
scheme for designing a QBL that relaxes to the quasiparticle
vacuum of a given QBH.
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(iii) We uncover the existence of tight bosonic analogues
of the Dirac-fermion edge modes characteristic of topologi-
cal insulators in QBLs that possess total-number symmetry.
These bosonic modes, which we call Dirac bosons, are tightly
connected to two pairs of MBs and, as such, possess many of
the same notable properties.

(iv) We demonstrate a strong connection between topolog-
ical metastability and the existence of arbitrarily long-lived
two-time quantum correlation functions. Specifically, the
macroscopically separated MBs show such long-lived corre-
lations.

To illustrate the consequences of these general results, we
provide several representative models—beyond the dissipa-
tive bosonic Kitaev chain we introduced in Ref. [24] and
we also revisit here. The first model is a purely dissipative
(H = 0) chain that descends from the fermionic Kitaev chain
and most closely mirrors the purely dissipative setting con-
sidered for quadratic fermionic Lindbladians (QFLs) [25,26].
This model demonstrates that a coherent, Hamiltonian con-
tribution is not needed for topological metastability. It also
possesses a type of MBs, whereby both members of the pairs
are approximate ZMs and generate an approximate symmetry.
We call these nonsplit MBs. The second model consists of
the bosonic Kitaev chain Hamiltonian [18,32] with a specially
engineered dissipator that ensures relaxation to a pure SS.
Remarkably, while the dissipator explicitly breaks translation
invariance, a restricted translation invariance is retained, al-
lowing for relevant spectral properties to be computed. Purity
of the SS grants us analytical access to the exact dynamics of
the quasi-steady states; in particular, these may exhibit highly
nontrivial bosonic parity dynamics, with transient odd bosonic
parity, in an appropriate sense. The third model is a number-
symmetric chain that possesses the aforementioned Dirac
bosons. Being this the first example exhibiting such modes,
we study their algebraic and dynamical properties in great
detail.

In more detail, the content is organized as follows. In
Sec. II, we first establish relevant notation and second-
quantization formalism in the closed-system setting of
quadratic fermionic and bosonic Hamiltonians; we then move
to Markovian quantum systems, and provide the necessary
background about the Lindblad formalism and quadratic
Lindbladians, with emphasis on symmetry properties; lastly,
we summarize basic notions and results about pseudospectra.
In Sec. III, we present three main foundational results on
QBLs: the correspondence between certain conserved quan-
tities and symmetry generators, and two design protocols
for generating QBLs with certain nontrivial features to be
utilized in later examples, as mentioned above. In Sec. IV,
we introduce the notion of dynamical metastability in one-
dimensional (1D) bulk-translationally invariant QBLs. We
then focus on our main goal of exhibiting topologically
nontrivial metastable dynamics, by synthesizing dynamical
metastability and nontrivial bulk topology. We do so by sepa-
rately discussing the case where number symmetry is broken
due to the presence of “bosonic pairing” of either Hamiltonian
or dissipative nature (Sec. V), and the case where number
symmetry is unbroken (Sec. VI). In particular, we present
general results of, and several example models displaying
Majorana and Dirac bosons, respectively. Observable signa-

tures are explored in detail in Sec. VII, whereby multitime
correlation functions and their associated power spectra are
computed and analyzed in detail for several of our models.

A number of additional results are included in separate
appendices. In particular, SPT phases of free fermions are
further discussed in Appendix A, including a detailed analysis
of the edge ZMs emerging in the topologically nontrivial
regimes of the two paradigmatic Su-Schrieffer-Heeger and
Kitaev chains. In Appendices B and C, we collect a number of
proofs and explicit calculations supporting claims made in the
main text. Finally, Appendix D presents a fourth model which,
unlike all models discussed in the main text, support two MBs
of the same type (e.g., ZMs) on one edge in the topological
regime and can thus be of independent interest.

C. Relation to existing work

With the program and our key results laid out, we wish
to further place our contributions in the context of existing
work. Firstly, concepts of metastability motivated by classical
statistical physics have been extended to Markovian systems,
and studied in great detail [33,34]. In essence, this form of
metastability is characterized by multistep relaxation, man-
dated by the presence of large gaps in the Lindblad spectra.
While our dynamically metastable systems possess no such
spectral gaps, it turns out they do exhibit pseudospectral
gaps. That is, the nontrivial pseudospectral (determined, as
we will see, by the spectra under semi-infinite boundary con-
ditions) remains gapped away from the exact spectrum in
such a way to mandate anomalous transient dynamics (see
Sec. IV below). In fact, pseudospectra has been conjectured
[35] to also play a role in the recent discoveries of anoma-
lous relaxation dynamics in Markovian systems exhibiting a
non-Hermitian skin effect [36,37]. They have further been
successfully applied to study anomalous dynamics in ran-
dom quantum circuits [38–40] and explicitly non-Hermitian
Hamiltonians [35,41].

A second branch of research, which, while not moti-
vated by the many-body physics of topological free fermions,
shares notable points of contact with our analysis, pertains
to topological amplification [42–46]. The standard approach
to topological amplifiers employs input-output theory. Cen-
tral to the input-output treatment is the susceptibility matrix,
or Green’s function, say, χ(ω), which connects incoming
fields at frequency ω to outgoing fields at frequency ω. For
photonic systems with N modes, whose coherent and incoher-
ent dynamics can be cast in the form of a Lindblad master
equation, this susceptibility matrix takes the form χ(ω) =
i(ω12N − G)−1, with G being the dynamical matrix we will
extensively discuss in Sec. II B 2. It is then known from the
above studies that topological amplification can only take
place if χ−1(ω) winds around the origin, in a suitable sense.

As it turns out, in our language this is, in the simplest case,
equivalent to nontrivial winding of a certain spectral, “rapidity
band” about the point iω. According to our pseudospectral
approach, this implies that there exist pseudonormal modes
with pseudoeigenvalues iω + λ, with λ > 0. Such pseudonor-
mal modes must necessarily amplify in the transient, and
hence contribute to gain in the output signal. Moreover, we
see that when these systems amplify zero-frequency (ω = 0)
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signals, they must possess MBs and all of the associated
nontrivial transient dynamics they entail. To summarize, in
our framework, general topological amplifiers are classi-
fied as dynamically metastable, while those that amplify
zero-frequency input signals are classified as topologically
metastable. We further observe that the introduction and ap-
plication of the “doubled matrix” approach in Refs. [42,43]
can be connected naturally to pseudospectral theory (see Ap-
pendix B 1).

II. BACKGROUND

A. Warm up: Quadratic bosonic and fermionic Hamiltonians

In the language of second quantization, a closed system
of independent bosons (fermions) in equilibrium is described
by a time-independent QBH (QFH). Despite the profound
physical differences that exist between bosons and fermions,
these Hamiltonians are diagonalized in essentially the same
way. The key step is to solve a commutator equation involv-
ing the quadratic Hamiltonian of interest, to find the normal
modes of the system. In this section, we summarize some
machinery adapted to this task both for fermions and bosons,
following exactly the same logic and comparing the mathe-
matical structures that emerge. In doing so, we also introduce
several concepts and notational conventions we will use in the
more general setting of open quadratic dynamics in the next
section and throughout this paper.

Let ci, i = 1, . . . , N , denote a set of fermionic annihilation
operators satisfying the canonical anticommutation relations,
{ci, c†

j } = δi j1F and {ci, c j} = 0, with 1F the fermionic Fock
space identity. A QFH is given by

HF = 1

2

N∑
i, j=1

(Ki jc
†
i c j + �i jc

†
i c†

j + H.c.),

with K = K† the N × N hopping matrix and �T = −� the
N × N pairing matrix. Such Hamiltonians are more com-
pactly expressed in terms of the fermionic Nambu array,

� = [c1, c†
1, . . . , cN , c†

N ]T .

It then follows that

HF = 1
2�†HF �,

where the 2N × 2N Bogoliubov-de Gennes (BdG) HF is a
block matrix with the (i j)th block given by [1]

[H]i j =
[

Ki j �i j

−�∗
i j −K∗

i j

]
.

The stated conditions on K and � imply that (i) the matrix HF

Hermitian; and (ii) HF = −τ1HT
F τ1 in terms of the matrices

τ j ≡ 1N ⊗ σ j , with 1N the N × N identity matrix and σ j , j =
1, 2, 3, the usual Pauli matrices.

Condition (ii) can be formalized in terms of a fermionic
projector, which we define according to

F (M) ≡ 1
2 (M − τ1MT τ1), (1)

where M is any 2N × 2N complex matrix. Property (ii)
then says that fermionic BdG matrices are fixed points of
this projection, i.e., F (HF ) = HF . While this explains the
“fermionic” moniker, the use of the word “projector” follows

from the fact that F , viewed as a linear map on the space of
2N × 2N complex matrices, is idempotent: F2 = F . We may
also define the complementary bosonic projector,

B(M) = 1
2 (M + τ1MT τ1) = M − F (M). (2)

It is complementary in the sense that M = F (M) + B(M).
Moreover, these projectors are orthogonal in the sense that
B(F (M)) = 0 = F (B(M)). Given a matrix M, we call F (M)
and B(M) its fermionic and bosonic projections. Fixed points
of these projectors will be called fermionic and bosonic matri-
ces, respectively. While the “bosonic” moniker will be made
clear later, it is natural to ask what happens if HF has a
nonzero bosonic projection. If this is the case, then

HF = 1
2�†HF � = 1

2�†F (HF )� − 1
2 tr[B(HF )] 1F .

Thus, each Hermitian fermionic matrix F (HF ) defines an
equivalence class of QFHs that differ by a constant shift. We
eliminate this redundancy by requiring HF be fermionic.

To diagonalize a QFH, one seeks a Bogoliubov transfor-
mation mapping the original degrees of freedom to a set of
independent fermionic quasiparticles. That is, we search for a
set of transformed fermionic operators dn, n = 1, . . . , N with

[HF , dn] = −εndn,

with εn � 0 the associated quasiparticle energies. If |E〉 is
an eigenstate of HF with energy E , then, if dn |E〉 (d†

n |E〉)
is nonzero, it is a state with energy E − εn (E + εn). That
is, dn and d†

i annihilate and create a quasiparticle of energy
εn. It follows that the many-body ground state is the state
annihilated by each dn, and that eigenstates of HF are built
up from it by populating quasiparticles states.

A simple way to to find these quasiparticles is to introduce
the fermionic hat map. To each numerical vector 	α ∈ C2N , we
associate a linear form

	̂α ≡ 	α†� = α∗
1c1 + α∗

2c†
1 + · · · + α∗

2N−1cN + α∗
2N c†

N .

This map has two notable properties,

	̂α† = τ̂1 	α∗, (3)

{̂	α, 	̂β †} = 	α† 	β 1F , (4)

with the right-hand side of the second equation being the
linear form associated to a numerical vector τ1 	α∗. With some
algebra, one may further verify that

[HF , 	̂α] = −ĤF 	α. (5)

If we then take 	α = 	dn, with 	dn an eigenvector of HF with
eigenvalue εn, it follows that

[HF , 	̂dn] = − ̂HF 	dn = −εn 	̂dn.

The eigenvalue equation HF 	dn = εn 	dn provides the
fermionic BdG equation and resembles the time-independent
Schrödinger equation on a 2N-dimensional Hilbert space.

Now, since HF is fermionic, it follows that if 	dn is an eigen-
vector with eigenvalue εn, then 	d ′

n ≡ τ1 	d∗
n is an eigenvector

with eigenvalue −εn. We can then construct the quasiparticles

as dn = 	̂dn, with 	dn being the N orthonormal eigenvectors
of HF with eigenvalues εn � 0. From Eq. (3), it follows
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that 	̂d ′
n = d†

n , whereby orthonormality and Eq. (4) ensure the
quasiparticles satisfy the canonical anticommutation relations.

Since the dynamics generated by HF is unitary, determin-
ing the evolution of � suffices to determine the evolution of
any observable built up from products and sums of fermionic
creation and annihilation operators. The Heisenberg equa-
tion of motion (in units where h̄ = 1),

d

dt
�(t ) = i[HF , �(t )] = −iHF �(t ), (6)

can be mapped to a linear time-invariant (LTI) dynamical
system on C2N by using the above hat map. Consider a general
linear form 	̂α in the Heisenberg picture and the Ansatz [18]

	̂α(t ) = 	α†�(t ) = 	α†(t )�(0) ≡ 	̂α(t ),

where the right-hand side is the linear form associated to the
now time-dependent coefficient vector 	α(t ). From Eq. (5), it
follows that 	̂α(t ) is a solution to Eq. (6) if and only if 	α(t ) is
a solution to the LTI matrix equation

	̇α(t ) = iHF 	α(t ).

The quasiparticles are then interpreted dynamically as nor-
mal modes of this LTI system, i.e., 	dn(t ) = eiεnt 	dn(0). Since
εn � 0, this corresponds to bounded motion for all times.

Let us now run through the exactly same ideas for bosons.
Let ai, i = 1, . . . , N , denote a set of bosonic annihilation oper-
ators satisfying the canonical commutation relations (CCRs),
[ai, a†

j ] = δi j1F and [ai, a j] = 0, with 1F now being the
bosonic Fock-space identity. A QBH is given by

HB = 1

2

N∑
i, j=1

(Ki ja
†
i a j + �i ja

†
i a†

j + H.c.), (7)

with K = K† the N × N hopping matrix and �T = � the
N × N pairing matrix (note that bosonic pairing matrices are
symmetric, unlike fermionic ones, which are antisymmetric).
As with fermions, we define the bosonic Nambu array,

� ≡ [a1, a†
1, . . . , aN , a†

N ]T . (8)

It then follows that

HB = 1
2�†HB�, (9)

where HB is the 2N × 2N block matrix with the (i j)th block
given by

[H]i j =
[

Ki j �i j

�∗
i j K∗

i j

]
. (10)

The stated conditions on K and � imply that (i) the matrix HB

is Hermitian; and (ii) bosonic, i.e., HB = B(HB). Analogously
to the fermionic case, any nonzero fermionic projection of HB

simply shifts the Hamiltonian according to

HB = 1
2�†HB� = 1

2�†B(HB)� − 1
2 tr[τ3F (HB)] 1F . (11)

An equivalence class of QBHs is thus defined uniquely by a
Hermitian, bosonic matrix HB.

Diagonalization proceeds by searching for a Bogoliubov
transformation to a set of bosonic creation and annihilation
operators bn, n = 1, . . . , N satisfying the CCRs and

[HB, bn] = −εnbn, (12)

for some εn ∈ R. In sharp contrast to their fermionic coun-
terparts and Eq. (II A), this is not always possible, however.
To understand why, we define the bosonic hat map. To each
numerical vector 	α ∈ C2N , we associate a linear form

	̂α ≡ 	α†τ3� = α∗
1a1 − α∗

2a†
1 + · · · + α∗

2N−1aN − α∗
2N a†

N ,

where τ3 is included for later convenience. This map has two
notable properties [cf. Eqs. (3) and (4)],

	̂α † = −τ̂1 	α∗, (13)

[̂	α, 	̂β †] = 	α†τ3 	β 1F . (14)

With some algebra, one may further verify that

[HB, 	̂α] = −Ĝ	α, G ≡ τ3HB, (15)

where we have introduced the bosonic BdG Hamiltonian
G. The hunt for quasiparticle excitations then requires
solving the bosonic BdG equation, G	bn = εn	bn. However,
unlike the fermionic BdG Hamiltonian, G is non-Hermitian
whenever bosonic pairing is present, � �= 0. Instead, it
is generally pseudo-Hermitian [47], that is, G† = τ3Gτ3.
Non-Hermiticity eliminates the guarantee that G has real
eigenvalues, or even that it is diagonalizable at all.

It turns out that the desired Bogoliubov transformation
exists if and only if G is diagonalizable with an entirely real
spectrum [18]. In this case, there are a set of N eigenvectors
	bn of G satisfying (i) G	bn = εn	bn; and (ii) 	b†

nτ3	bm = δnm. The

linear forms bn ≡ 	̂bn then satisfy the CCRs and Eq. (12). The
remaining N eigenvectors 	b′

n = τ1	b∗
n correspond to the eigen-

values −εn and 	̂b′
n = −b†

n. Constructing the eigenstates of HB

proceeds exactly as in the fermionic case with one notable
exception. If there exists both a positive and a negative quasi-
particle energy, then then HB is thermodynamically unstable
(unbounded in both directions). Thus, there is no well-defined
ground state (nor a well-defined Gibbs state, even if allowing
for negative temperatures). Instead, the state annihilated by
each bn is simply a quasiparticle vacuum.

As a consequence of the fact that G is, generically, no
longer normal, the dynamical perspective for bosons is much
richer than it is for fermions. While the dynamics generated by
HB is still unitary at the many-body level (allowing us again
to build up the dynamics of any observable from that of �),
the dynamics of the Nambu array is effectively non-Hermitian,
that is,

d

dt
�(t ) = i[HB,�(t )] = −iG�(t ). (16)

Adopting the Ansatz 	̂α(t ) = 	α†(t )�(0), as we did in the
fermionic case, now leads to the LTI dynamical system

	̇α(t ) = iG	α(t ). (17)

If G is diagonalizable with entirely real spectrum, then
the eigenvectors associated to the quasiparticles are normal
modes of this system with 	bn(t ) = eiεnt 	bn(0). However, if
G fails to meet these requirements, there will be (possibly
generalized, in the sense of the Jordan canonical form) eigen-
vectors with possibly nonreal eigenvalues. In this case, HB is
dynamically unstable, i.e., there exists observable expectation
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values that exhibit unbounded motion (see Ref. [18] for a
detailed account of dynamical instabilities in QBHs). The
normal mode picture for bosons is thus more general than the
quasiparticle picture, as it persists even when the system is
dynamically unstable. For this reason, it is more appropriate
to refer to G as the dynamical matrix (as opposed to the BdG
Hamiltonian) of the QBH in the general case.

B. Open Markovian bosonic dynamics

1. Basics of Lindblad formalism

Our focus in this paper will be on Markovian open quan-
tum systems, whose dynamics are governed by a semigroup
Lindblad master equation (LME) of the form ρ̇(t ) = L(ρ(t )),
with ρ(t ) a density operator describing the state of the system
at time t > t0 ≡ 0 and the (time-independent) superoperator
L—the Lindbladian—being the generator of the dynam-
ics. Physically, a LME provides the most general form of
continuous-time quantum dynamics that obeys complete pos-
itivity and trace preservation. In its canonical (or diagonal)
form, the Markovian generator may be written as [48,49]

L(ρ) = −i[H, ρ] +
∑

α

(
LαρL†

α − 1

2
{L†

αLα, ρ}
)

≡ −i[H, ρ] +
∑

α

D[Lα](ρ), (18)

where in second line we have defined the dissipator D[A].
Here, H = H† represents the Hamiltonian, coherent con-
tribution to the dynamics, whereas {Lα}, α = 1, . . . , d , are
the Lindblad (or “jump”) operators, with each D[Lα] phe-
nomenologically accounting for a distinct, irreversible “noise
channel”. It is well known that the representation L(H, {Lα})
of the generator in terms of Hamiltonian and Lindblad
operators is not unique, nor is the separation between a Hamil-
tonian and dissipative component [49–51]. In applications,
the choice of a given representation is typically dictated by
physical requirements; for instance, Lindblad operators are
often naturally traceless. In a similar venue, it may be prefer-
able to work in a nondiagonal representation, whereby both
the Hamiltonian and the Lindblad operators are expressed in
terms of a fixed set of operators, which may enjoy special
mathematical (e.g., completeness) or physical (e.g., local-
ity) properties. Specifically, let {Aj}, j = 1, . . . , d ′, such a
set of operators, with Lα ≡ ∑

j � jαAj , � jα ∈ C. The Gorini-
Kossakowski-Lindblad-Sudarshan (GKLS) representation for
the Markovian generator L then reads [49,52]

L(ρ) = −i[H, ρ] +
∑

jk

M jk

(
AkρA†

j − 1

2
{A†

jAk, ρ}
)

≡ −i[H, ρ] +
∑

jk

M jk D[Ak, A†
j ](ρ), (19)

where the square, positive-semidefinite (relaxation or GKLS)
matrix M jk = ∑d

α=1 �∗
jα�kα accounts for the nonunitary con-

tribution to the dynamics, and we have introduced the
shorthand notation D[A, B](ρ) ≡ AρB − {BA, ρ}/2. Clearly,
D[A, A†] = D[A], as previously defined.

In addition to the above Schrödinger dynamics for the (not
necessarily pure) state of the system, one can define an equiv-

alent Heisenberg picture. As usual, all states are stationary
in this picture and it is the operators associated to physical
observables or auxiliary quantities (e.g., the electromagnetic
potential), which evolve in time. An observable B = B† then
obeys the equation of motion Ḃ(t ) = L�(B(t )), with the dual
(Heisenberg) Markovian generator being given by

L�(B) ≡ i[H, B] +
∑

α

(
L†

αBLα − 1

2
{L†

αLα, B}
)

= i[H, B] +
∑

jk

M jk

(
A†

kBAj − 1

2
{A†

kA j, B}
)

,

in its canonical and GKLS form, respectively. As for unitary
dynamics, the mathematical relationship between L and L�

follows from demanding that expectation values agree in the
two pictures at all times, that is, tr(B(t )ρ) = tr(Bρ(t )), for all
observables and density operators. Unlike the unitary case,
however, Markovian evolution is not multiplicative in general:
that is, generically, (B1B2)(t ) �= B1(t )B2(t ).

If the underlying Hilbert space H is finite dimensional, say,
of dimension D, the LME describes an LTI dynamical system
whose generator L may be thought of as a (generally) non-
Hermitian linear operator acting on a D2-dimensional space.
A number of general conclusions can then be made about the
spectral properties of L and, in turn, the ensuing transient and
asymptotic relaxation dynamics into the steady-state manifold
[53,54]. In particular, the SS manifold always comprises at
least one SS, say, ρss, satisfying L(ρss) = 0. Furthermore,
the spectrum of the Lindbladian σ (L) is bound to the closed
left-half complex plane, with any nonreal eigenvalues existing
in complex conjugate pairs. In the important situation where
the only element in σ (L) with vanishing real part is zero,
the SS is unique, and arbitrary initial states ρ0 asymptotically
undergo exponential relaxation to ρss, that is, ρss is globally
asymptotically stable [50]. Let the spectral gap (or dissipative
gap) of L be defined by

�L ≡ | sup Re[σ (L) \ {0}]| � 0, (20)

that is, by the closest distance between the imaginary axis
and the set of nonzero eigenvalues of L. Then, �L sets the
asymptotic decay rate through the inequality

dmax(t ) ≡ sup
ρ0

‖etL(ρ0) − ρss‖tr � Ke−�Lt , K > 0,

where the trace distance ‖A‖tr ≡ tr[
√

A†A]. The minimum
time it takes for the above dmax(t ) to fall below a pre-
determined accuracy ε > 0 defines the mixing time of the
Markovian semigroup, in direct analogy to classical Markov
processes. Since the prefactor K may be a priori very large,
the mixing time plays a central role in characterizing the
convergence behavior, by also accounting for the nonexpo-
nential prerelaxation regime. Notably, dissipative “quasi-free”
fermionic dynamics, described by QFLs, are known to exhibit
rapid convergence to stationarity [55], including via the oc-
currence of cutoff phenomena [56].

If H is infinite dimensional, as it is necessarily the case
for bosonic systems, a rigorous mathematical description be-
comes substantially more challenging and major departures
from the above picture may arise. On the one hand, proving
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the existence of a generator of the form in Eq. (18) requires
appropriate boundedness assumptions to hold; on the other
hand, even when a Markovian generator can be shown or
assumed to exist, the resulting Lindbladian may lack a SS,
and relating spectral properties to dynamical evolution is far
more involved in general [57]. Leaving mathematical rigor
aside, LMEs have been remarkably successful in describing a
wide class of open quantum systems, notably, across quantum
optics and photonics [10,58,59]. Infinite dimensionality opens
up the possibility for the Hamiltonian and other observables
to be unbounded. As a consequence, L� may now obtain
eigenvalues with strictly positive real part, e.g., in the case of
optical pumping with H = ωa†a and L = √

κa†. With these
caveats in mind, we now narrow our focus to the class of
quadratic dissipative bosonic systems we will be specifically
interested in throughout this paper.

2. Quadratic bosonic Lindbladians

As before, let a†
j and a j denote canonical creation and an-

nihilation operators for bosons, arranged in a bosonic Nambu
array �† as in Eq. (8). The bosons can be regarded as quasi-
free if the Lindblad generator is of the quadratic form

L(ρ) = −i[H, ρ] +
2N∑

i, j=1

M jiD(�i,�
†
j )(ρ), (21)

with H = 1
2�†H� being a QBH. We will call L (and its

adjoint L�) quadratic bosonic Lindbladians (QBLs). We note
that a QBL so defined is not the most general instance of
quasi-free bosonic dynamics, as it is also possible for H to
include a term linear in the creation and annihilation operators
[28]. In the context of continuous-variable quantum infor-
mation, such quasi-free Lindblad generators are also often
referred to as Gaussian [60]. Notably, Gaussian Markovian
generators may be equivalently defined in terms of their
preservation of the set of Gaussian states [29]. Owing to the
nonuniqueness in representing the generator, linear Hamil-
tonian contributions can often be removed by way of an
appropriate constant shift of the Lindblad operators [50],
hence the creation and annihilation operators. In any case,
our primary focus here will be purely quadratic Gaussian
generators, of the form given in Eq. (21).

Gaussian LMEs are exactly solvable thanks to the fact that
a quadratic Lindblad generator maps any polynomial in the
creation and annihilation operators to another such polyno-
mial of the same or lesser degree. As a rule, the dynamics of
a form of odd (even) order depends on all the forms of odd
(even) order of lesser degree. Hence, the linear forms satisfy
a closed equation of motion and so do quadratic forms, up to
a contribution proportional to the identity operator (the form
of degree zero). To obtain a closed system of equations for
cubic forms, one needs to consider cubic and and linear forms
together, and so on. In short, one can map Gaussian LME to
a hierarchy of linear ordinary differential equations. In this
sense, a Gaussian LME is exactly solvable. However, fully
taking advantage of these facts requires some machinery.

Our discussion in Sec. II A showed that fermionic pro-
jections F play no role in the dynamics of closed bosonic
systems. Remarkably, dissipation brings them right back into

the picture to play a very distinct role. Let D� denote the
dissipator of a general QBL. Then, by writing M = B(M) +
F (M) in Eq. (21), and leveraging the CCRs, one can show
that

D�(A) = 1

2

∑
i, j

B(M)i j
(
[[�†

i , A],� j] + [�†
i , [A,� j]]

)
+ F (M)i j

({[�†
i , A],� j} + {�†

i , [A,� j]}
)
,

with complete generality. Thinking of A as a form of degree
d , we see that the first term reduces the degree of A by
2, while the second preserves the degree. Thus, the bosonic
projection of M is responsible for connecting the degree-d and
degree-(d − 2) sectors of the system’s operator algebra, while
the fermionic projections leaves the degree-d sector invariant.

Finally, we are ready to present the equations of motion for
linear and quadratic forms. Let Q ≡ ��† denote the square
array of elementary quadratic forms aia j and so on. Then,
the Heisenberg equations of motion for arbitrary linear and
quadratic form follow from the compact formulas

�̇(t ) = G�(t ),

Q̇(t ) = −i(GQ(t ) − Q(t )G†) + τ3Mτ3 1F , (22)

where

G ≡ τ3H − iτ3F (M) (23)

is the dynamical matrix associated to the QBL. Remarkably,
the dynamics of a linear bosonic form is entirely controlled
by a fermionic matrix in the case of pure dissipation (H = 0).
For future reference, we note the relationships

L� (̂	α) = îG̃	α, G̃ ≡ τ3G†τ3. (24)

It follows that the dynamics generated by L�, restricted to the
subalgebra of linear forms, are encoded by an associated LTI
system within the BdG space C2N generated by iG̃. That is,

	̂α(t ) = 	̂α(t ) ⇐⇒ 	̇α(t ) = iG̃	α(t ). (25)

Notice that G̃ = G if and only if D = 0 [cf. Eq. (17)].
Since the bosonic Fock space is infinite dimensional, a

QBL can become dynamically unstable. Then, by definition,
there exists an observable A and a state ρ such that 〈A 〉(t )
is unbounded in time. As a rule, dynamical instability can
be diagnosed through the dynamical matrix by way of the
rapidity spectrum, that is, σ (−iG). In addition to the spectral
gap �L of Eq. (20), the stability gap is defined by

�S ≡ max Re σ (−iG). (26)

If �S < 0 (�S > 0, then the QBL is dynamically stable (un-
stable). The crossover regime �S = 0 can be either stable or
unstable contingent on the existence of a steady state [28]. If
the QBL is dynamically stable, then the stability gap deter-
mines the spectral gap of L by way of the simple formula
�L = −�S [61]. Moreover, there exists a unique, globally
attractive, and Gaussian ρss. Its first and second moments are
stationary solutions to Eqs. (22), that is,{

G 〈�〉ss = 0,

−iG〈Q〉ss + i 〈Q〉ssG
† + τ3Mτ3 = 0.

(27)
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The condition of a strictly negative stability gap identifies
−iG as a Hurwitz matrix in the language of matrix analysis.
Then, uniqueness of the SS follows from the uniqueness of
the solutions of the above two equations when −iG is Hurwitz
[61]. In particular, 〈�〉 = 0ss necessarily. If �S � 0, there can
be either zero or infinitely many SSs [28]. Since 〈F (Q)〉 =
τ3/2 automatically in any state, one can focus on 〈B(Q)〉ss,
which, after an appropriate basis transformation, is unitarily
equivalent to the SS covariance matrix [62].

3. Symmetries, conserved quantities, and bulk-translationally
invariant QBLs

Just as in the closed-system case, symmetries and con-
served quantities provide crucial information about the
system. While the notion of a conserved quantity, i.e., an
observable Q such that Q̇(t ) = 0, has a straightforward char-
acterization [L�(Q) = 0], two distinct notions of symmetry
emerge in the Markovian setting [54,63,64]. A unitary or
antiunitary operator S is a weak symmetry of the dynamics if,
for all ρ, (SρS−1)(t ) = Sρ(t )S−1 or, equivalently, [L,S] =
0, with S (ρ) ≡ SρS−1. Further, S is a strong symmetry if
[H, S] = 0 and [Lα, S] = 0, for all α. For simplicity, unless
otherwise noted, in this paper we will generically refer to a
weak symmetry as just a symmetry.

If the dynamics possesses a continuous unitary family
of strong symmetries S(θ ), the existence of a correspond-
ing conserved quantity is guaranteed. In fact, the conserved
quantity Q coincides with the generator of the one-parameter
group S(θ ) = eiθQ. This fact generalizes naturally to higher-
dimensional Lie groups and is reminiscent of Noether’s
theorem, which establishes the existence of conserved quanti-
ties given a continuous symmetry. However, in sharp contrast
to the Hamiltonian case, (i) the existence of a continuous
weak symmetry does not imply the existence of a conserved
quantity; and (ii) the existence of a conserved quantity does
not imply the existence of either a weak or strong continuous
symmetry. In this sense, we say the quantum Hamiltonian
form of Noether’s theorem breaks down in the presence of
Markovian dissipation. We further note that S(θ ) = eiθQ is a
weak symmetry of the dynamics if and only if

L�([Q, A]) − [Q,L�(A)] = 0, ∀A, (28)

that is, L� commutes with the adjoint action of Q.
The class of QBLs we consider are further characterized

by (weak) discrete bulk-translation symmetry in 1D. Here,
bulk-translation invariance refers to the presence of translation
invariance when suitably far from a well-defined boundary.
Specifically, bulk-translationally invariant QBLs may corre-
spond to one of four main configurations:

(i) A finite number of lattice sites on a chain (open bound-
ary conditions, OBCs);

(ii) A finite number of lattice sites on a ring (periodic
boundary conditions, PBCs);

(iii) An infinite number of lattice sites extending only in
one direction (semi-infinite boundary conditions, SIBCs);

(iv) An infinite number of lattice sites extending in two
directions (bi-infinite boundary conditions, BIBCs).

All the Hamiltonian and dissipative couplings are assumed
to be independent of lattice site, modulo BCs, and of a fi-

nite range R, with R � N [65]. In this way, the equation of
motion for operators at site j only involve operators at most
a distance R away, e.g., R = 1 for nearest-neighbor (NN)
hopping. To each lattice site j, let us associate dint bosonic
degrees of freedom arranged in a site-local Nambu array, φ j ≡
[a j,1, a†

j,1, . . . , a j,dint , a†
j,dint

]T . The Hamiltonian contribution is
then constrained to a particular simple form,

H = 1

2

∑
j

R∑
r=−R

φ
†
j hrφ j+r,

with hr a 2dint × 2dint matrix that encodes the coherent hop-
ping and pairing mechanisms between sites j and j + r.
Necessarily, h†

r = h−r and h∗
r = τ1hrτ1. In the above ex-

pression, the sum over j encodes the BCs. Likewise, the
Heisenberg-picture dissipator must take the form

D�(A) =
∑

j

R∑
r=−R

(
φ

†
j Amrφ j+r − 1

2
{φ†

j mrφ j+r, A}
)

,

with mr a 2dint × 2dint matrix that encodes the
incoherent/dissipative damping, pumping, and pairing
mechanisms between sites j and j + r. Necessarily,
m†

r = m−r , and again, the j-sum encodes the BCs.
Working with a fixed number of lattice sites j = 1, . . . , N ,

the dynamical matrix and the GKLS matrix are then given by

GN = 1N ⊗ g0 +
R∑

r=1

Sr
N ⊗ gr + S†

N
r ⊗ g−r,

MN = 1N ⊗ m0 +
R∑

r=1

Sr
N ⊗ mr + S†

N
r ⊗ m−r,

in terms of the BC-dependent left-shift operator

SN ≡
N−1∑
j=1

	e j 	e †
j+1 +

{
0, OBCs,
	eN 	e †

1 , PBCs,

with 	e j the jth canonical basis vector of CN . When focusing
exclusively on OBCs (PBCs), we will usually denote SN =
TN (VN ). By using Eq. (23), the internal coupling matrices of
the dynamical matrix are identified by letting

gr ≡ τ3hr − i

2
τ3(mr − τ1m∗

r τ1),

with τ j = 1dint ⊗ σ j in this context. Notably, we have g∗
r =

−τ1grτ1. Under OBCs (PBCs), the matrices hr, mr belong to
the class of banded block-Toeplitz (banded block-circulant)
matrices [65]. We label semi-infinite and bi-infinite lattices
according to j = 1, 2, . . . ,∞ and j = 0,±1,±2, . . . ,±∞,
respectively. In the case of SIBCs (BIBCs), the dynami-
cal matrices belong to the classes of banded block-Toeplitz
(banded block-Laurent) operators. For OBCs, PBCs, SIBCs,
and BIBCs, we denote the matrices X = G, M by XOBC

N ,
XPBC

N , XSIBC, and XBIBC, respectively (see Table II). When the
particular BC is unimportant, or when we wish to refer to the
full family of configurations, we simply write X.

In the translationally invariant cases (PBCs and BIBCs),
we may introduce the conserved crystal momenta k through
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TABLE II. The correspondence between BCs and the structure of
the dynamical and GKLS matrices G and M in bulk-translationally
invariant QBLs.

Boundary conditions Dynamical/GKLS matrix type

Open Banded block-Toeplitz matrix
Periodic Banded block-circulant matrix
Semi-infinite Banded block-Toeplitz operator
Bi-infinite Banded block-Laurent operator

Fourier modes, bk,m ≡ ∑
j e−i jka j,m. Here, k takes on ei-

ther discrete (PBCs) or continuous (BIBCs) values in
the Brillouin zone [−π, π ]. The dynamics of the Fourier
modes, organized again in the form of a Nambu array,
φ̃k ≡ [bk,1, b†

−k,1, . . . , bk,dint , b†
−k,dint

]T , are then governed by a
2dint × 2dint k-dependent dynamical matrix g(k), that is,

˙̃φk (t ) = −ig(k)φ̃k (t ), g(k) ≡
R∑

r=−R

greikr . (29)

We call g(k) the Bloch dynamical matrix to draw analogy
with the Bloch Hamiltonian of condensed-matter systems.
Similarly, we define the rapidity bands, which are the dissi-
pative generalization of energy bands, to be the eigenvalues
of −ig(k). These provide the rapidities of the translationally
invariant configurations PBCs and BIBCs. Consistent with the
known symmetries of Lindbladian eigenvalues, the property
G∗ = −τ1Gτ1 (or, equivalently, g(k)∗ = −τ1g(−k)τ1 with
τ1 understood here to be 2d × 2d) ensures that if λ(k) is a
rapidity band, then so is λ(k)∗.

Thus, by exploiting translational invariance, a simple de-
scription of the rapidities for PBCs and BIBCs is possible,
and solving for the dynamics of a large class of operators of
interest amounts to solving the finite-dimensional LTI system
in Eq. (29). The dynamics of QBLs for which translational
symmetry is broken by OBCs or SIBCs are considerably
more difficult to describe. While the spectral theory of block-
Toeplitz matrices and operators is well established in the
mathematical-physics literature [30,31,65], it turns out that
spectral properties are not, in general, the appropriate tool to
consider, due to the fact that the relevant dynamical matrices
need not be Hermitian or even normal.

C. The pseudospectrum

Pseudospectral theory is an extension of spectral the-
ory adapted to nonnormal matrices and operators. As our
paper will illustrate, it is a powerful alternative to the tradi-
tional spectral analysis in terms of eigenvalues and invariant
subspaces, because it can predict approximate dynamical
transient behavior that is hard to identify directly from the
exact normal modes of the dynamical system. In addition, the
notion of the pseudospectrum can accommodate the idea of an
“approximate mode” in a mathematically sharp framework.

Let X be an n × n complex matrix. A complex number λ is
in the spectrum of X, λ ∈ σ (X), if X − λ1n is not invertible.
To motivate the notion of the pseudospectrum, let us recast
this definition in an equivalent way: if {λi} is a a sequence con-
verging to λ, and X − λi is invertible for all i, then λ ∈ σ (X)

if ‖(X − λi )−1‖ → ∞ for some matrix norm. The choice of
norm is of no consequence if H is finite dimensional, because
all norms are equivalent (induce the same topology). This
definition of the spectrum suggests a natural generalization.
Given some fixed matrix norm ‖ · ‖ and ε > 0, the (ε, ‖ · ‖)-
pseudospectrum of X is defined as

σε,‖·‖(X) ≡ { λ ∈ C : ‖(X − λ1n)−1‖ > 1/ε } , (30)

with the understanding that ‖(X − λ)−1‖ = ∞ for λ ∈ σ (X);
that is, the spectrum is always a subset of the pseudospec-
trum. The elements of the pseudospectrum are the (ε, ‖ · ‖)
eigenvalues, or pseudoeigenvalues of X. If ‖ · ‖ is induced
by a vector norm, that is, ‖X‖ ≡ sup‖	v‖=1‖X	v‖, we have the
equivalent (and more useful for our applications) definition,

σε,‖·‖(X) = {λ ∈ C : ∃	v ∈ Cn, ‖	v‖ = 1, ‖(X − λ)	v‖ < ε } .

(31)

The normalized vectors 	v, with ‖(X − λ)	v‖ < ε, are the
(ε, ‖ · ‖) pseudoeigenvectors associated to the (ε, ‖ · ‖)-
eigenvalue λ. When ε, ‖ · ‖ are either understood or incon-
sequential, we will drop one or both of them in our notations.

The pseudospectrum becomes increasingly relevant as the
matrix X becomes highly nonnormal. One reason is the way
it relates to perturbations. It follows from the definition that if
λ ∈ σε,‖·‖(X), then there exists a perturbation E of size ‖E‖ <

ε, such that λ ∈ σ (X + E) [30]. Hence,

σε,‖·‖(X) =
⋃

E: ‖E‖<ε

σ (X + E). (32)

Another reason can be seen simply by considering the case
where ‖ · ‖ = ‖ · ‖2 is the matrix norm induced by the stan-
dard (Euclidean) vector 2-norm. From Eq. (32), a perturbation
of size ε can only shift the spectrum of a normal matrix by
at most ε. However, if X is nonnormal, small perturbations
can drastically modify the spectrum—one manifestation of
this being the non-Hermitian skin effect (NHSE) [66–68]. In
this case, the pseudospectra can dramatically influence the
transient dynamics of an LTI system generated by X, e.g.,
	̇v = X	v. In particular, the pseudospectra bounds the maximal
dilation of norm in the sense of

sup
t�0

‖etX‖ � αε (X)

ε
, αε (X) ≡ sup Re σε (X). (33)

The quantity αε is called the pseudospectral abscissa and
measures the extent to which the ε pseudospectrum of X
extends towards, or into, the right-half complex plane [30].

The bound of Eq. (33) is particularly relevant for Hur-
witz matrices, that is, matrices with spectrum bounded in
the left-half complex plane. If αε (X) is positive and large
compared to ε, ‖etX‖ will experience transient growth before
asymptotically decaying to zero. That is, highly nonnormal,
but asymptotically stable, dynamical systems can appear un-
stable during a transient period. In fact, given a particular ε

pseudoeigenvector 	v with ε pseudoeigenvalue λ, we have

‖etX	v − eλt 	v‖ � ‖(X − λ)	v‖t + O(t2) < εt + O(t2), (34)

so that 	v evolves like a normal mode with eigenfrequency λ

for sufficiently small (set by ε) timescales. We call such modes
pseudonormal modes. We note that 2-norm pseudospectra can
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be directly related to singular values, as we briefly discuss in
Appendix B 1.

The theory of pseudospectra is especially well developed
and useful for the Toeplitz matrices and operators, which, as
we have seen, describe bulk-translationally invariant QBLs.
While this theory applies generally to block-Toeplitz matrices
[30,31], we recount here only the nonblock case for simplicity.
Let XOBC

N denote a banded N × N Toeplitz matrix, XSIBC its
associated Toeplitz operator, and XBIBC its associated Laurent
operator, respectively. Explicitly,

XOBC
N = x01N +

R∑
r=1

(
xrTr

N + x−rT†
N

r
)
, x0, x±r ∈ C,

with R the range. With this, we may define the complex-
valued symbol x(z) ≡ ∑R

r=−R xrzr , with z ∈ C. Upon compar-
ison, it follows that x(eik ) is precisely the nonblock analog of
the Bloch dynamical matrix we introduced for translationally
invariant QBLs. As in that case [69], one finds that x(eik )
determines the spectrum of the Laurent operator XBIBC. The
spectrum of XSIBC may also be characterized as the spectrum
of XBIBC, together with all complex numbers about which
the symbol winds. Explicitly, let the integer-valued winding
number of x(eik ) about a complex number λ not in the image
of the unit circle under x, i.e., λ �∈ {x(eik ) : k ∈ [−π, π ]}, be
given by

ν(λ) ≡ 1

2π i

∮
|z|=1

x′(z)

x(z) − λ
dz

= 1

2π i

∫ π

−π

d

dk
ln[x(eik ) − λ] dk.

Then, if ν(λ) �= 0, λ is in the spectrum of XSIBC.
Finding a general and sharp characterization of the spec-

trum of XOBC
N remains an open problem. At best, it is known

that the eigenvalues fall on curves contained in the SIBC spec-
trum as N → ∞. Shockingly, however, the finite-N spectra
need not converge to the semi-infinite spectra, as illustrated in
the Fig. 1. The spectra shown are those of Toeplitz matrices
associated to the dynamical matrix of a particular QBL model
to be considered in Sec. V C. In this example, the Toeplitz
(OBC) spectra of the system with N sites fall on a vertical
line contained with in the 2D shaded area corresponding to
the SIBC spectrum. This suggests that the spectral properties
of the infinite-size limit are generically distinct from those
of the corresponding finite-size systems. In fact, a precise
mathematical relationship does exist when one zooms out to
the pseudospectra. Namely, we have [30]

lim
ε→0

lim
N→∞

σε

(
XOBC

N

) = σ (XSIBC) �= lim
N→∞

lim
ε→0

σε

(
XOBC

N

)
.

(35)

That is, the two limits do not commute in general: While the
right-hand side reflects the generic discontinuity in finite-size
spectra as N → ∞, the left-hand side of the above equa-
tion can be understood as follows. Given λ in the SIBC
spectrum and an arbitrary ε > 0, then λ is in the ε pseu-
dospectra of the finite-size OBC system for all suitably large
N . This can be understood intuitively by considering an edge-
localized (see Sec. IV for a brief discussion on localization)

FIG. 1. Representative behavior of rapidity spectra under differ-
ent BCs, for a QBL describing the dissipative bosonic Kitaev chain
model of Sec. V C. The solid curves give the bulk BIBC spectra,
whereas the points along the curves are the rapidities for PBCs.
The points on the vertical lines are the rapidities for OBCs. The
shaded regions denote the SIBC spectra. (a) The doubly-degenerate
rapidity spectrum when � = 0. The filled (open) markers represent
the topologically metastable (anomalously relaxing) regime, with
κ/� = 0.6 (1.4). (b) The doubly-degenerate rapidity spectrum when
� = 0.12, so that the winding around λ = 0 is zero. This represents
nontopological dynamical metastability. In all cases, J = 2, � = 0.5,
μ = 0, and N = 25. Adapted from [24].

eigenvector of the semi-infinite system corresponding to an
eigenvalue λ not in the bulk bands, and then projecting this
eigenvector onto a finite chain of length N . Generically, this
will not provide an exact eigenvector of the finite chain but,
rather, an approximate one with pseudoeigenvalue λ and accu-
racy ε set by the localization length of the original eigenvector.
In this sense, we can say that the SIBC spectrum “imprints
itself” into the ε pseudospectra of the finite-size OBC system,
for arbitrary ε.

III. SOME FUNDAMENTAL RESULTS ABOUT QBLs

A. A correspondence between conserved quantities
and symmetry generators

The edge-localized Majorana ZMs of a free-fermion
Hamiltonian are an indication that the system is in an SPT
phase. A mode is, by definition, a linear combination of
creation and annihilation operators and a ZM, in particular,
commutes with the Hamiltonian. There are two other impor-
tant classes of operators that commute with the Hamiltonian.
They are the generators of continuous symmetry groups and
the observables associated to conserved quantities. Hence,
for Hamiltonian systems, three conceptually quite different
objects arise as the solutions of one and the same equation,
[H, A] = 0.

The situation is different for Markovian systems. The sym-
metry generators and conserved quantities of a LME are
characterized by two very different equations, which need
not share any solutions [64]. On the one hand, the adjoint
action of a symmetry generator commutes with L�, Eq. (28);
on the other hand, a conserved quantity is represented by an
observable in the kernel of L�. In preparation for searching for
SPT-like physics in QBLs, we will develop in this section a
theory of modes that are ZMs when regarded as symmetries
or when regarded as conserved quantities, but not necessar-
ily both. In this sense, dissipation “splits” the set of ZMs,
and a ZM that is both a conserved quantity and a symmetry
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generator occurs only in special circumstances. This suggests
that if one is going to rely on boundary physics as an indica-
tor of SPT-like behavior in QBLs, then one should consider
both kinds of ZMs since there is no clear reason as yet to
privilege edge-localized conserved quantities over symmetry
generators, or the other way around.

Let L� be a Heisenberg-picture QBL. Referring to Eq. (24),
it follows that 	̂α is a ZM if and only if 	α ∈ ker G̃. Note that
we can, without loss of generality, take 	̂α to be Hermitian
[70]. We denote the real vector space of Hermitian ZMs by
Z . Likewise, by virtue of Eq. (24), we have

L�([̂	α, A]) − [̂	α,L�(A)] = [̂−iG	α, A], ∀A.

Referring to Eq. (28), 	̂α(= 	̂α†
) is a SG if and only if ̂−iG	α

is proportional to the identity. Since it is linear in a and a†,
it must be zero. It follows that 	̂α generates a symmetry if and
only if 	α ∈ ker G. Since the operator eiθ 	̂α has the form of Weyl
displacement operator, we refer to this class of symmetries as
Weyl symmetries and their corresponding generators as Weyl
SGs. The corresponding real vector space of Weyl SGs will
be denoted by W . We refer to the both ZMs and Weyl SGs as
Noether modes.

Note that for closed-system evolution (D = 0), the dy-
namical matrix is τ3-pseudo-Hermitian, i.e., G = G̃ [71].
Hence, as expected, Z = W . Interestingly, in the purely
dissipative case (H = 0), the dynamical matrix is skew τ3-
pseudo-Hermitian, i.e., G = −G̃. Again, Z = W . In such
cases, we say the Noether modes are nonsplit.

Generically, Noether modes are split, in the sense that a
given mode is either a ZM or an SG, and not both. Remark-
ably, however, for QBLs we are able to establish a direct
one-to-one correspondence between ZMs and Weyl SGs. One
may show that, given a fixed ZM, there always exists a cor-
responding canonically conjugate Weyl SG. This canonical
isomorphism, which we anticipated in Ref. [24], is rather
surprising given the general decoupling of ZMs and SGs in
open quantum systems [64]. Formally, we have the following:

Theorem 1. For an arbitrary QBL, we have dimR Z =
dimR W . If, in addition, the zero rapidity hosts only length-
one Jordan chains, then for each ZM there is a canonically
conjugate Weyl SG, and vice versa.

Proof. Consider the antilinear operator C defined by C 	α =
τ1 	α∗ so that 	̂α † = −Ĉ 	α. In particular, 	̂α is Hermitian if and
only if C 	α = −	α. Since −G = τ1G∗τ1 = CGC, it follows
that ker G is invariant under C. Since C2 = 12N , we have a real
structure on ker G. That is, ker G ∼= C−⊕ iC−, with C− the real
vector space of kernel vectors 	α, with C 	α = −	α. “Quantizing”
these vectors with the bosonic hat map yields the set of Weyl
SGs. Moreover, dimR W = dimR C− = dimC ker G. An iden-
tical analysis yields dimR Z = dimC ker G̃. Elementary linear
algebra yields dimC ker G = dimC ker G̃, establishing the first
claim.

For the second statement, let us take a biorthogonal basis
{	γ z

j , 	η j} for ker G̃. By definition, {	γ z
j } spans ker G̃, {	η j} spans

ker G̃†, and 	η†
j 	γ z

k = δ jk . The existence of such a basis hinges
upon the length-one Jordan chain assumption. Per the invari-
ance under C, we can take C 	γ z

j = −	γ z
j and C	η j = −	η j . Now,

let 	γ s
j = −iτ3	η j . These vectors span ker G and are odd under

C. Finally,[
	̂γ s

j, 	̂γ z
k

] = 	γ s
j

†τ3 	γ z
k 1F = i	η†

j 	γ z
k 1F = iδ jk 1F .

Thus, we have constructed canonically conjugate bases of Z
and W , as desired. �

A relevant generalization of this result establishes a cor-
respondence between the set of approximate ZMs and the
generators of approximate symmetries. We say that a Hermi-
tian operator 	̂γ z

is an approximate ZM if ‖G̃	γ z‖ < ε for a
prescribed accuracy ε > 0. These arise from ε pseudoeigen-
vectors of G̃ corresponding to the ε pseudoeigenvalue 0.
Since, in our paper, the most useful norm is the 2-norm, 	γ z

can equivalently characterized as a singular vector of G̃ corre-
sponding to a singular value s < ε (see also Appendix B 1).
The second-quantized operator then satisfies L�( 	̂γ z ) = Kα,
with |K| < ε and α some linear form with bounded co-
efficients. Generators of approximate Weyl symmetries are
defined analogously. See Appendix B 2 for a detailed account
of this generalization, including an extension of Theorem 1 to
the approximate setting.

B. Constructive procedures for QBL design

If they are robust against an appropriate set of perturba-
tions, the edge-localized ZMs of a free-fermion Hamiltonian
are likely to be an indication that the system is in a SPT phase.
An SPT phase is a gapped phase of matter characterized by
a degenerate ground state and the absence of a local order
parameter. The ZMs connect the various ground states es-
sentially by changing the number of the quasiparticles they
create or annihilate, with no associated energy cost. In order
to search for this kind of physics in QBLs, one would greatly
benefit from two key capabilities:

(1) The ability to synthesize QBLs with desirable physical
properties (e.g., locality) and a rich array of possibilities in
terms of their ZMs.

(2) The ability to synthesize QBLs with pure SSs.
There is a systematic way to meet these needs and we

describe them in this section.

1. A zero-mode-preserving map of Hamiltonian free
fermions to Markovian free bosons

Suppose we have a QFH HF with a midgap state. In the
BdG formalism, this means there is a vector 	γ+ such that
HF 	γ+ = εN 	γ+, with εN ∼ O(e−N ) exponentially small in sys-
tem size and HF the BdG Hamiltonian corresponding to HF .
Because F (HF ) = HF , there is also a vector 	γ− satisfying
HF 	γ− = −εN 	γ−. Moreover, we can ensure that 	γ− = C 	γ+ and
	γ †
+ 	γ− = 0. Upon defining the vector 	γ ≡ (	γ+ − 	γ−)/

√
2, note

that

‖HF 	γ ‖ = εN
‖	γ+ + 	γ−‖√

2
= εN ∼ O(e−N ) (36)

and, by construction, C 	γ = −	γ . If � is the Nambu array of
fermionic operators, then i	γ †� is a Majorana fermion whose
commutator with HF is exponentially small in system size.

Now consider the QBL defined by

H = 0, M = HF + B,
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with B = B† any bosonic matrix such that HF + B � 0. This
QBL is purely dissipative (has zero Hamiltonian) and its
dynamical matrix is G = −iτ3HF . The main virtue of this
“transmutation” of fermions into bosons is that it preserves
ZMs. If HF has a midgap state, then we can construct a Hermi-
tian operator γ ≡ 	γ †τ3� that (i) is approximately conserved;
and (ii) generates an approximate symmetry. Since Noether
modes are nonsplit in purely dissipative systems, (i) and (ii)
follow simply from

‖G	γ ‖ = ‖τ3HF 	γ ‖ � ‖HF 	γ ‖ ∼ O(e−N ).

Importantly, this operator has the same spatial profile as the
Majorana fermion, and hence is localized on one edge of
the chain. The existence of a second, canonically conjugate
Hermitian mode localized on the opposite edge follows from
Theorem 2 in Appendix B 2.

A potential drawback to our procedure is that the con-
structed QBL may fail to be dynamically stable. The reason
is that there is no simple relationship between the spectrum
of HF and τ3HF , in general. If there is one because τ3 com-
mutes with HF , it means that the QFH commutes with the
fermion number operator. A closely related but nonetheless
surprising fact is that a pair of unitarily equivalent fermionic
matrices may lead to QBLs with different stability properties.
Nonetheless, we will also see how useful our map turns out to
be in practice.

2. Designing QBLs with pure steady states via dualities

We now provide a constructive procedure for engineering
a QBL that is guaranteed to relax to the quasiparticle vacuum
(QPV) of an arbitrary, but fixed, dynamically stable QBH.
This procedure hinges on the existence of a particular duality
transformation that maps any number-nonconserving QBH to
a number-conserving one [72].

Specifically, consider a dynamically stable QBH H , de-
fined by its dynamical matrix G0. Dynamical stability ensures
G0 is diagonalizable and has an entirely real spectrum. In
turn, these features ensure that there exists a positive-definite
matrix S, such that G†

0 = SG0S−1. Moreover, S and, more
importantly, its unique positive-definite square root R = S1/2

provide a Bogoliubov transformation � �→ R−1� that maps
H to a number-conserving Hamiltonian HD. The dynamical
matrix of HD is GD = RG0R−1. This transformation can be
understood physically by noting that the bosonic covariance
matrix of the QPV |̃0〉 of H is

B(QQPV) = 〈̃0|B(Q)|̃0〉 = 1
2 S−1 = 1

2 R−2.

We claim that the QBL L defined via the Hamiltonian H
and a GKLS matrix M ≡ κ (S + τ3), with κ > 0 is (i) dynam-
ically stable; and (ii) relaxes to the unique SS ρss = |̃0〉 〈̃0|.
Firstly, one may show that this QBL is well defined, in that
M � 0. This follows from the explicit form of S given in
Ref. [72]. Dynamical stability follows from the observation
that the dynamical matrix of L is Gκ = G0 − iκ12N . Hence,
the rapidites are simply −κ ± iωn, with ωn the quasiparticle
energies of H . Dynamically stability ensures that the SS is
unique. Moreover, Gaussianity allows us to characterize it
entirely by its covariance matrix B(Qss). We compute this by

solving the Lyapunov equation Eq. (22) directly. Thus,

B(Qss) =
∫ ∞

0
e−iGκ tτ3B(M)τ3eiG†

κ t dt .

By construction, B(M) = κS. Recalling that S provides a
Bogoliubov transformation, we have τ3Sτ3 = S−1. Also,

e−iGκ t = e−κt e−iG0t .

With this, we can simplify the integrand by computing

e−iG0t S−1eiG†
0t = S−1e−iSG0S−1t eiG†

0t

= S−1e−iG†
0t eiG†

0t = S−1.

Altogether, this yields the solution

B(Qss) = κS−1
∫ ∞

0
e−2κt dt = 1

2
S−1.

Since both the QPV and the SS are Gaussian, have the same
mean vector (zero), and the same covariance matrix, they are
the same state. Alternatively, this may be shown by noting that
the dissipator becomes diagonal in a particular Hamiltonian
normal-mode basis (as we will see in the concrete example of
Sec. V D).

IV. DYNAMICAL METASTABILITY

We have seen thus far that (i) the dynamical matrices
of 1D bulk-translationally invariant QBLs under OBCs are
block-Toeplitz matrices; and (ii) such matrices have nontrivial
pseudospectra influenced by the bulk topology. What are,
then, the physical consequences of (ii) given (i)?

The spectrum of a translationally invariant QBL can be de-
scribed in terms of curves in the complex plane labeled by the
crystal momentum k, namely, the rapidity bands of the system.
The pseudospectrum of a bulk-translationally invariant QBL
is, instead, best described in terms of the band winding num-
ber. Consider a QBL with distinguishable rapidity bands, that
is, the bands are described by M complex-valued functions
{λm(k), λm(k)∗}d

M=1, and let λ ∈ C not belong to any of the
rapidity bands. In the language of Ref. [73], λ is a point gap
of the complex spectrum. For each band m = 1, . . . , M, the
winding number of the band about λ is given by

νm(λ) = 1

2π i

∫ π

−π

d

dk
ln[λm(k) − λ] dk.

As we mentioned in Sec. II C, the SIBC rapidity spectrum
consists of the rapidity bands and all the point gaps for which
νm(λ) �= 0 for at least one m. Due to the Bloch-like structure
of the dynamical matrix g(k) [Eq. (29)], and following the
same logic that leads one to conclude that midgap modes
are localized in Hermitian systems, the modes associated
to a point gap are necessarily boundary localized [65,67].
Generically, a positive winding number elicits left-localized
modes, while a negative one elicits right-localized modes [30].
Since we adopt the convention where the semi-infinite chain
retains its left boundary, the right localized modes are lost
[74]. As we also mentioned, the OBC rapidities are more
complicated to describe and less predictable. At a minimum,
they are a discrete subset of the SIBC spectrum and lie on
continuous arcs within the SIBC spectrum. This has especially
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notable consequences when the OBC spectra consists entirely
of point-gapped rapidities. Such systems turn out to exhibit
the NHSE [35,66–68], whereby all finite-size normal modes
are edge localized.

Strikingly, it is even possible for the OBC chain to be
dynamically stable for all finite N , despite having an unsta-
ble semi-infinite limit. Physical intuition stipulates that the
dynamics of increasingly large-N truncations should well ap-
proximate those of the semi-infinite limit. How can we possi-
bly meld this with the spontaneous loss of dynamical stability,
or the spectral discontinuity in general? The pseudospectrum
is precisely the tool for answering this question. Mathemati-
cally, we have seen that the SIBC spectrum imprints itself into
the pseudospectrum of the finite OBC chain, in the precise
sense of Eq. (35). To understand this intuitively, consider a
localized normal mode of the semi-infinite chain, correspond-
ing to a rapidity far separated from the OBC rapidities for
any finite N . Truncating this mode to fit within the finite
chain will not yield a normal mode, but rather a pseudonormal
modes with pseudorapidity (pseudoeigenvalue of −iG) equal
to the semi-infinite rapidity. Edge localization implies that
early time dynamics of this truncated mode cannot sense the
existence of the two boundaries and hence will behave as
though the system were semi-infinite in extent. As N grows,
the pseudospectral accuracy parameter ε goes to zero, and
so these pseudonormal modes will be indistinguishable from
exact normal modes over appreciably long timescales.

Making the discussion more concrete, let �OBC
S,N and �SIBC

S
denote the stability gaps of a length-N OBC chain and the
corresponding semi-infinite chain, respectively, as defined in
Eq. (26). Note that �SIBC

S is also the stability gap for BIBCs.
In general, we always have

�OBC
S,∞ ≡ lim

N→∞
�OBC

S,N � �SIBC
S . (37)

However, if the OBC and SIBC spectra differ dramatically,
a strict inequality �OBC

S,∞ < �SIBC
S is possible. We distinguish

two notable cases:
(i) If both �OBC

S,∞ and �SIBC
S are negative, we say that the

OBC chain is in an anomalously relaxing dynamical phase.
This phase, which is dynamically stable both in the finite case
and the infinite-size limit, is characterized by an increasingly
long transient time whereby the system possesses pseudonor-
mal modes decaying at rates much slower than the rate set
by the finite-size stability gap. This transient is followed by
asymptotic decay, whose rate is set by the finite-size stability
gap. We conjecture that a similar mechanism is responsi-
ble for the anomalously long relaxation dynamics found in
dissipative systems exhibiting the so-called Liouvillian skin
effect [36,37,75]. This dynamical behavior also bears some
resemblance to metastability associated with spectral separa-
tion [33], with the spectral separation here being between the
finite-size stability gap, and the infinite-size (or pseudospec-
tral) gap.

(ii) If �OBC
S,∞ < 0 < �SIBC

S , we say that the OBC chain is
dynamically metastable (or just metastable, in our context,
for short). This phase is characterized by an increasingly long
transient time whereby the pseudonormal modes whose pseu-
doeigenvalues are in the right half plane amplify exponentially.
Once this transient concludes, all modes decay asymptotically

FIG. 2. Anomalously relaxing vs dynamically metastable dy-
namics in the DBKC (Sec. V C). The solid lines are the trajectory
of | 〈xN 〉 (t )| averaged over 250 random initial conditions. The filled
regions are ± one standard deviation from the mean. The black
dashed lines are the dynamics predicted from the SIBC stability
�SIBC

S gap, while the gray dashed lines are the dynamics expected
from the finite-size stability gaps, �OBC

S,∞ = limN→∞ �OBC
S,N . For this

example, �OBC
S,N = �OBC

S,∞ = −κ . In all cases, J = 2, � = 0.5, μ =
� = 0, N = 25. The dynamically metastable (anomalously relaxing)
curve corresponds to κ/� = 0.6 (1.4).

with rate set by the finite-size stability gap. The terminology
“dynamical metastability” refers to the metastable amplifying
transient dynamical phase that eventually gives way to the
necessarily stable asymptotic dynamics. Note that, since our
notion aims to capture metastable behavior of the structural
(stability) properties of the dynamical generator, it is, at the
current stage of understanding, a distinct notion than metasta-
bility for states of open quantum systems that is known to
stem from large intraspectral gaps [33,34,76]. However, both
cases are characterized by delayed relaxation to the true SS
manifold.

Examples of the above dynamical behavior are found in
the dissipative bosonic Kitaev chain (DBKC) model whose
rapidity spectra are shown in Fig. 1 (see Sec. V C for a detailed
discussion). In particular, the rapidities corresponding to open
marker in Fig. 1(a) show an anomalously relaxing phase when
the dissipation rate κ exceeds the two-photon pumping �,
while the filled (darker) rapidities show a metastable phase.
To explicitly illustrate the two-step nature of the relaxation
dynamics that classes (i) and (ii) above support, in Fig. 2 we
plot the trajectory of | 〈xN 〉 (t )| averaged over an ensemble of
random initial conditions. In the anomalously relaxing phase,
exponential relaxation indeed proceeds in two steps. The tran-
sient decay rate is set by �SIBC

S < 0, while the asymptotic
decay rate is the true one, i.e., �OBC

S,N < 0. The dynamically
metastable phase shows a drastically different transient behav-
ior, with amplification engendered by �SIBC

S > 0. Dynamical
stability nonetheless guarantees that the asymptotic dynamics
coincide with those of the anomalously relaxing phase.

It is natural to ask how long these anomalous transient
regimes persist. For this, consider the normal mode of the
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TABLE III. Summary of the key features of the five topologically metastable models analyzed in this paper. Abbreviations: DBKC
= dissipative bosonic Kitaev chain; PDMC = purely dissipative Majorana chain; DDWC = dissipative double-winding chain; DNSC =
dissipative number-symmetric chain; DPA = degenerate parametric amplifier; NDPA = nondegenerate parametric amplifier; NN = nearest
neighbor; (i) TB = (imaginary) tight binding. In all models (except the pure SS DBKC), the purity of the SS is assessed numerically throughout
the relevant regions of parameter space (data not shown). The DDWC, which is found to support two ZMs (SGs) on each edge, is discussed in
Appendix D, while the rest are in the main text.

Model Hamiltonian Lindblad dissipator U(1) symmetry Noether modes Steady state

DBKC BKC + DPA Uniform on-site plus next-NN damping No Split Mixed
Pure-SS BKC Uniform damping in BKC normal-mode basis; No Split Pure
DBKC site-local; restricted translation symmetry
PDMC H = 0 Uniform on-site and NN damping, pumping, pairing No Nonsplit Mixed
DDWC DPA+ NDPA Uniform on-site damping and pumping, NN pairing No Split, doubled Mixed
DNSC (i) TB Uniform on-site and NN damping, on-site pumping Yes Split Mixed

SIBC system corresponding to the rapidity with the largest
real part. In the anomalously relaxing case, this is the slowest
relaxing mode, while in the dynamically metastable case, it
is the one that amplifies the fastest. Truncating this mode
to fit into a chain of length N will provide a pseudonormal
mode of the OBC system of accuracy ε(N ). As before, the
well-behaved nature of the pseudospectrum infinite-size limit
implies that ε(N ) → 0 as N → ∞. Referring to Eq. (34), the
lifetime of this pseudonormal mode will necessarily increase
as ε(N ) → 0. Thus, the transient timescale diverges as N →
∞. One consequence of this fact is that, in the dynamically
metastable case, the linear mixing time of the QBL (roughly,
the time it takes the first moments of arbitrary states to come
suitably close to their SS value) will diverge [24].

In what follows, we shall focus on showing how dynami-
cally metastable phases can be further categorized into those
that are topological in an appropriate sense [as in Fig. 1(a)],
and those that are not [as in Fig. 1(b)]. We further remark that
a more comprehensive analysis of dynamical metastability
will be presented in Ref. [77].

V. TOPOLOGICAL DYNAMICAL METASTABILITY
WITH BROKEN NUMBER SYMMETRY

Let us now restrict our focus on dynamically metastable
QBLs, and further assume that they (i) are point gapped at
zero [i.e., their Bloch dynamical matrix g(k) is invertible for
all k]; and (ii) have at least one rapidity band winding about
zero. We shall call QBLs belonging to this class topologically
dynamically metastable (or just topologically metastable, for
short). Physically, an additional important restriction stems
from the possible presence of a (weak) U(1) number symme-
try, generated by the total bosonic number operator. While we
defer the discussion of number-symmetric QBLs to Sec.VI,
we examine first QBLs, which, in analogy to fermionic topo-
logical superconducting phases, will feature some bosonic
pairing mechanisms, at either the Hamiltonian or dissipative
level. For reference, a summary of all the illustrative models
we will analyze in this paper is provided in Table III.

A. Majorana edge bosons: General properties

From the definition of topological metastability, in addi-
tion to the spectral and pseudospectral properties of Toeplitz

and Laurent matrices and operators discussed in Sec. II C,
we may immediately conclude that GOBC

N possesses at least
one pseudonormal mode with zero pseudorapidity. Similarly,
we can conclude that G̃OBC

N also possesses a pseudonormal
mode with zero pseudorapidity. Following the conventions of
Sec. III A, we call these two pseudomodes 	γ s and 	γ z, respec-
tively, and ensure that the associated linear forms γ s ≡ 	̂γ s and
γ z ≡ 	̂γ z

are Hermitian, and have commutator [78] equal to
i. We deem the pair (γ z, γ s) Majorana bosons. MBs enjoy
a number of remarkable properties derived from their pseu-
dospectral and topological origins:

(i) An MB pair consists of one approximate ZM γ z and
one generator of an approximate Weyl symmetry γ s. Both are
necessarily Hermitian. That is, MBs are a particular instance
of Noether modes.

(ii) The pair can always be normalized to satisfy canon-
ical commutation relations, while the roles of γ z and γ s as
approximate ZM and SG are maintained.

(iii) One member of the pair is exponentially localized
on the left half of the chain, while the other is localized on
the right. This follows because, due to the adjoint relation-
ship between G̃ and G, the winding associated to γ z and
γ s necessarily have opposite sign. This engenders the stated
localization properties [30,31,79].

(iv) Combining (i)–(iii) allows us to construct a spatially
split bosonic degree of freedom γ z + iγ s whose quadrature
components are the MBs. In the case where the MBs are
nonsplit (in the sense of Sec. III A), this creates a long-lived
bosonic excitation in the system.

It is worth to zoom in specifically on point (ii). While
a more general and rigorous discussion will be provided in
a mathematics-focused companion paper [79], a typical in-
stance of MBs takes on the form

γ z ≡ Mz(N )
N∑

j=1

δ jx j, γ s ≡ Ms(N )
N∑

j=1

δN− j p j, (38)

with Mz,s(N ) size-dependent normalization constants to be
determined and δ real, with |δ| < 1. The above operators
satisfy

L�(γ z ) = Mz(N )δN−1χ, (39)

L�([γ s, A]) − [γ s,L�(A)] = Ms(N )δN−1[ξ, A], (40)
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along with the algebraic relationship

[γ z, γ s] = iMz(N )Ms(N )NδN−1. (41)

Here, χ and ξ represent (typically localized) Hermitian linear
forms whose coefficients in the Nambu basis are system-size
independent. The goal of normalization is to choose Mz(N )
and Ms(N ) such that (i) the right-hand sides of Eqs. (39) and
(40) go to zero as N → ∞; and (ii) the right-hand side of
Eq. (41) is i. That is, we want canonically conjugate modes
that provide asymptotically exact ZMs and SGs. Mathemati-
cally, these conditions are

(i) lim
N→∞

Mz(N )δN−1 = lim
N→∞

Ms(N )δN−1 = 0,

(ii) Mz(N )Ms(N )NδN−1 = 1.

Remarkably, a scheme satisfying both (i) and (ii) always exists
[79]. The simplest, and most natural choice is

Mz(N ) = Ms(N ) = δ−(N−1)/2

√
N

.

With this, condition (ii) is clearly satisfied. As for (i),

lim
N→∞

Mz(N )δN−1 = lim
N→∞

δ(N−1)/2

√
N

= 0,

and similarly for Ms(N ). This scheme, which we call sym-
metric normalization, will be employed throughout the text.
Clearly, this choice is nonunique, and another may be adopted
if certain features are desired over others. For example, if
we wish for γ z to have bounded coefficients in the x j basis,
then we may take Mz(N ) = 1 and Ms(N ) = δ−(N−1)/N . Cru-
cially, the exponential profile of the MBs is independent of the
choice of normalization. We also remark that this approach to
MB normalization shares many features with the fermionic
case, as detailed in Appendix A.

While the dynamical features of the approximate ZM MB
γ z is relatively easy to describe, those of γ s are initially
more opaque. We illuminate one particular implication of the
existence of this approximate symmetry by leveraging the
uniqueness of the SS under OBCs. Denoting said SS by ρss,
we introduce the family of Weyl-displaced Gaussian states

ρθ = eiθγ s
ρsse

−iθγ s
, θ ∈ R.

Because γ s generates an approximate symmetry, the states
ρ(θ ) are quasi-steady, in the sense that ρ̇θ (0) ∼ 0 + O(θε),
with ε being an exponentially small accuracy parameter such
that 0 is in the ε-pseudospectrum of G. Unlike the SSs of a
QBL, these quasi-SSs possess nonzero mean vectors,

	mθ (0) ≡ tr[�ρθ (0)] = iθ 	γ s.

Since 	γ s is edge localized and a pseudonormal mode of the
dynamical matrix, the quasi-steady mean vectors are expo-
nentially localized on one edge of the chain and are long lived.
More explicitly, we may write

‖ 	mθ (t ) − 	mθ (0)‖
‖ 	mθ (0)‖ � ε t e�t , (42)

with � > 0 a system-size independent constant and ε → 0 as
N → ∞ (see Ref. [24] for an explicit derivation). On the other
hand, being only a Weyl displacement of the SS, it follows that

FIG. 3. Comparison between the topological phase diagram of
the FKC and the topological stability phase diagram of the corre-
sponding PDMC.

ρθ shares a covariance matrix (and hence all even moments)
with ρss. Interestingly, these states can be used to construct
long-lived classical non-Gaussian states. Namely, any convex
linear combination of the ρθ ’s will be long lived and exhibiting
a non-Gaussian, albeit still nonnegative, Wigner function.

B. A purely dissipative bosonic Majorana chain

As the first concrete example of topological metastability,
we focus on a purely dissipative (H = 0) setting. The moti-
vation for this is twofold. Firstly, the existence of a purely
dissipative model displaying topological metastability demon-
strates that the phenomena does not require any Hamiltonian
contribution. In particular, this establishes that topological
metastability is not a property of the Hamiltonian that is
stabilized through dissipation but, rather, a fundamentally
dissipative phenomenon. In fact, a similar philosophy under-
pins early analysis of topological physics in quasi-free open
fermionic systems [26]. Secondly, as detailed in Sec. III A,
the MBs of purely dissipative chain are necessarily nonsplit:
Each MB is both a ZM and an SG. Thus, they provide the
most natural bosonic generalization of the Majorana fermions
of topological superconductivity.

To accomplish this, let us apply the construction of
Sec. III B 1 to the paradigmatic fermionic Kitaev chain (FKC)
(see also Appendix A), whose phase diagram is shown in
Fig. 3. Within the topological phase and under OBCs, HFKC

has two approximate Majorana ZMs (in the special case μ =
0, these approximate ZMs are exact for odd N). The corre-
sponding BdG Hamiltonian is HFKC = 1N ⊗ h0 + S ⊗ h1 +
S† ⊗ h†

1, with the internal matrices given by

h0 =
[−μ 0

0 μ

]
, h1 =

[−J �

−� J

]
.

Moving to the corresponding QBL, we set M ≡ HFKC +
α12N , with α � | min σ (HFKC)|, so that we ensure M � 0.
Physically, the Lindblad dissipator describing this purely dis-
sipative Majorana chain (PDMC) has five distinct incoherent
contributions, D ≡ D−,0 + D+,0 + D−,1 + D+,1 + Dp,1, with

D−,0 = (α − μ)
N∑

j=1

D[a j, a†
j ],

D+,0 = (α + μ)
N∑

j=1

D[a†
j , a j],
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D−,1 = −J
N∑

j=1

D[a j, a†
j+1] + D[a j+1, a†

j ],

D+,1 = J
N∑

j=1

D[a†
j , a j+1] + D[a†

j+1, a j],

Dp,1 = �

2

N∑
j=1

D[a j, a j+1] − D[a j+1, a j] − (a ↔ a†).

From top to bottom, these mechanisms can be described as
uniform on-site damping of strength α − μ, uniform on-site
pumping of strength α + μ, uniform NN damping of strength
J , uniform NN pumping of strength J , and incoherent pairing
of strength �, respectively.

Diagonalizing the GKLS matrix leads to a particularly
interesting set of Lindblad operators. Let { 	ψn,±} be the eigen-
vectors of HFKC (and hence, M) with eigenvalues {±εn}.
These represent the FKC quasiparticles (+) and quasiholes
(−). The Lindblad operators are then L±

n = √
α ± εn 	ψ †

n,±�.
Under PBCs, these correspond to delocalized plane waves
with ±εn in the FKC bands. The OBC case depends on the
topological phase. In the trivial phase, the L±

n ’s are delocalized
standing waves with ±εn in the bands. In the nontrivial phase,
there are 2N − 2 standing waves with ±εn confined to the
bands and two edge modes with ±εn ∼ ±e−N in the gap.
These two modes provide boundary dissipation and pumping
for the corresponding bosonic chain.

The Bloch dynamical matrix of the PDMC is founds as

−ig(k) = (μ + 2J cos(k))12 − 2i� sin(k)σ1.

Thus, the rapidity bands for this model are given by

λ±(k) = μ + 2J cos(k) ± 2i� sin(k).

Both dynamical instability and nonzero winding are guar-
anteed whenever |μ/2J| < 1, which corresponds exactly to
the nontrivial phase of the FKC. However, the OBC chain
is unstable whenever μ > 0, see Fig. 3. Explicitly, the OBC
rapidities for the PDMC are given by

λm = μ + 2i
√

�2 − J2 cos

(
mπ

N + 1

)
, (43)

with m = 0, . . . , 2N − 1 (see Appendix B 3 for a more
detailed spectral analysis). For simplicity, we take
� � J > 0 and restrict μ < 0. The relevant stability gaps are
then

�OBC
S,N = μ, �SIBC

S = 2J + μ.

Thus, we conclude that the PDMC (under OBCs) is topologi-
cally metastable whenever μ < 0 and −μ/(2|J|) < 1.

For general parameter values, the calculation of MBs
is performed numerically, as described in more detail in
Appendix B 4. However, we may construct the
(unnormalized) MBs analytically in the special
case J = �,

γL =
N∑

j=1

δ j−1x j, γR =
N∑

j=1

δN− j p j, δ ≡ − μ

2J
. (44)

We immediately see that (i) both γL and γR are approximate
ZMs and generate approximate symmetries; and (ii) they have
the exact same localization lengths as the MF edge modes of
the FKC. While (ii) can be inferred directly from Eq. (44), (i)
is verified by the relations

L�(γL ) = −2JδN xN ,

L�(γR) = −2JδN p1,

L�([γL, A]) − [γL,L�(A)] = −2iJδN [xN , A], ∀A,

L�([γR, A]) − [γR,L�(A)] = −2iJδN [p1, A], ∀A.

Moreover, the unnormalized MB algebra is [γL, γR] =
2iNδN−1. Normalization proceeds exactly as detailed in
Sec. V A. Finally, as anticipated, the MBs are nonsplit and
have the same spatial profile as the Majorana fermions of the
FKC [6]. In Sec. VII, we will show how nonsplit MBs may be
distinguished from the more typical split MBs via two-time
correlation functions.

C. A dissipative bosonic Kitaev chain

The MBs of the previous model represent the simplest
bosonic extension of Majorana fermions. However, the model
itself is atypical in the sense that QBLs generically possess
both coherent (Hamiltonian) and incoherent processes. As a
quintessential example of topological metastability furnished
by the interplay between these two dynamical contributions,
we consider the dissipative BKC (DBKC) we introduced
in Ref. [24]. The Hamiltonian component now consists
of the BKC Hamiltonian [32], modified with an isotropic
degenerate parametric amplifier (DPA) term at each site.
Explicitly,

HBKC = i

2

N∑
j=1

(
Ja†

j+1a j + �a†
j+1a†

j + μa†
j
2
) + H.c., (45)

with J � � � 0 being the hopping and pairing amplitudes,
μ ∈ R the uniform DPA strength, and aN+ j ≡ a j for PBCs, or
aN+ j ≡ 0 for OBCs. By making the system open, we intro-
duce two damping mechanisms,

D =
N∑

j=1

(
κ − (2�)2

κ

)
D[a j] + D

[√
κa j + 2�√

κ
a j+2

]
,

where κ � 0 is a uniform on-site damping rate and � � 0 is a
next-nearest-neighbor (NNN) damping rate. BCs are enforced
in the usual way, whereas we ensure the GKLS matrix M is
positive-semidefinite by requiring κ � 2�.

The Bloch dynamical matrix is given by

g(k) = − i[κ − iJ sin(k) + 2� cos(2k)]12

+ i[μ + � cos(k)]σ1,

from which the two rapidity bands are determined to be

λ±(k) = −(κ ± μ) ∓ � cos(k) − iJ sin(k) − 2� cos(2k),
(46)

where k ∈ [−π, π ] is the crystal momentum. The stability
phase diagram for PBCs/BIBCs is obtained by determining
when the bands cross the imaginary axis. In the unstable
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FIG. 4. (a) The topological phase diagram of the DBKC with J � � > 0 and μ = 0. The “Nonzero winding” region indicates the
parameter regime where the rapidity bands wind around the origin. The “Zero winding” region indicates the parameter regime where neither
band winds around the origin. If the OBC chain is dynamically stable in either of these two regions, then it is dynamically metastable,
additionally being topologically metastable in the former case. The “Dynamically stable bulk” region occurs when the rapidity bands lie in
the left-half plane. If the OBC chain is dynamically stable here, then it is anomalously relaxing. In the “Ill-defined” region, M is no longer
positive-semidefinite. The black dots at (�/�, κ/�) = (0, 0.6) and (0.24,0.6) indicate the position of two representative parameter choices
used in later figures. (b) For later reference, the SS purity under OBCs in the same phase space as (a) with J = 2, � = 0.5, and N = 25. (c) The
topological stability phase diagram of the DBKC under OBCs with � = 0. The inset figures show representative rapidity band structure in
each region. The number of bands winding around the origin determines the number of MB pairs. (a) and (c) adapted from Ref. [24].

phase, two possibilities arise: (i) at least one band winds
around the origin or (ii) neither band wind around the origin.
A representative stability phase diagram, including the parti-
tion of the unstable phase into topological and nontopological
regions, is shown in Fig. 4(a).

1. The parameter regime � = 0

The parameter regime where the NNN damping vanishes
is especially interesting from the perspective of topological
dynamical metastability. In this case, the OBC rapidities can
be computed as

λ±,m = −κ ± μ + i
√

J2 − �2 cos

(
mπ

N + 1

)
,

with m = 0, . . . , 2N − 1. In the notation of Sec. IV, the rele-
vant stability gaps in this limit are

�OBC
S,N = −κ + |μ|, �SIBC

S = � − κ + |μ|.

Example rapidities for � = μ = 0 are shown in Fig. 1(a).
Stability is guaranteed whenever κ � |μ|, independent of N .
Under this constraint, the winding numbers ν± of the bands
λ±(k) can be tuned to be either (ν+, ν−) = (1,−1), (1,0),
(0,−1), or (0,0), see Fig. 4(c). The first three regimes exhibit
topological metastability while the fourth is anomalously re-
laxing. Each nonzero winding number corresponds to an MB
pair. Thus, in a topologically metastable regime, the number
of MB pairs can either be 1 or 2: in the former case, a par-
ticular edge hosts either a boundary-localized ZM or a SG,
whereas in the latter case both a boundary-localized ZM and
a SG are present on each edge. We remark that the existence
of phases where

∑
ν �= 0 explicitly requires dissipation, and

is interesting from the perspective of Fredholm theory [79].

For the special case J = �, we compute the MBs exactly,

γ z
L =

N∑
j=1

δ
j−1
− x j, γ s

R =
N∑

j=1

δ
N− j
− p j,

γ s
L =

N∑
j=1

δ
j−1
+ x j, γ z

R =
N∑

j=1

δ
N− j
+ p j,

with δ± = −(μ ± κ )/J . The relevant nonvanishing commu-
tators are [γ z

L , γ s
R] = iNδN−1

− and [γ s
L, γ z

R] = iNδN−1
+ . The

pseudospectral origin of each mode and its role as approxi-
mate ZM / SG are evident in the following identities:

L�
(
γ z

L

) = −JδN
−xN ,

L�
(
γ z

R

) = JδN
+ p1,

L�
([

γ s
L, A

]) − [
γ s

L,L�(A)
] = −JδN

+[xN , A], ∀A,

L�
([

γ s
R, A

]) − [
γ s

R,L�(A)
] = JδN

−[p1, A], ∀A.

Whenever δ+ or δ− has modulus less than one, the correspond-
ing c/s mode is an approximate ZM/SG. Independence of δ+
and δ− leads to the phase diagram of Fig. 4(c). It is interesting
to note that, unlike the exact normal-modes of the system
(which are pinned to the edges via the NHSE), the localization
lengths of the MBs, ξ± ≡ [ln |δ±|]−1, diverge at the topolog-
ical phase transition. In fact, divergence of the localization
length explicitly define the phase boundaries, reminiscent of
Majorana fermions in topological superconductors.

2. The parameter regime � �= 0

When the NNN damping is turned on and exceeds a certain
threshold, the DBKC can exhibit nontopological metastabil-
ity. The case where μ = 0 is illustrated in both Figs. 4(a) and
1(b). In this case, Eq. (46) reveals that the two rapidity bands
are degenerate; with respect to the elliptical bands of the BKC
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Hamiltonian, the on-site damping introduces an overall shift,
while the NNN damping introduces more complex curvature.
The bulk stability gap is found as

�BIBC
S = �SIBC

S =
{−κ + � − 2�, �/� < 1/8,

−κ + �2/16� + 2�, �/� > 1/8,

with the region where �BIBC
S > 0 being divided into a sector

where both bands wind around the origin and one where
neither do. The latter corresponds to a nontopological dynam-
ically metastable phase, with no MBs. Nonetheless, transient
amplification is observed [24]. As explained in Sec. IV, this
follows due to the fact that nontrivial pseudospectra (equiva-
lently, the infinite-size limit spectra) emerges in the right-half
complex plane. In Sec. VII we will see that this nontopolog-
ical metastability can be distinguished from its topological
counterpart using two-time correlation functions.

D. A dissipative bosonic Kitaev chain with a pure steady state

In all models considered thus far, we have confirmed
by numerically determining the purity that the SS of the
OBC configuration is always a mixed state, see Fig. 4(b).
This prevents us from exploring the potential interplay be-
tween topological metastability and pure SSs (so-called “dark
states” in quantum optics). Following the procedure de-
tailed in Sec. III B 2, however, it is always possible, given
a dynamically stable Hamiltonian with QPV |̃0〉, to engi-
neer a dissipator that relaxes any initial condition to |̃0〉. In
the spirit of dissipative pure-state stabilization [50,80], such
a procedure is especially interesting when such a vacuum
state possesses certain nontrivial properties such as nonzero
squeezing, as is the case with the BKC. Can topological
metastability arise in such a system? The answer is “Yes”,
as we will now show by applying the procedure to the BKC
Hamiltonian under OBCs.

Consider the Lindbladian defined via the BKC Hamilto-
nian (with μ = 0 for simplicity) and the site-local dissipator

D = 2κ

N∑
j=1

D[α j (r)], κ > 0, (47)

where we have introduced squeezed bosonic degrees of
freedom according to

α j (r) ≡ cosh( jr)a j − sinh( jr)a†
j ,

and the squeezing parameter r is fixed according to
tanh(r) = �/J . This represents a local dissipative process of
the squeezed degrees of freedom with constant loss rate 2κ .
A number of remarks are in order.

First, the dissipator is not bulk-translationally invariant.
Explicitly, the squeezing of the mode α j (r) increases with j.
Remarkably, however, the dynamical matrix G = G − iκI2N

is translationally invariant, up to BCs. In fact, it is precisely
equivalent to that of the DBKC of Sec. V C. Mathemati-
cally, the translation invariance-breaking terms are entirely
contained in the bosonic projection of the GKLS matrix M,
while F (M) = κτ3. Thus, the Heisenberg equations of mo-
tion for the Nambu array, and thus all linear observables, are
translationally invariant, up to BCs. In this sense, we say this
model has a restricted translational symmetry. This allows for

a straightforward computation of rapidities and pseudospec-
tra. Since the dynamical matrix is equivalent to that of the
DBKC, the chain is topologically metastable for |κ/�| < 1
and anomalously relaxing for |κ/�| > 1. In particular, there
are two MB pairs in the topologically metastable regime.

Second, the dissipator has a particularly simple repre-
sentation in terms of a set of normal modes of the BKC
Hamiltonian. Recall that the set of normal modes of the BKC
is nonunique (as a consequence of anticommutation with
time-reversal and a resulting ± symmetry in the many-body
energies), with each choice of normal modes corresponding to
a particular QPV [18]. We may choose one particular set and,
under OBCs, diagonalize the BKC Hamiltonian as HBKC =∑

μ ωμ(ψ†
μψμ + 1/2), for bosonic quasiparticles {ψμ} that

satisfy the CCRs [18,32] and are “standing waves” in the
squeezed basis α j (r),

ψμ =
√

2

N + 1

N∑
j=1

i j sin

(
μπ j

N + 1

)
α j (r).

From here, the dissipator is given by

D = 2κ

N∑
μ=1

D[ψμ]. (48)

That is, in the normal mode basis, the chain is a set of N
decoupled dissipative harmonic oscillators with mode-varying
frequencies ωμ and uniform damping κ [81]. Equivalently,
Lμ = √

2κ ψμ. We further note that dissipators diagonal in the
normal mode basis of the system Hamiltonian often arise in
self-consistent derivations of quadratic master equations [82].

1. Relaxation dynamics

Equation (48) makes the identification of the SS trivial.
If |̃0〉 is the QPV of the BKC, that is, ψμ |̃0〉 = 0 for all μ,
then L(|̃0〉 〈̃0|) = 0. This state is a squeezed Gaussian state
that we have constructed explicitly in Ref. [18]. Since it is
defined as a QPV of HBKC, it is necessarily a function of
the Hamiltonian parameters J and � only. In particular, it
is insensitive to κ , and hence to the topology of the rapidity
bands. This demonstrates that topological metastability need
not be reflected in the structure of the SS.

Given a system with both a pure SS and topological
metastability, the manifold of quasi-SSs admits a simple char-
acterization. Let γ s be one of two edge symmetries γ s

L or
γ s

R. Following Sec. V A, we construct the Weyl-displaced
quasi-SSs, ρθ ≡ eiθγ s |̃0〉 〈̃0| e−iθγ s

, which are also pure. In
fact, the states |	α(θ ), {ψμ}〉 ≡ eiθγ s |̃0〉, which are generically
squeezed coherent states with respect to the physical degrees
of freedom {a j}, can be interpreted as coherent states with re-
spect to the squeezed bosonic normal modes {ψμ}. Explicitly,

ψμ |	α(θ ), {ψμ}〉 = αμ(θ ) |	α(θ ), {ψμ}〉 , αμ(θ ) ∈ C.

The amplitudes αμ(θ ) encode the extent to which the
normal modes commute with the SG, i.e., [ψμ, γ s] =
iθ 	ψ†

μτ3 	γ s 1F = αμ(θ )1F , where 	ψμ and 	γ s are the
single-particle vectors associated to ψμ and γ s, re-
spectively. As in the general case, the mean vector
	m(t ) = 〈	α(θ ), {ψμ}|�(t )|	α(θ ), {ψμ}〉 = iθ 	γ s(t ) is long lived
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[recall Eq. (42)]. Due to the correspondence between
dynamical matrices, this is the same mean vector as the
mixed quasi-SSs in the DBKC.

Identifying the quasi-SSs as coherent states evolving under
decoupled dissipative harmonic dynamics (in the normal-
mode basis) affords us the ability to compute their dynamics
exactly [83,84] and analyze their relaxation dynamics more
precisely. As they evolve, the states remain coherent, i.e.,
ρθ (t ) = |	α(θ, t ), {ψμ}〉 〈	α(θ, t ), {ψμ}|, with amplitudes

αμ(θ, t ) = αμ(θ )e−(κ+iωμ )t = 〈ψμ〉 (t ),

which relax to equilibrium exponentially fast in time. This
apparent paradox is resolved by noting that these amplitudes
correspond to the expectation values of ψμ, which, due to
squeezing, have exponentially large coefficients when ex-
pressed in the basis of the physically relevant degrees of
freedom {a j}. This explains why the normal-mode amplitudes
decay exponentially, despite the mean vector being long lived,
with a lifetime increasing in system size. While this property
holds independently of which SG is chosen (left- or right
localized), the exact nature of the relaxation dynamics do.

Consider the trace distance between two quantum states,
T (ρ, σ ) = (1/2)‖ρ − σ‖tr, which provides a measure of their
distinguishability. Thanks to our knowledge of the exact dy-
namics, we can study the relaxation time of the quasi-SSs via
the distance from equilibrium,

T (ρθ (t ), ρss ) =
√

1 − | 〈	α(θ, t ), {ψμ}|̃0〉 |2

=
√

1 − exp (−‖	α(θ, 0)‖2e−2κt ),

where 	α(θ, t ) is either 	αL(θ, 0) or 	αR(θ, 0) depending which
SG is used to generate the quasi-SSs. We then define the
relaxation time to be the time trel(δ) such that the relative dis-
tance from equilibrium T (ρθ (t ), ρss)/T (ρ(0), ρss) falls (and
remains) below a prescribed accuracy δ > 0. It follows that

2κ trel(δ) = ln

[ ‖	α(θ, 0)‖2

ln[(1 − δ(1 − e−‖ 	α(θ,0)‖2 ))−1]

]
.

The system-size scaling of trel(δ) is thus explicitly tied to
the system-size scaling of the norm of the initial ampli-
tude vector ‖	α(θ, 0)‖. Remarkably, the two manifolds of
quasi-SSs display dramatically different relaxation dynamics,
as inferred from their relaxation times. We find, numeri-
cally, that ‖	αL(θ, 0)‖ increases exponentially with N , whereas
‖	αR(θ, 0)‖ decreases exponentially. The consequences of this
observation are displayed in Fig. 5: the left-localized quasi-
SS exhibits a increasingly long relaxation time, while the
right-localized shows just the opposite. The asymmetry in the
dynamics may be understood by noting that, while the dynam-
ical matrix is translationally invariant (up to boundaries), the
full generator is not. Specifically, the Lindblad operators α j (r)
are right localized.

The boundedness of the relaxation times for the right-
localized state does not contradict our claim of long livedness.
Per the general theory, the lifetime of the physically acces-
sible degrees of freedom, as captured by the macroscopic
mean vector 	mR

θ (t ), remains indistinguishable from its ini-
tial value 	mR

θ (0), as exemplified by Eq. (42). On the other
hand, the quasi-SS and the true SS have overlap exponen-

FIG. 5. (a) Relaxation dynamics of the left-localized quasi-SS as
N increases. (b) Same as in (a), but for the right-localized quasi-
SS. (c) Relaxation times trel(δ) for the left- (red) and right- (blue)
localized quasi-SSs for accuracies δ = 0.75 (solid) and δ = 0.90
(dashed). (d) Scaling of the initial amplitude vector norms for the
left- (red) and right- (blue) localized quasi-SSs with system size. In
all cases, we take θ = 1, symmetrically normalize the MBs, and set
J = 2, � = 0.5, and κ = 0.3.

tially close to one as N increases. The resolution comes by
noting that 	mR

θ (t ) is obtained from the exponentially small
normal mode amplitudes 	αR(θ, t ) via a squeezing transfor-
mation. This transformation dilates the exponentially small
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amplitudes into the physical amplitudes. Similarly, the same
transformation squeezes the exponentially large normal mode
amplitudes 	αL(θ, t ) into the physical amplitudes 	mL

θ (θ, t ).

2. Transient odd-parity behavior

To conclude our analysis of this model, we pose the ques-
tion: Do the pure quasi-SSs span a subspace of long-lived
states? That is, do linear combinations of these pure states
provide long-lived states themselves? This question is inter-
esting from two perspectives. Firstly, from the perspective
of continuous-variable quantum information, linear combina-
tions of coherent states provide the simplest realization of
bosonic cat codes [85,86]. Thus, the ability to potentially
dissipatively prepare and sustain such states could have un-
foreseen implications, for instance in the context of robust
encodings. Secondly, from the perspectives of condensed-
matter physics and quantum optics, ground states and SSs
are intrinsically averse to odd bosonic parity. Specifically,
if a QBH (QBL) has a unique ground (steady) state, then
it must have even bosonic parity. In the Hamiltonian case,
this eliminates the possibility for the parity switching behav-
ior characteristic of topological superconductors. Moreover,
negative expectation values of parity signify quantum non-
Gaussianity.

In general, the question is difficult to answer. However,
we can make interesting statements about particularly relevant
linear combinations. Concretely, let us consider bosonic “cat
states” of the form

|Cφ (	α)〉 = Nφ (	α)(|	α(θ ), {ψμ}〉 + eiφ |−	α(θ ), {ψμ}〉),

where Nφ (	α) is a normalization constant, and φ ∈ [0, 2π ].
Being generally non-Gaussian, these states are not simply
characterized by their first and second cumulants. Moreover,
computation of overlaps becomes substantially more difficult
than in the previous case. Instead of a direct analysis of relax-
ation times, we focus explicitly on parity dynamics,

〈P〉φ,	α (t ) = 〈Cφ (	α)|P(t )|Cφ (	α)〉 ,

with P the bosonic parity operator introduce in Sec. II B 2. It
is then possible to derive the following exact analytical result
(see Appendix C for detail):

〈P〉φ,	α (t ) = e−2‖	α‖2 + cos(φ)e−2‖	α‖2(1−e−2κt )

1 + cos(φ)e−2‖	α‖2 . (49)

Again, which quasi-SS manifold is chosen strongly affects
the ensuing behavior. If 	α = 	αL(θ, 0), the parity shows a
dramatic dependence on both N and φ, as seen in Fig. 6.
Unless φ = ±π/2, the parity drops incredibly fast to zero,
remains zero for a transient time that scales linearly with N ,
and then eventually rises up to the asymptotic value of 1. The
extremely fast initial drop to zero corresponds to a singularity
in the derivative

〈Ṗ〉φ,	α (0) = −4‖	αL(θ, 0)‖2

(
e−2‖	α‖2 − cos(φ)

1 + e−2‖	α‖2 cos(φ)

)
,

as N (and hence ‖	α‖) goes to infinity. The transient state
of zero parity that follows is interesting, as it represents a
long-lived period where the measurement statistics of parity
are split evenly between the +1 and −1 outcomes. While we

FIG. 6. (a) Parity dynamics of the initial odd-parity cat state
formed from the left-localized quasi-SS for increasing N . (Inset)
Short time behavior. (b) Parity dynamics of the initial cat state
formed from the left-localized quasi-SS for N = 25 and varying φ.
(c) Parity dynamics of the initial odd-parity cat state formed from the
right-localized quasi-SS for increasing N . The dashed line indicates
the N → ∞ limit. (d) Parity dynamics of the initial cat state formed
from the right-localized quasi-SS for N = 25 and varying φ. In all
cases, we take θ = 1, symmetrically normalize the MBs, and set
J = 2, � = 0.5, and κ = 0.3.

do not sustain a state of odd parity explicitly, we do, in fact,
sustain an even mixture between even and odd parity sectors,
for a transient that grows linearly with system size.

In sharp contrast, if 	α = 	αR(θ, 0), the parity dynamics are
much more well behaved. The exponentially small norms of
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	αR(θ, 0) ensure that for sufficiently large N ,

lim
N→∞

〈P〉φ,	αR
(t ) =

{
1 φ �= π,

1 − 2e−2κt φ = π.

Accordingly, unless φ = π , the parity approaches 1 for all t
as N increases. Moreover, when φ = π , the parity is indistin-
guishable from 1 − e−2κt for sufficiently large N . Regardless,
unlike their left-localized partners, these right-localized cat
states fail to support any semblance of an odd-parity state for
any meaningful amount of time.

VI. TOPOLOGICAL DYNAMICAL METASTABILITY
IN NUMBER-SYMMETRIC QBLs

A. Dirac edge bosons: General properties

The topological modes in all the model systems of Sec. V
bear the closest resemblance to the Majorana fermions of
topological superconductivity. Thus, one could suspect that
our analysis may fail to produce topological modes analogous
to the ones hosted by topological insulators. To see why this
is false, we consider QBLs with number symmetry to provide
the natural dissipative-bosonic analogues of insulators.

Number-symmetric QBLs possess a weak U(1) symmetry
of the form a j �→ eiφa j , generated by the total number oper-
ator

∑
j a†

j a j . The corresponding Bogoliubov transformation
is � �→ eiτ3θ�. Thus, number symmetry implies [G, τ3] = 0,
and the dynamical matrix may be written as

G = K ⊗
[

1 0
0 0

]
+ (−K∗) ⊗

[
0 0
0 1

]
, (50)

with K an arbitrary N × N complex matrix. Just as the spectra
of G is determined by that of K, so is the pseudospectra. In
particular, if the system is topologically metastable, both G
and K possess approximate kernel vectors.

To be more concrete, let us suppose the system is topologi-
cally metastable. This affords us at least one MB pair (γ z

1 , γ s
1 ).

Expanding in the bosonic basis yields

γ z
1 =

N∑
j=1

(u∗
j a j + u ja

†
j ), γ s

1 =
N∑

j=1

(v∗
j a j + v ja

†
j ),

where u j and v j are related to the Nambu vectors via 	γ z
1 =

[u1,−u∗
1, . . . , uN ,−u∗

N ]T , 	γ s
1 = [v1,−v∗

1 , . . . , vN ,−v∗
N ]T .

The HWRs imply that Im
∑N

j=1 u∗
jv j = 1/2, since

i = [
γ z

1 , γ s
1

] =
N∑

j=1

(u∗
jv j − v∗

j u j ) = 2i Im
N∑

j=1

u∗
jv j .

Number symmetry additionally implies that an approximate
(or exact) ZM or SG remains so after a phase rotation aj �→
eiφa j . In particular, we may rotate each of our MBs to con-
struct a second, linearly independent MB pair. Specifically, if
we fix φ = π/2, then we immediately find another linearly
independent MB pair given by

γ z
2 = i

N∑
j=1

(u∗
j a j − u ja

†
j ), γ s

2 = i
N∑

j=1

(v∗
j a j − v ja

†
j ).

We have not yet encountered anything resembling the edge
modes of topological insulators. For that, we need to utilize
both MB pairs. Explicitly, consider the operators

α ≡ 1

2
√

Cz

(
γ z

1 − iγ z
2

) = 1√
Cz

N∑
j=1

u∗
j a j,

β ≡ 1

2
√

Cs

(
γ s

1 − iγ s
2

) = 1√
Cs

N∑
j=1

v∗
j a j,

where Cz = ∑
j |u j |2 and Cs = ∑

j |v j |2 are positive real
numbers chosen to ensure that the Dirac boson modes α and
β satisfy the following properties:

(i) They are bosonic, [α, α†] = [β, β†] = 1F .
(ii) They are algebraically related via [α, β] = 0 and

[α, β†] �= 0.
(iii) They are edge localized according to the localization

of the constituent MBs.
(iv) The bosonic mode α is approximately conserved,

while the real and imaginary quadratures of β generate two
(noncommuting) approximate symmetries.

Algebraically speaking, we have constructed edge modes
on which the number symmetry acts trivially. The necessary
and sufficient ingredients for this construction are topological
metastability and number symmetry, and so it applies broadly.

The normalization of these operators is far more straight-
forward than in the number nonsymmetric case. To see this,
consider a left-localized, approximately conserved, bosonic
operator α, i.e.,

α = M(N )
N∑

j=1

δ j−1a j, |δ| < 1. (51)

Taking δ > 0 without loss of generality, canonical commuta-
tion relations require

M(N ) =
√

1 − δ2

1 − δ2N
, (52)

which, unlike in the case of the MBs, converges to a finite
value as N → ∞. Namely, limN→∞ M(N ) = √

1 − δ2. With
this, the exact ZM in the N → ∞ limit is

α =
√

1 − δ2
∞∑
j=1

δ j−1a j .

While, in general, the exact expression for α (and, similarly,
β) could be more complicated than Eq. (51), this argument
demonstrates the unambiguous normalizability of the modes
in the infinite-size limit.

It is interesting to ask whether a number-symmetric ana-
log to the PDMC may exist, namely, a purely dissipative,
number-symmetric chain that exhibits dynamical metastabil-
ity. In the purely dissipative case, we have G = −iτ3F (M),
and the number symmetry property [G, τ3] = 0 manifests as
[F (M), τ3] = 0. Thus, G† = (−iτ3F (M))† = iτ3F (M) =
−G. That is, a purely dissipative number-symmetric chain
must have an anti-Hermitian (therefore, normal) dynamical
matrix G. We conclude that no such model can exhibit dy-
namical metastability.
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B. A number-symmetric dissipative chain

Let us explore the interplay between number symmetry
and topological metastability in a concrete example. The dy-
namical matrix of a number-symmetric QBL has the general
form Eq. (50), where K an arbitrary N × N complex matrix.
Topological metastability can then be engineered through an
appropriate choice of K. Specifically, let us consider

K = −iκ1N + JLS + JRS†, (53)

with κ � 0, JL, JR ∈ R, and S the usual BC-dependent shift
operator. We identify this matrix as that of the Hatano-Nelson
(HN) asymmetric hopping model [87], with an identity shift
that will ultimately serve to stabilize the QBL. For conve-
nience, we define J± ≡ (JL ± JR)/2. The Hamiltonian can be
unambiguously determined from G and is given by

HNS = J+
2

N∑
j=1

(a†
j a j+1 + a†

j+1a j ).

Per usual, the QBL is not fully determined until we spec-
ify B(M). Moreover, the second necessary condition for
the U(1) symmetry is that τ3B(M) commutes with τ3.
Together, [G, τ3] = 0 and [τ3B(M), τ3] = 0 are necessary
and sufficient for the requisite U(1) symmetry. We specify
B(M) implicitly, by defining the dissipator DNS ≡ D−,0 +
D+,0+D−,1, with

D−,0 = 2κ−
N∑

j=1

D[a j],

D+,0 = 2κ+
N∑

j=1

D[a†
j ],

D−,1 = 2iJ−
N∑

j=1

D[a j, a†
j+1] − D[a j+1, a†

j ].

Here, 2κ− � 0 and 2κ+ � 0 are the on-site loss and gain rates,
respectively, while 2J− takes the role of the NN loss rate. The
GKLS matrix is positive-semidefinite for OBCs and PBCs,
and for all N , if κ− � 2|J−|. This QBL has a dynamical matrix
specified by Eq. (53) if we further identify κ ≡ κ− − κ+.
We refer to this model as the dissipative number-symmetric
(DNS) chain. The SS behavior of a related model has been
considered in Ref. [88].

The rapidities can be easily obtained from the well-known
HN spectrum, and closely resemble that of the DBKC. For
BIBCs, the bands are given by {λ(k), λ(k)∗}, with

λ(k) = −κ + 2J− sin(k) + i2J+ cos(k).

These bands trace out an ellipse centered at −κ in the com-
plex plane. Winding about the origin requires 2|J−| > κ . For
(finite-size) OBCs, the eigenvalues are given by λm, m =
0, . . . , 2N − 1, where

λm = −κ + 2i
√

J2+ − J2− cos

(
mπ

N + 1

)
.

To simplify the discussion (and fix the OBC Lindblad gap
�L = κ , for all N), we focus on |J+| � |J−|. Combining

FIG. 7. The stability phase diagram for the DNS under OBCs
with |J+| > |J−| under OBCs. The “Ill defined” region corresponds
to the parameter regime where M is no longer positive semidefinite.

the GKLS-matrix positivity condition and the rapidity band-
winding condition, we identify a topologically metastable
regime whenever κ−/|J−| � 2 and 0 � κ/|J−| � 2. The OBC
stability phase diagram is shown in Fig. 7.

In the special case JR = 0, the pseudoeigenvectors of
K (and K†) with zero pseudoeigenvalue may be computed
analytically. Such pseudoeigenvectors can be used to build ap-
proximate kernel vectors of G and G̃ = G†, which correspond
to approximate SGs and ZMs, respectively. Specifically, con-
sider the bosonic modes

α ≡ M(N )
N∑

j=1

(iδ)N− ja j, β ≡ M(N )
N∑

j=1

(−iδ) j−1a j,

where δ ≡ −κ/2J− and M(N ) is given in Eq. (52). First, we
have [α, α†] = [β, β†] = 1F and [α, β] = 0. Second, these
operators satisfy

L�(α) = −κM(N ) (−iδ)N−1a1, (54)

L�([β, A]) − [β,L�(A)] = −κM(N ) (iδ)N−1[aN , A], ∀A.

(55)

Utilizing L�(A†) = [L�(A)]† yields similar expressions for α†

and β†. For |δ| < 1, the right-hand side of each equation goes
to zero as N → ∞. Physically, this means α is a bosonic
approximate ZM while the real and imaginary quadratures of
β generate approximate symmetries. That is, α and β are DBs.

We may trace these two bosonic modes back to two pairs
of MBs using Eqs. (51). Specifically, we have

γ z
1 = Mz(N )

N∑
j=1

((iδ)N− ja j + (−iδ)N− ja†
j ),

γ s
1 = Ms(N )

N∑
j=1

((−iδ) j−1a j + (iδ) j−1a†
j ),
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γ z
2 = iMz(N )

N∑
j=1

((iδ)N− ja j − (−iδ)N− ja†
j ),

γ s
2 = iMs(N )

N∑
j=1

((−iδ) j−1a j − (iδ) j−1a†
j ),

for normalization constants Mz(N ) and Ms(N ) chosen to
ensure that [γ z

j , γ
s
j ] = i1F for j = 1, 2. The relevant equa-

tions of motion follow from Eqs. (54) and (55), that is,

L�
(
γ z

1

) = −κMz(N )δN−1QL,

L�
(
γ z

2

) = κMz(N )δN−1PL,

L�
([

γ s
1 , A

]) − [
γ s

1 ,L�(A)
] = −κMs(N )δN−1[QR, A],

L�
([

γ s
2 , A

]) − [
γ s

2 ,L�(A)
] = κMs(N )δN−1[PR, A],

with QL ≡ χ∗
N a1 + χN a†

j , PL ≡ −i(χ∗
N a1 − χN a†

1), QR ≡
χN aN + χ∗

N a†
N , PR ≡ −i(χN aN − χ∗

N a†
N ), and χN ≡ iN−1. Fol-

lowing the discussion of Sec. V A, there exists normalization
schemes ensuring that the right-hand sides of these four equa-
tions vanish as N → ∞, while keeping each pair canonically
conjugate (for instance, the symmetric normalization scheme
we have previously employed).

We remark that these pairs of MBs are not simply
the real and imaginary quadratures of α and β, i.e., the
operators xα ≡ (α + α†)/

√
2, pα ≡ i(α − α†)/

√
2 (and sim-

ilarly for β). Instead, the MBs are proportional to these
quadratures, according to the expressions above. The system-
size-dependent proportionality constants are key to ensuring
that the macroscopically separated pairs (γ z

1 , γ s
1 ) and (γ z

2 , γ s
2 )

are canonically conjugate. We further remark that each edge
supports two Noether modes of the same type: The left edge
supports two SGs, whereas the right edge supports two ZMs.
This is to be contrasted with the previous models, which all
featured at most one of each type on each edge. A similar
phenomena is uncovered in a model without the additional
constraint of number symmetry in Appendix D.

VII. OBSERVABLE SIGNATURES
OF TOPOLOGICAL METASTABILITY

Just like spatial, equal-time correlation functions of
physical observables play a central role in characterizing
equilibrium phases of matter and phase transitions, multitime
correlation functions provide an essential tool for probing
dynamical response properties of many-body systems away
from equilibrium [89,90]. In particular, standard material
characterization techniques ranging from neutron scattering
to reflectivity and photoemission spectroscopy rely on ac-
cess to two-time correlation functions of the form 〈A(t )B(t ′)〉
[91,92]; likewise, in the context of quantum optics, statistical
properties of the photon field are directly related to first- and
second-order coherence functions, g(1)

i j (t, t ′) ∝ 〈a†
i (t )a j (t ′)〉,

and g(2)
i j (t, t ′) ∝ 〈a†

i (t )a†
j (t

′)ai(t ′)a j (t )〉, which can be inferred
through photon counting and quantum interference experi-
ments [58,93].

Two-time correlation functions have been suggested as a
means for operationally characterizing multistep relaxation
dynamics in Markovian quantum systems [33,34]. Since, for

the QBL systems we are interested in, dynamical metastability
is inherently a transient phenomena, it is natural to expect that
they may also serve as an experimentally accessible diagnostic
tool, in principle. As we will show next, it is indeed possible
to identify response functions whose behavior can not only
distinguish topologically trivial from nontrivial dynamical
metastability but, in the nontrivial case, further provide dis-
tinctive signatures of the different types of topological bosonic
edge modes the system may host.

A. Two-time correlation functions and power spectra

Since systems in equilibrium are time-translation invariant,
any two-time response function can only depend upon the
relative time, say, τ ≡ t ′ − t . In nonequilibrium situations, in
contrast, the full dependence on both t and τ becomes impor-
tant in general. For Markovian dynamics, two-time averages
may be computed under the assumption that the quantum
regression theorem (QRT) holds [58]. Specifically, given two
operators A and B and a state ρ, their two-point correlation
function may then be expressed as

C+
A,B(t, τ ) ≡ 〈A(t + τ )B(t )〉 QRT= tr{A(0)eτL[B(0)ρ(t )]}

= tr[A(τ )B(0)ρ(t )], t, τ � 0,

where A(τ ) = eτL�

(A) and ρ(t ) = etL(ρ) and the superscript
+ signifies that B is measured first. In this way, under the same
assumptions, we also have

C−
A,B(t, τ ) ≡ 〈A(t )B(t + τ )〉 QRT= tr[A(0)B(τ )ρ(t )]

= [C+
B,A(t, τ )]∗, t, τ � 0.

In the case of a unique SS ρss, we consider the SS two-
time correlation functions limt→∞ C±

A,B(t, τ ), which we can
express compactly as

Css
A,B(τ ) =

{
tr[A(τ )B(0)ρss], τ � 0,

tr[A(0)B(|τ |)ρss], τ < 0.
(56)

As it may be more practically significant in certain situations,
we additionally define the (two-sided) SS power spectrum

Sss
A,B(ω) =

∫ ∞

−∞
eiωτCss

A,B(τ ) dτ.

Long-lived correlations are then revealed through large
power-spectral peaks at zero frequency. To more appropriately
captures the relative decay of correlations, we define the nor-
malized correlation functions and power spectra [94],

C̃ss
A,B(τ ) ≡ Css

A,B(τ )

Css
A,B(0)

, S̃ss
A,B(ω) ≡ Sss

A,B(ω)

Css
A,B(0)

. (57)

For QBLs, we will primarily focus on the case where A and

B are linear forms, i.e., A = 	̂α and B = 	̂β†, with 	α, 	β ∈ C2N .
In this case, the unnormalized SS correlation functions and
power spectra take on a simple closed form,

Css
α,β† (τ ) =

{
	α†τ3e−iGτ Qssτ3 	β τ � 0,

	α†τ3QsseiG†ττ3 	β τ < 0,

Sss
α,β† (ω) = 	ατ3[χ(ω)Qss + Qssχ

†(ω)]τ3 	β,
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in terms of a susceptibility matrix [44,46]

χ(ω) ≡ i(ω12N − G)−1.

Mathematically, χ(ω) is resolvent of −iG evaluated at −iω.
The restriction to linear forms further yields a state-

independent notion of correlation functions. Note that

α(τ )β†(0) = 1
2 {α(τ ), β†(0)} + 1

2 [α(τ ), β†(0)]

= 1
2 {α(τ ), β†(0)} + 1

2 	α†e−iG̃†ττ3 	β 1F .

Since quantum states have unit trace, we have

C+
α,β† (t, τ ) = C+,cl

α,β† (t, τ ) + 1
2 	α†e−iG̃†ττ3 	β,

where C+,cl
α,β† (t, τ ) = 1

2 tr[{α(τ ), β†(0)}ρ(t )] is the classical
(symmetrized) correlation function. We identify the quantum
(antisymmetrized) correlation functions as

C+,qu
α,β† (τ ) = 1

2 	α†e−iG̃†ττ3 	β,

whose state- and t independence follows from the state in-
dependent nature of 〈[α(τ ), β†(0)]〉 when α and β are linear
forms. We define C−,cl

α,β† (t, τ ) and C−,qu
α,β† (τ ) analogously. In the

case where α and β are observables (self-adjoint), we have

iImC±
α,β† (t, τ ) = C±,qu

α,β† (τ ), ∀t,

which directly relates the quantum correlation function to the
imaginary part of the full one, independently of the state.
Similar to Eq. (56), we can drop the ± by defining

Cqu
α,β† (τ ) ≡

{
C+,qu

α,β† (τ ) τ � 0,

C−,qu
α,β† (|τ |) τ < 0,

The corresponding frequency-space quantum power spectrum
may be defined and expressed as

Squ
α,β† (ω) =

∫ ∞

−∞
eiωτCqu

α,β† (τ ) dτ

= 	α†
(
τ3χ(ω) + χ†(ω)τ3

)	β,

which is, again, a state-independent quantity.

B. Distinguishing topologically nontrivial from trivial
dynamical metastability

Dynamically metastable systems can be either topolog-
ically trivial or nontrivial. Starting from the susceptibility
matrix, one can predict certain properties of the SS power
spectrum that can distinguish the two regimes. We will focus
on the normalized power spectra [Eq. (57)] in order to capture
the relative behavior of correlations. This eliminates the influ-
ence of exponentially large steady-state second moments Qss

(e.g., occupation numbers) that may arise in systems display-
ing transient amplification.

Let χN (ω) denote the susceptibility matrix/resolvent of
the dynamical matrix −iGN for an open chain of length N .
On the one hand, if the chain is anomalously relaxing, then
necessarily χN (ω) is bounded (in norm) for all ω. The reason
is that the rapidity bands of anomalously relaxing systems are
strictly bound to the left-half of the complex plane and so
−iω is not in the SIBC spectrum. Thus, we have a system-
size independent upper bound on ‖χN (ω)‖. On the other

hand, if the chain is dynamically metastable, then there is
necessarily a subset of the imaginary axis contained within
the SIBC rapidity spectrum. Equivalently, there are intervals
on the imaginary axis about which the rapidity bands wind.
Ultimately, the restriction of χN (ω) to these intervals will
necessarily grow without bound as N → ∞. Since topological
metastability is characterized by the presence of zero in these
nontrivial intervals, we conjecture that it generically elicits a
peak of the power spectrum at zero frequency, which grows
without bound with system size. There should be no such
peak in a dynamically metastable system that is topologically
trivial.

The distinctive behavior of χN (ω) in these regimes is ex-
emplified in Fig. 8. In (a), the 2-norm of the susceptibility
matrix converges for all values of ω considered. In (b) and
(c), we see a divergence of the norm at frequencies ω such that
iω is contained in the nontrivial interior of the rapidity bands.
The zero-frequency behavior of ‖χN (ω)‖2 is shown in (d). In
particular, the topological regime is distinguished from both
the nontopological dynamically metastable regime and the
anomalously relaxing regime by an exponential divergence in
system size. We will further see that this manifests directly in
certain quantum power spectra.

1. Signatures of Majorana edge bosons

Within the class of topological metastable QBLs with
no U(1) symmetry, models may be distinguished based on
whether their MBs are split or nonsplit. Let (γ z, γ s) denote
a split MB pair whose constituent modes satisfy [γ z, γ s] = i
and are localized on opposite sides of a chain. During the
transient timescale (t < tN , for some tN increasing with sys-
tem size N), we have γ z(t ) � γ z(0). However, because the
MBs are split, γ s(t ) deviates significantly from γ s(0) over the
same timescale. Consider the associated correlation function
Css

γ z,γ s (τ ), obtained from Eq. (56). Firstly, we note that canon-
ical commutation implies the existence of nonzero equal-time
quantum correlations, at τ = 0. Explicitly, Cqu

γ z,γ s (0) = i/2.
Remarkably, this persists in spite of the macroscopic spatial
separation of the two modes.

However, nonsplit MBs satisfy the same identity. To dis-
tinguish between split and nonsplit pairs, it is necessary to go
beyond τ = 0. For 0 < τ < tN , we have

Css
γ z,γ s (τ ) = tr[γ z(τ )γ s(0)ρss]

� tr[γ z(0)γ s(0)ρss] = Css
γ z,γ s (0).

On the other hand, for τ < 0 we have

Css
γ z,γ s (τ ) = tr[γ z(0)γ s(|τ |)ρss] �� Css

γ z,γ s (0).

If instead the MBs were nonsplit, we would additionally
have γ s(t ) � γ s(0) for t < tN . So, Css

γ z,γ s (τ ) � Css
γ z,γ s (0).

Therefore, split and nonsplit MBs may be distinguished by
asymmetries in the associated steady-state correlation func-
tion around τ = 0, reflecting the fact that split MBs are
approximately stationary for 0 < τ < tN , whereas nonsplit
MBs are approximately stationary for −tN < τ < tN . Two
remarks are in order: (i) While we have treated the full steady-
state correlation function explicitly, the same conclusions hold
for both the classical and the (state-independent) quantum
contributions of the two-time correlation function. (ii) Per the
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FIG. 8. [(a)–(d)] The 2-norm of the DBKC’s OBC susceptibility matrix in the anomalously relaxing, topologically metastable, and
nontopological dynamically metastable regimes, respectively. Panels (a) and (b) correspond to the regimes whose rapidities are the open
and filled markers in Fig. 1(a), respectively. Panel (c) corresponds to the regime whose rapidities are shown in Fig. 1(b). Panel (d) shows the
zero-frequency susceptibility norm in the three aforementioned regimes. The dashed line is a linear fit.

properties of MBs, the stationarity of the correlation functions
in each case will become more pronounced as system size is
increased.

To exemplify the distinctions, we focus on the DBKC
and the PDMC as representative examples of these two
classes. Moreover, by leveraging the mapping described in
Appendix B 3 between these two models [Eq. (B2)] allows us
to directly compare topological phases. First, to distinguish
the two models, we relabel the quantities J , �, and μ in
the PDMC by JF , �F , and μF , respectively; then, we iden-
tify JF = �/2, �F = J/2, μF = −κ , and take μ = � = 0.
Let (γ c

L , γ s
R) and (γ s

L, γ z
R ) denote the (split) MB pairs of the

DBKC, and (γL, γR) the (nonsplit) MB pair of the PDMC.
The above parameter identification yields

γL = γ z
L , γR = γ s

R,

which may be directly verified in the case J = �. In par-
ticular, the second MB pair of the DBKC (γ s

L, γ z
R ) are not

approximate ZMs, nor Weyl SGs, in the PDMC. This has
several implications for certain two-time correlation func-
tions. Since the steady states of these two models may differ
in meaningful ways, we can directly compare the state-
independent quantum correlations of the MBs. Our general
analysis above predicts that the DBKC correlation function
Cqu

γ z
L ,γ s

R
(τ ) will be asymmetric about zero and increasingly

stationary in the positive τ direction as N increases. On the
contrary, the correlation function Cqu

γc,γR (τ ) for the PDMC
should be symmetric and increasingly stationary in both the
positive and negative τ direction as N increases. All of these
predictions are numerically verified in Fig. 9.

A further distinction between these two models is identified
by noting that the second MB pair in the BKC has no analog in
the PDMC. Explicitly, the operators γ s

L and γ z
R, when mapped

to the PDMC, are neither approximate ZMs nor Weyl SGs.
To distinguish which model we are working in, let γ s

L �→ χL

and γ z
R �→ χR denote the image of the BKC’s second MB

pair in the PDMC. As argued above, the correlation function
Cγ z

R,γ s
L
(τ ) will become more and more stationary for τ � 0

as N → ∞. On the contrary, no such argument applies to
CχR,χL (τ ) and so we generally expect exponentially decaying
correlations.

2. Signatures of Dirac edge bosons

We have thus far focused on observable signatures of MBs.
How, if at all, do the correlation signatures we identified above
change in the presence of number symmetry? That is, can
we detect the DBs of Sec. VI B? Consider the elementary
steady-state correlator Css

i, j (τ ) ≡ Css
�i,�

†
j
(τ ). This correlator is

elementary in the sense that any correlation function of linear
observables can be written as a linear combination of the
above,

Css
α,β† (τ ) =

∑
i, j

ci, j
α,β†C

ss
i, j (τ ),

with ci, j
α,β† determined by the coefficients of �i and �

†
j in the

definitions of α and β†. Explicitly, ci, j
α,β† = αiβ

∗
j , with αi and

β j elements of 	α and 	β.
Number symmetry ensures that L commutes with the

superoperator defined by the action ρ �→ eiθN̂ρe−iθN̂ , with

FIG. 9. (a) A MB correlation function for the DBKC. (b) A MB
correlation function for the PDMC. (c) A different MB correlation
function for the DBKC. (d) A correlation function for the same
operators in (c) but for the PDMC. In all cases, the modes are
normalized so that canonical commutation relations hold at τ = 0.
Note that γ z

L = γL , γ s
R = γR, γ z

R = χR, and γ s
L = χL at τ = 0, when

the parameter mapping discussed in the main text is applied.
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FIG. 10. Various quantum power spectra for the DNS chain
and the DBKC in their respective topologically metastable regimes.
The DNS shows exponential divergence of the zero-frequency peak
Squ

a†
1,aN

(0) (green circles) and the vanishing of the off-diagonal spectra

Squ

a†
1,a†

N

(black squares). To contrast, the DBKC exhibits exponential

growth of the off-diagonal spectra (black diamonds). The parameters
for the DNS are J+ = 1, J− = 0.25, and κ = 0.3, while J = 2, � =
0.5, μ = 0, κ = 0.3, and � = 0 for the DBKC. These choices ensure
an isospectral relationship between the two models. An exponential
fit is shown as a green dashed line while 0 is emphasized with a black
dashed line.

N̂ the total boson number operator and θ ∈ R. Combining
this with uniqueness of the steady state immediately yields
[ρss, N̂] = 0. This guarantees that the “off-diagonal” elemen-
tary correlators, i.e., correlators of the form 〈a†

i (τ )a†
j (0)〉

ss
and

their Hermitian conjugate counterparts, vanish. Mathemati-
cally, Css

i, j (τ ) = 0 for i � N < j and j � N < i. In fact, the
off-diagonal, state-independent quantum correlations always
vanish. This follows because number symmetry guarantees

ai(τ ) =
N∑

j=1

di j (τ )a j (0),

for some time-dependent coefficients di j (τ ) = 2Cqu
i, j (τ ). This

observation, combined with canonical commutation relations,
ensures that [ai(τ ), a j (0)] = 0, for all τ . The equivalent state-
ment in the quadrature basis is Cqu

x j ,pi (τ ) = Cqu
xi,p j (−τ ). Since

this restatement is in terms of correlations between observ-
ables, it is directly accessible in principle.

With this, we can characterize topologically metastable,
number-symmetric chains through the vanishing of their
off-diagonal two-time correlation functions, in conjunction
with long-lived correlations/divergent zero-frequency power-
spectral peaks. This behavior is reflected in Fig. 10. The
quantum power spectra Sa†

1,aN
(ω) display exponential diver-

gence at zero frequency in both the DNS chain and the DBKC.
However, the off-diagonal spectra Sa†

1,a
†
N

(0) are exactly zero
for the DNS chain and diverging exponentially for the DBKC.

VIII. CONCLUSIONS AND OUTLOOK

In this paper, we have uncovered several convincing sig-
natures of SPT-like physics in a class of quadratic bosonic
systems undergoing Markovian dissipation. In this sense, we
have progressed the search for SPT phases in free bosonic
systems by a great deal. The phenomenon of topologically
nontrivial dynamical metastability provides clear evidence

that SPT phases may be a transient, dynamical phenomena for
noninteracting bosons. Specifically, topologically metastable
systems (i) host pairs of edge modes that bear an extremely
close resemblance to the fermionic edge modes of topological
superconductors and insulators, in a sense we have made
mathematically precise and (ii) exhibit a sort-of “ground state
degeneracy” in the form of a manifold of Weyl-displaced
quasi-steady states. Remarkably, a key ingredient for topo-
logical metastability—namely, bulk instability—is explicitly
forbidden in quadratic fermionic systems. Utilizing various
techniques, we have produced and characterized several non-
trivial models that sample the expansive realm of possible
instances of topological metastability.

With a robust theory of topological metastability at our
fingertips, there are a number of natural directions for fu-
ture research. The most compelling next step is to address
the experimental accessibility of the phenomena we predict.
Potentially, there exists a number of promising proposals and
experimental implementations of related systems in cavity-
and circuit-QED platforms [23,32,95–106], microlasers and
ring resonators [107,108], optomechanical systems [109,110],
and vibronic lattices [15]. While most of the contributions en-
tering the driven-dissipative models we considered have been
individually realized, the dissipative hopping and the (coher-
ent and dissipative) bosonic pairing mechanisms are, arguably,
more exotic and challenging from a practical standpoint. No-
tably, Ref. [42] proposes a method for realizing dissipative
hopping, while realizations of both coherent and dissipative
pairing have been proposed via three-wave mixing with suit-
ably tuned couplings with auxiliary modes [111–114]. Once
a topologically metastable chain is successfully implemented,
the two-time correlation signatures we identified can, in prin-
ciple, be accessed via their connection to coherence functions.
While significant challenges are likely to arise, it is our hope
that the possibility of validating our predictions of tight ana-
logues of fermionic zero modes in free bosons will spur a
focused effort across the community.

Beyond experimental detection of topological metastabil-
ity, several outstanding theoretical questions are also well
worth of further investigation. One avenue involves extend-
ing the dynamical theory of metastability into the realm of
fermionic systems. While topological features of said systems
are fairly well understood, we believe that our pseudospectral-
based metastability framework can provide major utility in
explaining anomalous relaxation [36] and cutoff phenomena
[56], among other things. Specifically, while dynamically
metastable phases are explicitly forbidden in fermions (since
dynamical instabilities are [28,115]), anomalously relaxing
phases are not. Further exploration into the splitting of zero
modes and symmetry generators in fermionic systems are
also of interest. Still concerning bosons, addressing higher
dimensions is a major necessary extension of our framework.
For example, what is the dissipative bosonic analog of the
surface bands so prevalent in two-dimensional topological
insulators and superconductors, such as quantum Hall systems
or the p + ip superconductor? More pressingly, to what extent
are the signatures we have uncovered actual consequences
of a genuine (one-dimensional) SPT phase? That is, how
do many-body symmetries factor into the theory of topolog-
ical metastability and to what extent do transitions into a
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topological metastable regimes constitute genuine (dissipa-
tive) phase transition? This final question is particularly
interesting in light of recent paper [116], which appears to
exclude criticality for stable 1D QBLs. Moreover, answering
it would further elucidate precisely how closely the parallel
we are drawing between topologically metastable QBLs and
topologically nontrivial QFHs holds.

Finally, drawing analogy with Majorana-based quantum
computing proposals, it is natural to ask whether Majorana
bosons could find utility in the context of continuous-variable
quantum information processing. In particular, central to
quantum computation schemes employing Gottesman-Kitaev-
Preskill [117–119] is a pair of canonically conjugate quadra-
tures. From here, the Gottesman-Kitaev-Preskill code is built
from fixed displacement operators within the associated phase
space and the logical states are built from the (ideally)
infinitely squeezed eigenstates of these operators. In our topo-
logical metastability paradigm, we are provided with two
canonically conjugate quadratures that have an additional
nontrivial property: they can be macroscopically separated in
space. This fact, which arises due to their topological origin,
affords an extra degree of robustness that may prove beneficial
for such applications. Notably, in the nonsplit case, the MBs
generate (orthogonal) phase-space displacements that leaves
the overall dynamics invariant to an arbitrarily high degree
of precision (as set by the system size). We look forward to
address some of these questions in future studies.
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APPENDIX A: SYMMETRY-PROTECTED TOPOLOGICAL
PHASES OF FREE FERMIONS

Given their core relevance in motivating our paper, in
this Appendix we review the basics of SPT phases of
fermionic matter, with emphasis on the distinctive properties
that topological zero-energy edge states enjoy in topological
superconductor and insulator models.

Focusing on the most basic topological classification,
the tenfold way [2], there are four protecting many-body
symmetries (electron number, spin rotations, the physical
time-reversal operation for electrons, and a particle-hole
anti-unitary transformation that exchanges creation and anni-
hilation operators) and ten (out of sixteen) symmetry classes
that can be topologically nontrivial depending on the space
dimension. In any space dimension, five out of the ten classes
are topologically nontrivial. What changes with the dimension
is which ones are, and the change happens in a predictable,
periodic pattern.

Let us focus on the nontrivial classes in 1D. From the
point of view of the bulk, two classes break up into two dis-
connected components characterized by a topological Pfaffian
invariant in one case, and an invariant that mixes the Pfaffian
and the winding number in the other case; three other classes
break up into a countable infinite of components labeled by a
winding number. From the point of view of the edge, the Pfaf-
fian invariant is associated to a boundary invariant that counts
the number of Majorana ZMs per edge modulo two. This
is the class of the Majorana chain of Kitaev. The “mixture”
invariant is associated to a boundary invariant that counts the
number of Dirac ZMs per edge modulo two or, equivalently,
the number of pairs of Majorana modes per edge, modulo two.
And finally, the winding number invariant is associated to a
boundary invariant that counts the number of Dirac ZMs per
edge. Loosely speaking, a Dirac ZM is a fermionic degree of
freedom that is not Hermitian, that is, described by a creation
and conjugate annihilation pair of operators. In contrast, a
Majorana mode is a Hermitian fermionic degree of freedom.

The general picture is well captured by two models: The
Majorana chain of Kitaev [6] (FKC), and the mean-field
model of the electronic structure of trans-polyacetylene in-
troduced by Su, Schrieffer, and Heeger [5] (SSH). Let us
consider the Majorana chain first from the point of view of
the boundary. The model is characterized by the Hamiltonian

HFKC = −
N∑

j=1

μc†
j c j −

N−1∑
j=1

(Jc†
j c j+1 − �c†

j c
†
j+1 + H.c.),

with μ, J,� ∈ R. In the language of the previous paragraph,
there is one Dirac fermion per site. However, since the sym-
metry of fermion number is broken anyways, it is more natural
to analyze the model in terms of Majorana fermions γl , l =
1, . . . , 2N , such that 2c j ≡ γ2 j−1 + iγ2 j . In this language, the
Hamiltonian becomes (up to an additive constant)

HFKC = − μ

2

N∑
j=1

iγ2 j−1γ2 j

− J + �

2

N−1∑
j=1

iγ2 j−1γ2 j+2 − i
� − J

2

N−1∑
j=1

γ2 jγ2 j+1.

Looking individually at the three terms, the first term is
topologically trivial and the other two are nontrivial in the
sense that they support topologically mandated edge modes.
Whether their sum is trivial or not depends on the competition
among these three terms. Let us focus for concreteness on the
case J = �. Then, the model is nontrivial for |μ| < |2J| and
trivial otherwise. The lines |μ| = |2J| are critical.

Let δ = μ/2J . In the nontrivial regime, |δ| < 1 and the
operators

γL ≡ M(N )
N∑

j=1

δ j−1γ2 j−1, γR ≡ M(N )
N∑

j=1

δN− jγ2 j,

are candidate edge ZMs because

i[HFKC, γL] = δNM(N )2J γ2N , (A1)

i[HFKC, γR] = δNM(N )2J γ1, (A2)
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may potentially vanish exponentially fast with N . However,
the normalization factor M(N ) depends on the size of the
chain and so its behavior must be ascertained. To determine
it, notice that

{γL, γR} = 0, γ 2
L = γ 2

R = M(N )2
N∑

j=1

δ2( j−1).

Hence, this pair of operators will satisfy the algebra of Majo-
rana fermions provided that

M(N )−1 =
√

1 − δ2(N−1)

1 − δ2
. (A3)

In particular, M(N ) is bounded as a function of system size
if |μ| < 2J . It follows that the commutators of Eqs. (A1) and
(A2) do indeed vanish exponentially fast in the size of the
system.

The two Majorana fermions at zero energy can be com-
bined to form a single Dirac fermion at the expense of locality.
The resulting Dirac fermion is very peculiar: it is neither
localized nor uniformly spread over the length of the chain.
The degeneracy of the ground energy level is two, depending
on whether this Dirac fermion is or not present in the ground
state. As a consequence, the fermion number operator is dis-
tributed over the odd or even integers only in one or the other
ground state: the two ground states differ by their fermionic
parity.

Let us consider next the SSH model. The Hamiltonian is

HSSH = t2
∑

σ

M∑
j=1

(c†
2 j−1,σ c2 j,σ + H.c.)

+ t1
∑

σ

M−1∑
j=1

(c†
2 j,σ c2 j+1,σ + H.c.).

Here, σ is the label associated to the spin degree of freedom of
the electron. This Hamiltonian belongs to the most symmetric
symmetry class, BDI. The structure of the edge is identical for
spin up and spin down electrons. Hence, let us relabel c2 j−1,σ

as a j and c2 j,σ as b j , write N for M/2, and focus on any one
spin direction. The Hamiltonian of interest is then

H = t2

N∑
j=1

(a†
j b j + H.c.) + t1

N−1∑
j=1

(b†
ja j+1 + H.c.).

This Hamiltonian is sometimes also called the Peierls model.
The first term is topologically trivial and the second one is
nontrivial, in the same sense as before. Their sum is nontrivial
if |t1| > |t2|. The line |t1| = |t2| is critical, as one expects from
the fact that it marks the transition from one topological phase
to another within a symmetry class.

Let δ = −t2/t1. In the nontrivial regime, δ < 1 and the
operator

aL = M(N )
N∑

j=1

δ j−1a j

and its Hermitian conjugate are candidate ZMs, because

[H, aL] = δNM(N )t1bN

may vanish exponentially fast as a function of the size of the
system. Let us confirm that the normalization factor M(N ) is
bounded as a function of N . Notice that

a2
L = a† 2

L = 0, {aL, a†
L} = M(N )2

N∑
j=1

δ2( j−1).

Hence, the pair aL, a†
L constitutes a Dirac ZM localized on the

left edge provided that M(N ) is given by Eq. (A3). A similar
calculation shows that the operator

bR = M(N )
N∑

j=1

δ j−1bN− j+1

and its Hermitian conjugate constitutes a Dirac ZM localized
on the right edge. Since, in addition,

{aL, bR} = 0, {aL, b†
R} = 0,

the left and right ZMs taken together are two Dirac fermions.
Hence, the degeneracy of the ground level is four. Notice that,
unlike the zero-energy Dirac fermions of the FKC, those of
the SSH chain are localized on the edges of the chain.

APPENDIX B: ADDITIONAL TECHNICAL RESULTS

1. Pseudospectra, singular values, and
the doubled-matrix approach

In this Appendix, we will recount the connection between
the 2-norm pseudospectra and singular values, and establish
the bridge to the so-called doubled-matrix approach utilized
prominently in topological amplification contexts [42,43].

Let s j (X), j = 1, . . . , n, denote the n singular values of
an n × n matrix X . If X is invertible, it is well known that
‖X−1‖2 = 1/smin(X) with smin(X) the minimal singular value
of X. Immediately we can see that the 2-norm ε pseudospec-
trum of a matrix X is precisely the set of complex numbers λ

such that smin(λ1 − X) < ε.
The doubled-matrix approach starts by defining the

“doubled-Hamiltonian”

X(ω) =
[

0 ω1 − X
ω1 − X† 0

]
,

with ω a real frequency and X typically taken to be the dynam-
ical matrix of interest. One may show that the built-in chiral
structure of X (ω) implies a ± symmetry of the spectrum,
and moreover the eigenvalues are precisely ±s j (ω1 − X).
Often, “midgap eigenvalues”, i.e., exponentially-small-in-N
eigenvalues sandwiched between the positive and negative
bulk bands, are of interest. Importantly, these correspond to
the minimal singular values of ω1n − X. In particular, if X(ω)
has an exponentially small midgap eigenvalue, then ω1 − X
has a vanishing minimal singular value indicating that ω exists
within the pseudospectrum of X at sufficiently large system
size. In short, if X(ω) has midgap eigenvalues, then ω is in the
pseudospectrum of X.
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2. A canonical correspondence between
approximate ZMs and SGs

Here, we prove that, under generic conditions, for each
approximate SG there is a canonically conjugate ZM, thereby
generalizing Theorem 1 to the approximate case.

Theorem 2. Given an arbitrary QBL with dynamical matrix
G, let γ s = 	̂γ s be an approximate symmetry generator of
accuracy ε (in the sense that 	γ s satisfies ‖G	γ s‖ < ε for some
ε > 0). Then, if the matrix G′ ≡ G − 	α 	γ s†/‖	γ z‖ hosts only
Jordan chains of length one at 0, there exists a canonically
conjugate approximate zero mode γ z = 	̂γ z of accuracy ε′ =
ε‖	γ z‖2. The converse holds as well.

Proof. We will assume that the approximate symmetry
generator is not exact. If it is, apply Theorem 1. By the
assumptions of the theorem, we have that G	γ s = 	α for some
vector 	α with ‖	α‖ < ε. Hermiticity of γ s implies that the
Nambu representation satisfies 	γ s = −τ1 	γ s∗. Using this, and
the fact that τ1G∗τ1 = −G, we have

τ1 	α∗ = τ1G∗ 	γ s∗ − Gτ1 	γ s∗ = G	γ s = 	α. (B1)

Now, consider the matrix G′ ≡ G − 	α 	γ s†/‖	γ s‖2. We claim
that G′ may be interpreted as a dynamical matrix of some
other QBL and that G′ 	γ s = 0. The first claim follows G′
obeys the only constraint set on dynamical matrices,

τ1G′∗τ1 = τ1G∗τ1 − τ1 	α∗ 	γ sT τ1

= −G − (τ1 	α)∗(τ1 	γ s∗)†

= −G + 	α 	γ s† = −G′,

where we have used Eq. (B1) in the third equality. The second
claim is verified directly

G′ 	γ s = G	γ z − 	α 	γ s† 	γ s

‖	γ s‖2
= 	α − 	α = 0.

Now, any QBL with dynamical matrix G′ has γ s as an
exact SG. We may then directly apply Theorem 1 to find
a canonically conjugate exact ZM γ z. In Nambu space, this
means there is a vector 	γ z = −τ1 	γ z∗ such that G̃′ 	γ z = 0, with

G̃′ = τ3G′†τ3 = G̃ − τ3 	γ s 	α†τ3,

and 	γ s†τ3 	γ z = i, so that [γ s, γ z] = i. It follows that

‖G̃	γ z‖ = ‖G̃′ 	γ z + τ3 	γ s 	α†τ3

‖	γ s‖2 	γ z‖

= 1

‖	γ s‖2
‖τ3 	γ s 	α†τ3 	γ z‖ = |	α†τ3 	γ z|

‖	γ s‖ .

Using the Cauchy-Schwarz inequality, we may upperbound
the numerator of the right-hand side by ‖	α‖‖	γ z‖ < ε‖	γ z‖.
Thus, ‖G̃	γ z‖ < ε‖	γ z‖/‖	γ s‖. An additional application of the
Cauchy-Schwarz inequality to the identity 	γ s†τ3 	γ z = i yields
1/‖	γ s‖ < ‖	γ z‖, so that

‖G̃	γ z‖ < ε‖	γ z‖2,

as claimed. The converse holds by simply replacing G with G̃
and 	γ s with 	γ z. �

We remark that canonically conjugate modes can always
be rescaled in a natural way to make the accuracies ε

and ε′ equal. Generally, if [γ s, γ z] = i, then [γ s′, γ z ′] = i,

with γ s′ = Mγ s and γ z ′ = γ z/M for any M > 0. Taking
M = ‖	γ z‖ provides approximate SGs and ZMs of accuracy
Mε. The most interesting examples are then those in which
ε � 1/M.

3. An isospectral mapping between the purely dissipative
and the dissipative bosonic Kitaev chains

Here, we establish an isospectral mapping between
the PDMC and the DBKC. Let GDBKC(κ, J,�) and
GPDC(μF , JF ,�F ) denote the dynamical matrices of the
DBKC and the PDMC under OBCs, respectively. Note that
we have distinguished the FKC hopping, pairing, and on-site
potential with a subscript F . Define the momentum-space
translation operator

�(δk) ≡ diag(e−iδk, . . . , e−iNδk ) ⊗ 12.

With this, one may verify that

�

(
π

2

)
GPDC

(
0,−J

2
,−�

2

)
�−1

(
π

2

)
= iGDBKC(0, J,�).

(B2)

That is, the dynamical matrices are unitarily equivalent up to
a phase when μF = κ = 0. In particular, the μF = 0 OBC
rapidity spectrum for the PDMC is equal to i times that of
the DBKC, with the identifications κ = 0, JF ↔ −J/2, and
�F ↔ −�/2. This allows us to establish Eq. (43) from the
known spectral properties of the DBKC [24].

4. On the numerical determination of Majorana bosons

In this Appendix, we present a procedure for numerically
computing MBs in topologically metastable QBLs. The basic
inputs are (i) a family of dynamical matrices GN , one for each
system size N , corresponding to a topologically metastable
QBL under OBCs; and (ii) a sufficiently small (in a sense to
be explained) accuracy parameter ε. This procedure outputs
pairs of canonically conjugate ε pseudoeigenvectors corre-
sponding to ε pseudoeigenvalue 0 for sufficiently large N
(to be explained). The pseudospectra considered are 2-norm
pseudospectra.

To begin, we define a positive-semidefinite matrix RN ≡
G†

N GN . The eigenvalues of R are the squares of the singular
values of GN . In the language of Appendix B 1, topologi-
cal metastability ensures that RN possesses a finite number
(say, m) of midgap modes, i.e., eigenvectors corresponding
to eigenvalues that decay to 0 as N increases. The remaining
2N − m eigenvalues are bounded below by a gap parameter
λgap. Fix 0 < ε < λ

1/2
gap and let N0 be the smallest N , such

that the m midgap eigenvalues are less than λgap. By con-
struction, the m normalized midgap eigenvectors, which we
will label 	u j , j = 1, . . . , m, will be ε pseudoeigenvectors of
GN corresponding to ε pseudoeigenvalue zero for all N > N0.
Explicitly, we have

‖GN 	u‖2 = (	u†RN 	u)1/2 = s j < ε,

with s j the singular value corresponding to 	u j . Equivalently,
s2

j = λ j the corresponding midgap eigenvalue of RN .
Despite being pseudoeigenvectors of GN , these need not

yet provide approximate SGs. In particular, they need not
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generate a Hermitian linear form. For this, we leverage
the property CGNC−1 = −GN . This implies CRNC−1 = RN .
Thus, if 	u j is an eigenvector of R, so is C	u j with the same
eigenvalues. In particular, the set {	u j} is invariant under C. If
C	u j = eiθ 	u j , then we can normalize to obtain a new vector

	γ s
j = −eiθ 	u j that defines a Hermitian approximate SG 	̂γ s

. If
there are degenerate singular values, then the restriction of
C to this subspace can be diagonalized to obtain a basis of
vectors 	γ s

j that each define Hermitian SGs.
Constructing the approximate ZMs follows analogously,

but with G replaced with G̃. Let {	γ s
j
′} and {	γ z

j
′} be the outputs

of these two procedures. It follows that canonical commuta-
tion relations can be ensured if the matrix F jk = 	γ s

j
′†τ3 	γ z

k
′ is

diagonalizable. In all examples considered in this paper, this
is the case.

APPENDIX C: THE TIME-EVOLUTION OF BOSONIC
PARITY IN A MARKOVIAN SYSTEM PREPARED

IN A CAT STATE

We present here the explicit calculation of the cat-state
parity dynamics under the pure SS DBKC. As we noted in
the main text, this model can be seen as a set of independent
damped quantum harmonic oscillators in the normal-mode
basis. This decoupling allows us to reduce the problem to that
of computing the parity dynamics of a single-mode cat-state
under damped harmonic motion. The multimode generaliza-
tion then follows naturally.

Let |α〉, α ∈ C, denote a single-mode coherent state
and define the single-mode cat state |Cφ (α)〉 ≡ Nφ (α)(|α〉 +
eiφ |−α〉), with Nφ (α) a normalization constant. We wish to
compute the expectation value of parity P = eiπa†a in the
time-evolved state ρα,φ (t ), resulting from the initial condition
ρ(0) = |Cφ (α)〉 〈Cφ (α)| under the QBL

L(ρ) = −i[ωa†a, ρ] + 2κ
(
aρa† − 1

2 {a†a, ρ}).
Here, ω is the oscillator frequency and κ is the damping
rate. We may compute ρα,φ (t ) exactly utilizing known results
[83,84]. We may write

ρα,φ (t ) = etL(ρα,φ (0))

= Nφ (α)2
(
σα (t ) + σ−α (t ) + eiφχα (t ) + e−iφχ−α (t )

)
,

where

σα (t ) ≡ etL(|α〉 〈α|), χα (t ) ≡ etL(|α〉 〈−α|).
The terms σ±α (t ) can be quoted directly as

σ±α (t ) = |±α(t )〉 〈±α(t )| , α(t ) = e−(κ+iω)tα(0).

The terms χ±α (t ) are slightly more complicated,

χα (t ) = D(t )

( ∞∑
k=0

(2e−κt sinh(κt ))k

k!
akχα (0)a†k

)
D(t )†,

with D(t ) ≡ e−(κ+iω)ta†a. Now,

akχα (0)a†k = αkχα (0)(−α∗)k = (−|α|2)kχα (0),

which leads us to

χα (t ) = exp[−2|α|2e−κt sinh(κt )] D(t )χα (0)D(t )†.

The remaining time-dependence may be computed as

D(t )χα (0)D(t )† =exp[−2|α|2e−κt sinh(κt )] |α(t )〉 〈−α(t )| .
Finally, we have

χα (t ) = exp[−4|α|2e−κt sinh(κt )] |α(t )〉 〈−α(t )|
≡ fα (t ) |α(t )〉 〈−α(t )| ,

with χ−α (t ) following accordingly.
With the exact time dependence of ρ(t ) computed, we can

now evaluate the expectation value of parity. A particularly
useful identity is P |α〉 = |−α〉. Using this, we can compute
Pα

1 (t ) = tr[Pσα (t )] and Pα
2 (t ) = tr[Pχα (t )] to obtain

〈P〉(t ) = Nφ (α)2
[
Pα

1 (t ) + P−α
1 (t ) + eiφPα

2 (t ) + e−iφP−α
2 (t )

]
.

Proceeding, we find

Pα
1 (t ) = tr[P |α(t )〉 〈α(t )|] = 〈α(t )| − α(t )〉

= exp(−2|α|2e−2κt ),

Pα
2 (t ) = fα (t )tr[P |α(t )〉 〈−α(t )|]

= fα (t ) 〈−α(t )| − α(t )〉
= fα (t ).

Putting this all together yields the single-mode evolution,

〈P〉(t ) = e−2|α|2 + cos(φ)e−2|α|2(1−e−2κt )

1 + cos(φ)e−2|α|2 ,

from which the multimode generalization given by Eq. (49) in
the main text follows.

APPENDIX D: A DISSIPATIVE DOUBLE-WINDING
BOSONIC CHAIN

It is natural to wonder to what degree we can control the
number of ZMs and SGs on each edge of a topologically
metastable chains. The properties of Toeplitz matrices ensure
that each band with a positive winding number yield a left-
localized ZM and a right-localized SG. Conversely, negative
winding numbers yield a right-localized ZM and left-localized
SGs. In all the examples discussed in the main text, the num-
ber of ZMs (SGs) on a particular edge has been either zero or
one. Surprisingly, we can write down a range-one model with
a single internal degree of freedom that has two ZMs (SGs) on
a particular edge. The Hamiltonian is given by

HDW = i

2

N∑
j=1

(
�ha†

j a
†
j+1 + μa†

j
2 − H.c.

)
,

with the usual BC conventions. Here, �h, μ ∈ R denote
the nondegenerate and degenerate parametric amplification
strength, respectively. The dissipator consists of three distinct
contributions DDW ≡ D−,0 + D+,0 + Dp,1. Explicitly,

D−,0 = 2κ−
N∑

j=1

D[a j, a†
j ], D+,0 = 2κ+

N∑
j=1

D[a†
j , a j],

Dp,1 = �d

2

N∑
j=1

D[a†
j , a†

j+1] − D[a†
j+1, a†

j ] − (a†
j ↔ a j ).
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In words, we have uniform on-site loss with strength κ− � 0,
uniform on-site gain with strength κ+ � 0, and NN inco-
herent pairing with strength �d . Positivity is the associated
GKLS matrix demands that 4κ+κ− � �2

d . For simplicity, we
additionally take �d � �h � 0. If 2κ± � �d , we can write a
simple diagonal representation,

DDW = (2κ− − �d )
N∑

j=1

D[a j] + (2κ+ − �d )
N∑

j=1

D[a†
j ]

+ �d

2

N∑
j=1

D[a j − a†
j+1] + �d

2

N∑
j=1

D[a j + a†
j+1].

The symbol of the dynamical matrix is given by
−igDW(k) = −κ12 + (μ + �h cos(k) + i�d sin(k))σ1 with
κ ≡ κ− − κ+. The rapidity bands are

λ±(k) = −κ ± (μ + �h cos(k) + i�d sin(k)).

The winding numbers ν± of the bands λ±(k) are given by

ν± =
{

1 −1 < κ̃ ∓ μ̃ < 1,

0 otherwise,

with κ̃ ≡ κ/�h and μ̃ ≡ μ/�h. By tuning κ̃ and μ̃ it is
possible to obtain a total winding ν+ + ν− equal to 0, 1,
or 2.
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