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The entanglement dynamics in a non-Hermitian quantum system is studied numerically and analyzed from the
viewpoint of quasiparticle picture. As a concrete model, we consider a one-dimensional tight-binding model with
asymmetric hopping (Hatano-Nelson model) under onsite disorder and nearest-neighbor interaction. As opposed
to an assertion of previous studies, the entanglement dynamics in this non-Hermitian quantum system is very
different from the one in its Hermitian counterpart, especially in the delocalized regime with weak disorder;
there the entanglement entropy Sent (t ) shows a characteristic nonmonotonic time evolution. We have clarified
and quantified the nature of this behavior in the quasiparticle picture. In the asymptotic regime of t → ∞,
the entanglement entropy Sent (t ) in this regime saturates to a much suppressed value, which increases only
logarithmically with respect to the size of the subsystem.

DOI: 10.1103/PhysRevB.108.214308

I. INTRODUCTION

The entanglement entropy Sent quantifies nonlocal corre-
lation between quasiparticles in a many-body quantum state,
such as the one in an EPR (Einstein-Podolsky-Rosen) pair
[1–6]. In the process of quantum thermalization [7–9] or re-
laxation [10–13], the so-called quasiparticle picture [14–18]
(Fig. 1) makes this point explicit. A pair of entangled quasi-
particles generated at t = 0 move apart, and as time passes
by, they are more likely found in a different subsystem [see
Fig. 1(a)]. This leads to an increase of the entanglement
entropy Sent [cf. its bipartite definition, Eq. (18)]. Correspond-
ingly, the reduced density matrix of the subsystem becomes a
mixed state [cf. Eq. (19)] [19,20].

In a system in which this quasiparticle picture is well
applicable, the entanglement entropy Sent is an extensive
quantity, obeying the volume law [21]: Sent ∝ V = Ld (L:
size, d: dimension of the system); and indeed serves a ther-
modynamic quantity, while there are cases in which Sent

obeys the area-law scaling Sent ∝ V = Ld−1. The latter in-
cludes the cases of nonunitary time evolution induced by
dissipation [22], projective measurements [23,24], and also
some parameter regime of a PT -symmetric system [25,26].
If one can manipulate a parameter of the system to drive
the system from one case to the other, the entanglement
entropy Sent is subject to a transition from volume- to
area-law scaling [23]. This transition, dubbed as the entangle-
ment transition, has been attracting much attention recently,
in theoretical [27–33], experimental [34,35], and numerical
contexts [36–38].

We consider, as a concrete example, the case of a many-
body Hatano-Nelson (HN) model [39–41]: a one-dimensional
tight-binding model with asymmetric (nonreciprocal)

hopping, which is specified by a parameter g. In dynamics,
due to the asymmetry in hopping, an initial wave packet does
not spread as in the Hermitian case, but rather slides in the
direction specified by the asymmetry of hopping (sign of g)
[42]. Such a unidirectional motion is robust against disorder
and suppresses wave packet spreading [43]. This peculiar
wave-packet dynamics leads to a remarkable nonmonotonic
time evolution of the entanglement entropy Sent (t ) [44]. In the
body of the paper, we provide an intuitive explanation on the
increase of Sent in the delocalized regime from the viewpoint
of the quasiparticle picture.

This work is also an outcome of a technical advancement
we have made in our numerics. Here, we have successfully
employed the Krylov subspace method [45] in our problem,
which has allowed us to deal with a system of larger size
than the previous studies, e.g., the one of our own [44].
This has been particularly helpful in the study of the scaling
property of Sent.

The paper is organized as follows. In Sec. II, we in-
troduce the HN model, the numerical conditions, and the
definition of entanglement entropy. In Sec. III, we system-
atically investigate the effect of disorder on the density
dynamics in the real and momentum spaces and entangle-
ment dynamics. In Sec. IV, we point out the difference
in the entanglement dynamics between the non-Hermitian
and Hermitian systems in the clean limit from the perspec-
tive of the quasiparticle picture. In Sec. V, we investigate
whether non-Hermiticity induces entanglement transition. In
Sec. VI, we examine various aspects of Sent, such as its scaling
behavior, the effect of interaction, and its relation to the corre-
lation function. Section VII is devoted to concluding remarks.
Some details are left in the Appendixes and Supplemental
Material [43].
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FIG. 1. Schematic illustration of the quasiparticle picture: (a) in
the Hermitian case, and (b) in the case of the Hatano-Nelson–type
asymmetric hopping model (non-Hermitian case).

II. MANY-BODY HATANO-NELSON MODEL

Let us first introduce our model, which is a many-
body extension of the so-called Hatano-Nelson (HN)
model [39–41] and reads as in the second quantization
representation

H = −
L−1∑
j=0

(�Lc†
j c j+1 + �Rc†

j+1c j ) +
L−1∑
j=0

(V n̂ j n̂ j+1 + Wjn̂ j ),

(1)

where c†
j (c j) is a fermionic creation (annihilation) operator of

a particle at site j, while n̂ j = c†
j c j is a number operator which

counts the number n j of such particles found at site j. Here,
we choose the boundary conditions to be periodic, i.e., cL =
c0 and c†

L = c†
0. The first two-terms represent the asymmetric

hopping, where the degree of nonreciprocity (asymmetry) is
specified by the parameter g:

�L = eg�0, �R = e−g�0. (2)

In the third term, V represents the strength of the nearest-
neighbor interparticle interaction, while in the last term, Wj

represents the depth of an onsite disorder potential at a site
j. Here, unlike in the original Hatano-Nelson model [39–41],
in which the random numbers Wj’s obey to a uniform dis-
tribution, we consider the case in which Wj represents a
quasiperiodic potential (cf. the Aubry-André model [46]):

Wj = W cos(2πα j + θ ), (3)

where α should be chosen to be an irrational number, e.g.,
α = (

√
5 − 1)/2. For α thus chosen, the quasiperiodic poten-

tial Wj mimics a random/disorder potential as the one in the
original Hatano-Nelson model, W represents the strength of
the disorder potential. If an average over different disorder
configurations is necessary, one can activate the parameter θ

in Eq. (3), and take the average over θ .
Although the original Hatano-Nelson model [case of V =

0 in Eq. (1)] has first appeared [39–41] as an effective model
describing the phenomenon of vortex (de)pinning, it is now
considered to be a prototypical non-Hermitian situation, and

readapted in a number of different works. The aspect of asym-
metric hopping g �= 0 leads (under the open boundary) to the
so-called non-Hermitian skin effect, and is much discussed in
the context of the idea of non-Hermitian topological insulator
[47–58]. The competition between the effect of asymmetric
hopping g �= 0 and that of the disorder potential W �= 0
leads to a typical delocalization-localization transition in this
non-Hermitian system, and the model is also much discussed
in this context [59–65]. If the localization length ξ is known
in the Hermitian limit, the localization transition is expected
to occur at g = ξ−1 in the corresponding non-Hermitian
model [39–41]. In a noninteracting system, either Hermitian
or non-Hermitian, ξ can be calculated by the transfer matrix
method [66–69]. In an interacting system, this is simply not
possible, while the study of the interacting Hatano-Nelson
model brings about some information on the many-body
localization length [44,70] since the asymmetric hopping
g can be interpreted (under the periodic boundary) as an
imaginary flux.1

A. Non-Hermitian many-particle dynamics

In the simulation of many-particle dynamics, we will typi-
cally consider the initial state

|�(0)〉 = |�(t = 0)〉 = |101010 . . . 〉, (4)

i.e., the one in the density wave form, or in the Néel form
in the spin language [71]. On the right-hand side of Eq. (4),
we have employed the computational basis |n1n2 . . . nL〉; n j =
0, 1 represents occupation of the jth site. At time t = 0, the
initial state (4) can be expressed as a superposition of eigen-
states as

|�(0)〉 =
∑

α

cα (0)|α〉, (5)

where |α〉 represents a many-body eigenstate of the Hamilto-
nian (1), i.e., H|α〉 = Eα|α〉. Note that the eigenenergy Eα is
generally complex. In Eq. (5), |α〉 represents a right eigenstate
corresponding to the eigenenergy Eα , which is generally not
identical to the Hermitian conjugate of the corresponding left
eigenstate 〈〈α|, where

〈〈α|H = Eα〈〈α|, (6)

or its conjugate

H†|α〉〉 = E∗
α |α〉〉, (7)

1Inserting a real flux � (Hermitian system) changes a localized
eigenstate ψ ( j, � = 0) ∼ exp(−| j|

ξ
) to ψ ( j, � �= 0) ∼ exp(−| j|

ξ
+

i� j). In contrast, inserting an imaginary flux ig (HN model) modifies
a localized eigenstate ψ ( j, g = 0) ∼ exp(−| j|

ξ
) to

ψ ( j, g �= 0) ∼ exp

(
− (1 − gξ )| j|

ξ

)
if j < 0,

ψ ( j, g �= 0) ∼ exp

(
− (1 + gξ )| j|

ξ

)
if j � 0.

One can easily observe that the delocalization transition is induced
by ig and occurs at g = ξ−1, from which we can determine the
localization length.
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or rather 〈〈α| �= |α〉†. To find the coefficients cα (0) in Eq. (5),
one actually needs to find such left eigenstates, i.e.,

cα (0) = 〈〈α|�(0)〉. (8)

Note that the left and right eigenstates satisfy the biorthogonal
condition [72]

〈〈α|β〉 = δα,β . (9)

We then let the state (5) evolve into �(t ), in principle, via
the Schrödinger equation

ih̄
∂

∂t
|�(t )〉 = H |�(t )〉, (10)

though, in practice, we let it evolve through a numerical recipe
outlined in the next subsection. In case of a unitary time
evolution driven by a Hermitian Hamiltonian, the weight of
each eigenstate |α〉 is unchanged in the time-evolved wave
packet |�(t )〉; if one expresses |�(t )〉 as a superposition of
eigenstates as in Eq. (5), or

|�(t )〉 =
∑

α

cα (t )|α〉, (11)

the magnitude of the coefficients

cα (t ) = cα (0)e−iEαt (12)

is conserved in the case of unitary time evolution driven
by a Hermitian Hamiltonian, i.e., in the course of time;
|cα (t )|2 are just constants or |cα (t )|2 = |cα (0)|2. Here, in the
case of nonunitary time evolution driven by a non-Hermitian
Hamiltonian, this is no longer the case; the coefficients
cα (t ) that appear in Eqs. (11) and (12) change constantly
their amplitudes in the time evolution. In such nonunitary
time evolution, the total probability 〈�(t )|�(t )〉 is a pri-
ori not conserved2due to postselection (see Appendix A).
In the actual numerical calculation, we renormalize |�(t )〉
as [42,44]

|�(t )〉 → |�̃(t )〉 = |�(t )〉√〈�(t )|�(t )〉 . (13)

Under this renormalization [justified physically, in
Appendix A, in the context of Lindblad/GKSL (Gorini-
Kossakowski-Sudarshan-Lindblad) dynamics [73,74]], the
total probability is conserved, but the relative importance of
cα (t ) in Eq. (11) with respect to other cα (t )’s can vary. In
the GKSL/quantum trajectory approach, the renormalization
factor (the denominator) in Eq. (13) appears naturally as a
result of the projection to null outcome; here, continuous
measurement and postselection is assumed (see Appendix A
for details).

Here, in the case of non-Hermitiannonunitary dynamics, a
remarkable fact is that as time passes by, contributions from

2In the Hermitian case, the total probability
∑

α |cα (t )|2(= 1) is,
of course, conserved. Here, in the non-Hermitian case, the quantity∑

α |cα (t )|2 itself does not have much meaning since 〈�(t )|�(t )〉 �=∑
α |cα (t )|2. If one expands 〈�(t )| into contributions from different

left eigenmodes as 〈�(t )| = ∑
α bα (t )〈〈α|, and uses the biorthogonal

relation (9), then one finds 〈�(t )|�(t )〉 = ∑
α bα (t )cα (t ).

those |α〉’s whose eigenenergy has a large positive imag-
inary part become dominant in the superposition of many
eigenstates |α〉 in Eq. (11); for

Im(Eα1 ) > Im(Eα2 ) > · · · , (14)

|cα1 (t )|2 � |cα2 (t )|2 � · · · , (15)

i.e., only the first few |α1〉, |α2〉, . . . become relevant in the su-
perposition (11) if |α1〉, |α2〉, . . . are labeled in the decreasing
order of Im(Eα ), and if the maximal Im(Eα1 ) is sufficiently
larger than the rest. If Im(Eα1 ) � Im(Eα2 ), in the end of
the time evolution (t → ∞), the wave packet |�(t )〉 will be
completely dominated by a single eigenstate |α1〉, i.e., apart
from an unimportant phase factor

lim
t→∞ |�̃(t )〉 ∼ |α1〉. (16)

Thus, in the non-Hermitian quantum dynamics, the nonunitar-
ity of the time evolution associated with the imaginary part of
the eigenenergy gives rise to collapse of the superpositionof an
initial wave packet (5). After a long enough nonunitary time
evolution, a generic initial state composed of many different
eigenstates tends to converge to a single (or to a few) eigen-
state(s).3

B. Numerical simulation

Simulating a many-body quantum system is challenging
since the size of the Hilbert space increases exponentially with
the increase of size L of the system. In a simulation of a Her-
mitian system using the exact diagonalization method, L = 18
may be a typical maximal size one can handle comfortably
in a present day computer performance. In a non-Hermitian
system, however, it is necessary to consider not only the
eigenenergy and right eigenvector, but also the left eigen-
vector. Consequently, most studies are limited to treating
system sizes up to L = 16 [44,61,62,71,75,76]. Confronted
with this numerical challenge, we have decided to employ the
Krylov subspace method. In order to make it compatible with
a non-Hermitian matrix, we have generated the orthonormal
Krylov subspace VM using the Arnoldi method instead of the
Lanczos method [45]. The Krylov subspace is given by KM =
span(|�(t )〉, H |�(t )〉, . . . , HM−1|�(t )〉). The time evolution
of quantum state is described by

|�(t + δt )〉 ∼ VMe−iδtH ′
V †

M |�(t )〉 = VMe−iδtH ′ |e1〉, (17)

where |e1〉 ≡ (1, 0, . . . , 0)T and H ′ = V †
MHVM . This allows

us to calculate |�(t + δt )〉 by dealing with matrix H ′ of size
M × M instead of diagonalizing the original Hamiltonian H ,
and eventually enables us to study a system of larger size than
those in the previous studies [44]. In the actual numerical cal-
culations, we choose δt = 10−2–2 × 10−1 and M = 10–25.

3Later we will encounter the case in which some largest
Im(Eα )’s are quasidegenerate: Im(Eα1 ) � Im(Eα2 ) � · · · , and con-
tribute equally to |�(t → ∞)〉. Such degeneracy in the imaginary
part becomes indeed relevant in the long-time dynamics of the non-
interacting case; see Secs. III and VI for details.
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C. Entanglement entropy: Definitions

In the study of many-body dynamics, we are not only
interested in how the density spreads but also how correlation
spreads in the system. To quantify the latter, we consider
the entanglement dynamics. The entanglement entropy is a
quantity to characterize the nonlocality of a quantum state,
which is often defined in the sense of bipartite entanglement
entropy:

Sent = −TrA[A log A], (18)

where

A = TrB[] (19)

is the reduced density matrix of the subsystem A; we have
divided the entire system (of size L) into two subsystems
A and B. In practice, such a division can be done using a
many-body basis ñ represented by a set of quantum numbers
ñ = {n1, n2, . . . , nL}, which can be divided into the two parts
as ñ = {ñA, ñB}, where ñA = {n1, n2, . . . , n�} spans the sub-
system A, while the remaining part ñB = {n�+1, n�+2, . . . , nL}
spans the subsystem B. � is the size of the subsystem A. In
this basis, a many-body state |�〉 may be represented as

|�〉 =
∑

ñ

ψñ|ñ〉 =
∑

ñA∈A,ñB∈B

ψñA,ñB |ñA〉|ñB〉. (20)

Using this, one can explicitly trace out the subsystem B from
the density matrix:

 = |�〉〈�| =
∑
ñ,ñ′

ψñψ
∗
ñ′ |ñ〉〈ñ′|, (21)

i.e., the reduced density matrix (19) becomes

A =
∑
ñ′′

B∈B

〈ñ′′
B||ñ′′

B〉

=
∑

ñA,ñ′
A∈A,ñB∈B

ψñA,ñBψ
∗
ñ′

A,ñB
|ñA〉〈ñ′

A|. (22)

Here, we consider the time evolution of a many-body density
matrix (t ) = |�̃(t )〉〈�̃(t )|, and the corresponding entan-
glement entropy Sent (t ). Additionally, three definitions of
Sent (and ) arise in the context of a non-Hermitian sys-
tem because the system has two eigenvectors, left and right
eigenvectors. In Appendix B, we provide further explanation
regarding these definitions and how they differ from one an-
other.

III. DENSITY AND ENTANGLEMENT DYNAMICS

In this section, we sketch the results of our numerical
simulation on the (many-particle) density and entanglement
dynamics. We focus on the many-body HN model with the
periodic boundary condition in this study, but it is an interest-
ing direction to study that with the open boundary condition,
where the skin effect that is an intrinsic nature of the nonrecip-
rocal hopping system appears. Based on previous studies, we
comment on how a skin effect affects entanglement dynamics
as well as density dynamics in Appendix C.

A. Density dynamics in real vs reciprocal spaces

Let us first focus on the time evolution of the density profile
in real space:

n j (t ) = 〈�(t )|c†
j c j |�(t )〉, (23)

where |�(t )〉 actually means |�̃(t )〉 in Eq. (13), but to simplify
the notation, here, we have omitted the tilde in |�̃(t )〉, and
we will omit it hereafter. Figure 2shows the time evolution of
nj (t ) for the initial density wave (DW) pattern (4) in the non-
interacting (V = 0) [first row, panels (i-a)–(i-d)], and in the
interacting (V = 2.0) [second row, panels (ii-a)–(ii-d)] cases.
In both cases the last panel [(i-d) and (ii-d)] represents the
Hermitian case g = 0 for comparison. Otherwise, g is chosen
as g = 0.5 (non-Hermitian). Different panels correspond to
the varying strength of disorder: W = 0.5 for panels (i-a) and
(ii-a), W = 3.0 for panels (i-b) and (ii-b), W = 5.0 for panels
(i-c), and W = 7.0 for (ii-c).

In the first column [delocalized phase, W = 0.5, panels
(i-a) and (ii-a)], the initial density wave pattern tends to be
lost in the time evolution, while in the Hermitian case (V = 0)
[first row, panel (i-d)], the initial spatial profile does not fade
but is replaced with a fast temporally oscillatory pattern4

which is a feature reminiscent of an integrable system in
which a perpetual motion on a regular ideal orbital is en-
sured by the existence of some integrals of motion (conserved
quantities). In the interacting case (V = 2) [second row, panel
(ii-d)], scatterings induced by the interparticle interaction mix
such regular ideal orbitals and wash out the perpetual motion.
After some relaxation time t1 ∼ 100 = 1 the spatial profile
becomes literally uniform. The second column [panels (i-b)
and (ii-b)] corresponds to the critical (crossover) regime so
that the initial density wave pattern remains at least for a
relatively long time. As far as these real-space features are
concerned, the time evolution of the density profile nj (t ) is not
so different from the Hermitian case [fourth column, panels
(i-d) and (ii-d)]. The third column [panels (i-c) and (ii-c)]
corresponds to the localized phase, where the initial density
wave pattern remains over time, effectively similar to the
localized phase in the Hermitian case.

Figure 3 shows time evolution of the density distribution:

nk (t ) = 〈�(t )|c†
kck|�(t )〉 (24)

in the reciprocal crystal-momentum space (k space), where

ck =
∑

j

c je
ik j . (25)

As in Fig. 2, it shows the evolution of nk (t ) both in the
noninteracting (V = 0) [first row, panels (i-a)–(i-d)] and in
the interacting (V = 2.0) [second row, panels (ii-a)–(ii-d)]
cases. In both cases the last panels (i-d) and (ii-d) represent
the Hermitian case g = 0 for comparison; otherwise, g = 0.5.
Different panels correspond to the varying strength of disor-
der: W = 0.5 for panels (i-a) and (ii-a), W = 3.0 for panels

4In the thermodynamic and clean limit, the evolution of 〈nj〉 ex-
hibits algebraic decay with oscillation and ultimately reaches the
homogeneous state. This tendency is consistent with the feature of
delocalization.
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FIG. 2. Time evolution of the spatial profile of the density nj (t ). The first row [(i-a)–(i-c)]: noninteracting case (V = 0), asymmetric
hopping (g = 0.5), and (i-d): V = 0, g = 0.0. The second row [(ii-a)-(ii-c)]: interacting case (V = 2), g = 0.5 and (ii-d): V = 2, g = 0.0. In
numerical calculation, for g �= 0 we carried out the evaluations with 80 (for V = 2) and 40 (for V = 0) samples. For the Hermitian case, we
used 80 samples.

(i-b) and (ii-b), W = 5.0 for panel (i-c), and W = 7.0 for
(ii-c).

First, unlike in the real space (Fig. 2) the time evolu-
tion of the density profile shows very different features in
the Hermitian [column (d)] and non-Hermitian [especially,
first two columns: (a) and (b)] cases. In these columns,
one can see that as time evolves, the density distribution
nk (t ) in the reciprocal space tends to converge to a cer-
tain asymptotic distribution, implying that in the regime of
sufficiently long time t � 1, the many-body wave packet
|�(t )〉 tends to approach to a single eigenstate |α1〉 as in
Eq. (16); in the noninteracting case (V = 0, e.g., in the
first row of Fig. 3) and also at W = 0|α1〉 will be given

as

|α1〉 =
(∏

k<0

c†
k

)
|0〉, (26)

implying a sharp Fermi-sea-like asymptotic density distribu-
tion n(∞)

k = nk (t → ∞) such that

n(∞)
k =

{
1 for k < 0,

0 for k > 0.
(27)

Such a density distribution nk (t ) localized in the crystal-
momentum space prevails in the regime of weak disorder
also in the case of weak interparticle interaction, e.g., case

FIG. 3. Evolution of the density profile in the crystal-momentum (k) space, i.e., nk (t ). Similarly to Fig. 2, the first row [(i-a)–(i-c)]:
noninteracting case (V = 0), asymmetric hopping (g = 0.5), and (i-d): V = 0, symmetric hopping (g = 0.0). The second row [(ii-a)–(ii-c)]:
interacting case (V = 2.0), g = 0.5, and (ii-d): V = 2.0, g = 0.0. We used the same wave functions as in Fig. 2.
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of Fig. 3(ii)(a). As W is increased, e.g., in Fig. 3(b) the dis-
tribution is smeared out, and a sharp signature as in Eq. (27)
becomes no longer visible. Note that in the crystal-momentum
space, both onsite potential Wj and the interparticle interaction
V are sources of scattering. V corresponds to two-particle
scattering process: two particles with wave number k and k′
exchange their momenta. These are all very different from the
Hermitian case [column 3(d)] where nk (t ) remains uniform
during the time evolution in the noninteracting case [panel
(i-d)], while in the second row [panel (ii-d)], nk (t ) evolves into
an equilibrium distribution, which is reminiscent of the one
realized in the thermodynamic limit [cf. eigenstate thermal-
ization hypothesis (ETH)]. Interparticle scatterings induced
by a finite V introduces (an effective form of) dissipation in
the system (i.e., in the eigenstate), bringing it to an effective
thermal equilibrium.

B. Entanglement dynamics

Figure 4 shows examples of entanglement dynamics at
various strength of disorder and in systems of different size.
The asymmetry in hopping is fixed at g = 0.5. Figure 4(a)
represents the noninteracting case (V = 0), while in Fig. 4(b)
a moderate strength of interparticle interaction (V = 2.0) is
assumed. In the insets of the two panels different curves
represent time evolution of the entanglement entropy Sent at
different strengths of disorder W but for a system of size fixed
at L = 18.

In the noninteracting case [Fig. 4(a)], the critical strength
of disorder Wc for the localization transition is Wc = 2eg �
3.297 . . . , so that (i) W = 0.5, 1.0, 2.0 correspond to the
regime of weak disorder and delocalized wave function, (ii)
W = 3 roughly corresponds to the critical disorder strength
Wc, therefore, may be classified into the critical regime, while
(iii) W = 4.0, 5.0 fall on regime of strong disorder and local-
ized wave functions.

In the interacting case, the corresponding values of W
in each regime depend on the strength of the interaction V
since, in principle, Wc depends on V . In case of Fig. 4(b),
i.e., at V = 2.0, the classification may be such that regime (i)
W = 0.5, 1.0, 2.0, regime (ii) W = 3.0, 4.0, 5.0, 6.0, regime
(iii) W = 7.0, 8.0. In the main panel, the size dependence
of the entanglement entropy is shown in each of the three
different regimes.

In the noninteracting case, in Fig. 4(a), the main panel,
after the initial growth t > 100–101, Sent (t ) tends to become
saturated: in regime (i) to a value �1.5, while in regime (ii)
this value is much enhanced, and in regime (iii) the saturated
value gets back to the ones comparable to those in regime
(i). Thus, as the strength W of disorder is varied (increased),
the saturated value of the entanglement entropy changes non-
monotonically; it is first enhanced by W , then suppressed.

In the interacting case [Fig. 4(b)], the behavior of Sent in
regime (i) is similar to the noninteracting case, while the be-
havior of Sent changes qualitatively in regimes (ii) and (iii). In
regime (ii), Sent (t ) is much enhanced in the intermediate time
range t ∼ 100–101, but tends to be suppressed afterwards t >

102; Sent (t ) shows a nonmonotonic growth in this regime. In
regime (iii) Sent (t ) continues to grow after the initial growth,
i.e., Sent (t ) ∼ log t at t � 100, behavior characteristic to the

FIG. 4. Entanglement dynamics in three different regimes of
disorder strength: delocalized, critical, and localized regimes. Size
dependence of the entanglement entropy is also shown. (a) Non-
interacting case: V = 0, (b) interacting case: V = 2. In numerical
calculation, we carried out evaluations for different system sizes us-
ing varying sample sizes for V = 2. We employed 100, 100, 100, 80,
and 40 samples for L = 12, 14, 16, 18, and 20, respectively. Simi-
larly, for V = 0, we used 100, 40, 40, 40, and 20 samples for L =
12, 14, 16, 18, and 20. We choose the length of subsystem � to
be � = L/2. In inset panels of (a), we conducted evaluations for
L = 18 with 80 samples (for Hermitian case) and 40 samples (for
non-Hermitian case). In inset panels of (b), we conducted evaluations
for L = 18 with 80 samples (for both Hermitian and non-Hermitian
cases).

many-body localized regime [77–81]. Thus, as the strength
W of disorder is varied (increased), the overall magnitude
of Sent (t ) in its dynamics is again nonmonotonic as in the
noninteracting case. This is quite a curious behavior if we
recall that in the Hermitian case many-body states become
less entangled with the increase of W [82,83]. Here, the many-
body states tend to become more entangled with the increase
of W , i.e., in the weakly disordered regime (i), while they
tend to become less entangled beyond a certain critical value
W > Wc [in regime (iii)]. Such nonmonotonic dependence on
W is a characteristic non-Hermitian feature. In the critical
regime [regime (ii)], on the other hand, another nonmonotonic
feature is emergent in the entanglement dynamics, i.e., the
nonmonotonic time evolution of the entanglement entropy
Sent (t ) in time.

A careful reader may notice on top of the above overall
feature that Sent exhibits also a rapid oscillation typically in
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the weakly disorder regime. The oscillation tends to damp in
the course of time in the interacting case [Fig. 4(b)], while it
remains in the noninteracting case [Fig. 4(a)]. The oscillation
is also conspicuous in the case of even number of particles
L/2 = 6, 8, 10, while less pronounced in the case of odd num-
ber of particles L/2 = 7, 9. We show, in Appendix D, that the
oscillation stems from a twofold degeneracy (in the imaginary
part) of the asymptotic state.

IV. QUASIPARTICLE PICTURE

The entanglement dynamics in a Hermitian system and in
(or close to) the clean limit (W = 0) is well described by the
quasiparticle picture. Here, we discuss, how the entanglement
dynamics in a non-Hermitian system we have sketched in the
previous section can or cannot be compatible with this picture.

The observed behavior of the density dynamics in the
crystal-momentum space introduced earlier (see Sec. III) is
directly relevant to the description of the quasiparticle picture.
In Fig. 3 and related descriptions, we have seen that 〈nk〉 is
almost uniform (〈nk〉 � 1

2 ) in the Hermitian case, while 〈nk〉
converges to 〈nk〉 = 1 for k < 0, and 〈nk〉 = 0 for k > 0 in the
non-Hermitian case. The two panels of Fig. 1 are in a sense
a pictorial representation of these contrasting behaviors, i.e.,
Fig. 1(a) corresponds to Fig. 3(i-d) (the Hermitian case) and
Fig. 1(b) corresponds to Fig. 3(i-a) [the non-Hermitian case
(close to the clean limit)].

A. GGE vs nonunitary dynamics

Let us focus on the clean and noninteracting limits (W = 0
and V = 0). First, in the Hermitian case, in this case, n̂k =
c†

kck is a conserved quantity [n̂k, H] = 0. In this integrable
system, the expectation value, such as 〈n̂k〉 = 〈�|n̂k|�〉, is
also expressed as a statistical average in the so-called gen-
eralized Gibbs ensemble (GGE) characterized by an infinite
number of Lagrange multipliers λk , each associated with the
conservation of nk (see Appendix E for details). To be explicit,
nk can be expressed as

〈n̂k〉 = 1

1 + eλk
, (28)

where for the density-wave-like initial state (4) all λk are equal
to 0 [84], i.e., 〈n̂k〉 = 1

2 . We have seen this in the density dy-
namics studied in Sec. III. In Fig. 3, in all the panels, the initial
and early time density distribution nk (t = 0) shows such a
uniform profile (〈n̂k〉 � 1

2 ), while in the first row, panel (i-d),
i.e., in the noninteracting (V = 0) and Hermitian (g = 0) case,
such an initial profile is maintained, though approximately,
due to a small but finite W = 0.5. Note that the (entangle-
ment) entropy associated with a generalized Gibbs ensemble
specified by the distribution (28) is given as (see Appendix E
for its derivation)

s(k) = −〈n̂k〉 log(〈n̂k〉) − (1 − 〈n̂k〉) log(1 − 〈n̂k〉). (29)

Note that this takes a maximal value log 2 at 〈n̂k〉 = 1
2

(λk = 0).
In the non-Hermitian case with Im(εk ) �= 0 (εk is a single-

particle eigenenergy), if we repeat the same argument leading

Numerical

Numericali l Eq. (31)

Eq. (31)

(a)

(b)

FIG. 5. Time-dependence of 〈n̂k〉: (a) 〈nk〉 versus t ime ×
| sin(k)| × sinh(g) with the various values of g, (b) 〈nk〉 (scatter
plot) and Eq. (31) (solid or dashed line) versus t ime. For panel (b),
g is fixed at g = 0.05. Numerical calculation is conducted by the
following parameter: L = 16, W = 0, and V = 0.

to Eq. (28), one is left with (see Appendix E)

〈n̂k〉 = 1

1 + eλk−2 Im(εk )t
, (30)

i.e., 〈n̂k〉 is no longer conserved in this case. Again, for the
initial DW-like pattern (4), all λk’s are to be set to 0 in Eq. (30).
Noticing that Im(εk ) > 0 for k < 0, Im(εk ) < 0 for k > 0, and
thus 〈n̂k〉 converges either to 0 (k > 0) or to 1 (k < 0). In
Fig. 5, we have plotted the calculated value of nk (t ) against
the scaling function

〈n̂k〉 = 1

1 + e−2 Im(ε̃k )t
, (31)

where ε̃k = 2εk . Figure 5 shows that the numerical data fit
quite well with the scaling function (31) expected in GGE
except for a factor 2 in the definition of ε̃k .5

As shown also in a more generic context in Appendix E
[see, e.g., Eqs. (E4) and (E5)], the time dependence of 〈n̂k〉
[here, e.g., Eq. (30)] is analogous to that of the imaginary-time
evolution driven by a Hermitian Hamiltonian, often employed
in a numerical recipe to find the ground state, e.g., in a path-
integral quantum Monte Carlo, or in a tensor-network method
[85]. In the imaginary-time evolution, the parameter t (time)
corresponds to a “temperature” of the statistical ensemble.
Thus, an evolution driven by a non-Hermitian matrix leads

5That is, 〈n̂k〉 suggested by GGE (see Appendix E for more details)
converges either to 0 or to 1 more slowly than Eq. (31). This discrep-
ancy is because we assume superposition consists of various filling
to derive Eq. (E6), whereas in the actual numerical calculation, we
consider the half-filling case. If the initial state is prepared as a super-
position consists various filling Q = ∑

i ki/L, the time dependence of
〈n̂k〉 is akin to Eq. (E6) (see Appendix F).
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to an effective decrease in temperature. Consequently, as time
passes by, the temperature decreases, and the entropy (Sent)
also seems to decrease. In the following subsection, we inves-
tigate how Sent behaves under a nonunitary dynamics.

B. Entanglement dynamics in the quasiparticle picture
in the clean and noninteracting limits (W = 0 and V = 0)

In the quasiparticle picture, the initial state |�(t = 0)〉
consists of a superposition of a highly excited state, acting as a
source of quasiparticle excitations. Pairs of quasiparticles with
opposite momenta k and −k are emitted at the same point, and
as times passes by, they move, in the Hermitian case, symmet-
rically in opposite directions. This is schematically depicted
in Fig. 1(a). Once each quasiparticle is located in the different
subsystem, Sent increases. This process is formulated by

Sent (t ) ∝ 2t
∫

2v(k)t<�

dk v(k)s(k) + �

∫
2v(k)t>�

dk s(k), (32)

where � is the subsystem size, k is a momentum of
quasiparticles, v(k) is its velocity, and s(k) determines
the production rate of Sent. This production rate tightly
relates to the entropy of statistical mechanics because
s(k) = −〈n̂k〉 log(〈n̂k〉) − (1 − 〈n̂k〉) log(1 − 〈n̂k〉).

Entanglement dynamics (32) has a characteristic timescale
tc(k) determined by � and v(k). When tc(k) ≡ �

2v(k) > t , each
of the quasiparticles emitted at the same points begin to
be located in the different subsystems, contributing to the
entanglement production as a function of s(k)v(k)t . While
tc(k) < t , most of each of the quasiparticles are located in the
different subsystems; therefore, the contribution of Sent from
pairs of quasiparticles s(k) becomes constant value s(k)�.6

In the non-Hermitian case, as time passes by, one of the
quasiparticles is amplified while the other is attenuated due
to Im(E ), resulting in a unidirectional motion [depicted in
Fig. 1(b)]. Moreover, this characteristic relaxation of 〈n̂k〉 (31)
results in a variation of 〈n̂k〉 from 〈n̂k〉 = 0.5, indicating a
decrease in Sent as suggested by Eqs. (31) and (32). Therefore,
we investigate how the non-Hermiticity, specifically this char-
acteristic relaxation, modifies the quasiparticle picture and
entanglement dynamics. Figures 6(a) and 6(b) show Sent as
a function of t ime and t ime × cosh(g), respectively, with vari-
ous values of g, in the clean and noninteracting limits (W = 0
and V = 0). We observe distinct behaviors of Sent (t ) arising
from the quasiparticle picture and nonunitary time evolution.
We first focus on the initial growth of Sent. According to the
quasiparticle picture, the initial growth of Sent depends on
vgt (vg is a group velocity), and see Eq. (32) rather than egt
since Sent is carried by quasiparticles as well as correlation.
In this case, vg = −2 cosh(g) sin(k), and thus we expect that
the initial growth of Sent depends on cosh(g) sin(k)t . We ob-
serve that the initial growth of Sent can be approximated by

6Strictly speaking, since we treat a finite system, each quasiparticle
can be located in the same subsystem due to the boundary effect (we
later comment on this effect), leading to decay in the Sent . Although
this effect can be non-negligible in a finite system, it is already known
that the less important this effect, the larger the system size we treat
[86]; therefore, we can interpret tc(k) as a characteristic timescale.

FIG. 6. Entanglement dynamics of a free-particle case (W = 0.0
and V = 0.0) with � = 3 with decrease of g: (a) Sent versus t ime
and (b) Sent versus t ime × cosh(g) (analogy of quasiparticle picture).
L = 16.

a single curve, as is shown in Fig. 6(b), consistent with the
quasiparticle picture and implying the validity of the quasipar-
ticle picture at early timescales. Following the initial growth,
Sent (t ) depends on g. Sent (t ) shows nonmonotonic behavior for
weak g, whereas it only converges to Sent of |α1〉 for strong g.
This difference in Sent (t ) between weak and strong g stems
from the relaxation of 〈n̂k〉. For weak g, Eq. (31) implies that
the relaxation of 〈n̂k〉 takes a considerable amount of time,
causing Sent (t ) to resemble the behavior observed in the Her-
mitian case within this regime, leading to Sent (t ) > Sent (t →
∞). However, Im(E ) eventually causes 〈n̂k〉 to converge to
either 0 or 1, thereby resulting in the convergence of Sent (t )
to Sent (∞) and nonmonotonic behavior of Sent.7 Additionally,
we also observe Hermitian-type behavior in which the non-
monotonic behavior of Sent is accompanied by oscillations.
These oscillations occur when quasiparticles move through
the left or right ends [see inset of Fig. 6(b)] and are located
within the same subsystem. This oscillation behavior is known
for entanglement revivals [86], predicted by the quasiparticle
picture. For large g, 〈n̂k〉 immediately converges to either 0 or
1, and thus Sent (t ) only converges to Sent (∞).

As we have observed, the interplay between the quasi-
particle picture and the relaxation described by Eq. (31)
qualitatively captures entanglement dynamics of the HN
model. In Appendix (G), we compare the numerical result
with Sent suggested by the quasiparticle picture to verify

7In numerical calculation, we choose the length of subsystem size
� to be small because it may be the simplest way to realize the
nonmonotonic behavior of Sent . Since Sent (t → ∞) decreases with
a decrease of �, in case of small �, the condition Sent (t ) > Sent (t →
∞), which is required to realize such a behavior, becomes easier to
achieve.
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the accuracy of this picture. While this picture provides a
qualitative characterization of Sent (t ), we find a quantitative
discrepancy between the numerical result and Sent suggested
by this picture. Further work is required to identify the reason
why this quantitative discrepancy presents.

C. Disordered case: Disorder enhances the entanglement

The quasiparticle picture also provides us with a natural in-
terpretation on why disorder enhances the entanglement in the
non-Hermitian case. First, in the Hermitian case, as disorder
is introduced to the system, here in our analysis, in the form
of a quasiperiodic potential, the entanglement entropy tends
to be suppressed (see, e.g., inset of Fig. 4). This is because
such a quasiperiodic potential introduces scattering between
quasiparticles, preventing quasiparticle pairs from reaching a
different subsystem [Fig. 1(a)]. If the pairs tend to stay in
the same subsystem, the entanglement entropy tends natu-
rally to be decreased. In the non-Hermitian case, scattering
between quasiparticles introduced by the quasiperiodic poten-
tial may lead to quite a different consequence. As repeatedly
mentioned, the quasiparticle motion is unidirectional in the
absence of scattering [Fig. 1(b)], while in the presence of scat-
tering this is expected to be no longer purely unidirectional,
but become more bidirectional. As a result, disorder helps
quasiparticle pairs to reach a different subsystem, leading
naturally to the increase of entanglement entropy.

In the density dynamics (Fig. 3), we have seen that 〈nk〉
converges sharply to 0 or 1 in the clean limit, while in the
presence of disorder, this convergence is relaxed. This clearly
leads to the increase of thermodynamic entanglement entropy
[Eq. (29)] (see Appendix E for more details). In the inter-
acting case, the behavior of 〈nk〉 is not much different from
the noninteracting case [Fig. 3(ii)], the above reasoning in the
noninteracting case applies also, at least qualitatively, to the
interacting case.

Previously, we have attributed this enhancement of the
entanglement entropy due to disorder to cascadelike spreading
of the wave packet in the single-particle dynamics [44,87].
Here, we have shown that the quasiparticle picture gives a
more natural explanation of the same phenomenon, which is
more likely valid in the interacting case.

V. LOGARITHMIC SCALING IN THE ASYMPTOTIC
REGIME: t → ∞

In the previous subsection, we have seen characteristic
behaviors of the entanglement entropy Sent (t ), which reflects
the collapse of the superposition in the time-evolving many-
body state |�(t )〉, i.e., its convergence to a single eigenstate
(16). In the Hermitian system, the asymptotic value of the
entanglement entropy,

S∞ = Sent (t → ∞), (33)

obeys the volume-law scaling. Here, we address what type
scaling S∞ shows in the non-Hermitian case. For a given
entire system of size L (here, we fix it at L = 20), we vary
the bipartite division �, i.e., the size of the subsystem A, and
evaluate the entanglement entropy S∞(�) in the asymptotic
regime t → ∞. Figure 7(a) shows a result of such analyses in

(a)

(b)

FIG. 7. Scaling of Sent as a function of �, where � is a length
of subsystem: (a) Sent versus �, (b) Sent versus �/L. For (b), we
take into account the boundary condition, so that fitting function
ceff
3 log[L sin( π�

L )] + cst. (Scatter plot) Seems to be fitted to the nu-
merical data (dashed line). cst is corresponding to a constant value.
g = 0.5. W = 0.0.

the case of W = 0, V = 0, in which S∞(�) is plotted against
log �. One can see that for � � L at which size effects are
negligible, the entanglement entropy S∞(�) is well fit by the
scaling function

S∞(�) = 1
3 log � + cst, (34)

known in the Hermitian case for a fermionic ground state,
which falls on the case of central charge c = 1 (case of free
bosonic excitation spectrum) [88–93].

One can even improve the fitting by taking into account the
finite size of the system and the periodic boundary condition;
replacing the length � of the subsystem A in Eq. (34) with the
corresponding chord distance

d (�) = 2L sin(π�/L) (35)

of a circle of circumference L, one finds

S∞(�) = 1
3 log [2L sin(π�/L)] + cst. (36)

In Fig. 7(b) the same data of the entanglement entropy Sent

are plotted against the subsystem size � in linear scale and
fit by the scaling function (36). One can see all the data � =
1, 2, . . . , L − 1 of Sent are well fit by this modified scaling
function.

In case of the fermionic ground state,

|�G〉 =
⎛
⎝ ∏

ks.t .|k|<kF

c†
k

⎞
⎠|0〉, (37)

the logarithmic term in Eq. (34) stems from discontinuities
in the momentum space at k = kF and −kF , where kF is the
Fermi wave number or Fermi (crystal) momentum associated
with the Fermi energy εF = h̄2k2

F /(2m). In the asymptotic
expansion for large L, the subleading logarithmic term be-
comes relevant as a result of the vanishing of the leading linear
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term ∝ L (volume-law term). In the non-Hermitian dynamics
the many-body wave packet |�(t )〉 may converge to a single
eigenstate (26). Then, the corresponding momentum distribu-
tion (27) exhibits discontinuities at k = 0 and −π in case of
the half-filling. These discontinuities lead to logarithmic scal-
ing of the entanglement entropy (34), known in the fermionic
ground state [94,95].

In the interacting case, the entanglement entropy S∞(�)
seems still logarithmic [Fig. 7(b)], in the sense that the data
are well fit by the following scaling function:

S∞(�) = ceff

3
log [2L sin(π�/L)] + cst, (38)

where ceff is a fitting parameter; of course, the naming implies
that we are tempted to interpret it as an effective central
charge. Our data clearly show that ceff exhibits a deviation
from the noninteracting value c = 1, which is uncommon in
the Hermitian case [96]. Another remark is that in the regime
of larger V we found a discrepancy of our data with the
fitting function (38); see Appendix H for more details. The
discrepancy may be simply due to a finite-size effect, but in
any case a further investigation in a system of larger size L will
be necessary, employing the methods such as Bethe ansatz
[97–99]. the tensor network [99–103], and the quantum Monte
Carlo simulation [104–107].

VI. FURTHER SCALING PROPERTIES: BEHAVIOR
OF IM(E ) AND CORRELATION FUNCTION

A. Imaginary part of the eigenenergy: Origin
of the nonmonotonic time evolution

In Sec. III, we have seen that the entanglement entropy
Sent (t ) exhibits a nonmonotonic time evolution, typically, in
the regime of intermediate disorder and in the interacting case
[Fig. 4(b)]. A sensible reader would immediately associate
this intriguing behavior, unique also to the non-Hermitian
case, with the complex nature of the spectrum characteristic
to the system, which is indeed the case. While, if that is
simply the reason, one may then wonder why the nonmono-
tonic evolution is specific to the interacting case, and does
not appear in the noninteracting case [Fig. 4(a)], albeit that
the complex spectrum also appears in noninteracting case.
Below, we will carefully focus on the complex nature of
the spectrum, highlighting especially the degeneracy in the
imaginary part of the spectrum Im(E ). The crucial difference
that also leads to the conspicuous difference in the behavior
of entanglement entropy Sent (t ) in the interacting vs nonin-
teracting cases lies in the difference (absence vs presence)
of such degeneracy in Im(E ) in the complex spectrum. After
briefly looking into the scaling of the Im ratio fIm, relevant to
the identification of the real-complex transition in spectrum,
we will proceed to a more careful study of such degeneracies
in Im(E ).

The fraction fIm, which is defined as the ratio of the number
of the eigenenergies with nonzero imaginary part (|Im(E )| >

10−10) DIm to the total number of the eigenenergies D, i.e.,

fIm = DIm/D, (39)

is often employed in the study of real-complex transition
[63,65,75]. fIm is typically averaged within a defined energy

V=0.0

V=2.0

(a)

(b)

(c)

FIG. 8. Disorder dependence of the quantity to characterize the
property of Im(E ) for various system sizes L. (a) fIm for nonin-
teracting (V = 0, dashed line) and interacting (V = 2, solid line)
cases, respectively. The largest Im(E ), Ẽα1 ≡ Max[Im(E )] (scatter
plot), and the average value of Im(E ) taken from the second to
fifth, Ẽ (solid line) for noninteracting (b) and interacting (c) cases,
respectively. In numerical calculation, we carried out evaluations for
various system sizes L = 10, 12, 14, and 16 using varying sample
sizes: 1000, 500, 500, and 200 samples for L = 10, 12, 14, and 16.

range or across the entire spectrum. Thus, we can consider
fIm as a measure to describe the statistical properties of a
complex spectrum. In the delocalized phase, fIm is close or
almost equal to 1, whereas it practically vanishes in the local-
ized phase. fIm in the noninteracting case shown in Fig. 8(a)
(dashed line) takes almost constant value fIm ∼ 1 for weak W ,
and as W approaches Wc ∼ 3.3, fIm sharply decreases. This
tendency becomes more enhanced as L increases, and in the
(W, fIm ) plane, different curves for fIm calculated at different
system size L looks intersecting at a single point (Wc, fIm(Wc))
[Fig. 8(a)], implying that this real-complex transition at W =
Wc is a true phase transition robust until the thermodynamic
limit L → ∞. In the interacting case (solid line), the position
of the crossing is shifted to a regime of larger W compared
with the noninteracting case (dashed line), while the overall
behavior is unchanged from the noninteracting case. Thus, so
far as the scaling analysis of fIm implies, the real-complex
transition of the spectrum occurs practically in the same way
both in the interacting and noninteracting cases. Then, how
could that be compatible with a relatively different dynamics
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of the entanglement entropy Sent (t ) in the interacting and
noninteracting cases?

In Sec. II A, we have argued that in the nonunitary time
evolution the many-body wave packet |�(t )〉, which is ini-
tially a superposition of many eigenstates, tends to lose such
a superposed nature, and collapses into a single eigenstate
|α1〉 [see Eq. (16)], where |α1〉 is such an eigenstate whose
eigenenergy E has a maximal imaginary part Im(E ). This
picture demonstrated in Sec. II A is, however, slightly over-
simplified in the sense that it did not consider the case in
which some eigenstate has (practically) the same, or very
close Im(E ), the case in which

Im(Eα1 ) � Im(Eα2 ) � · · · . (40)

Which quantity is relevant for determining how quickly
the state |�(t )〉 converges (or not) to a single eigenstate
|α1〉? Im(Eαν

) > 0 amplifies the amplitude of the coefficient
cαν

(t ), expressed as |cαν
(t )|2 = |cαν

(t = 0)eIm(Eαν t )|2. The rel-
ative importance of the state |α1〉 with respect to another state,
e.g., |αν〉 in the time-evolving wave packet |�(t )〉 may be
quantified by the ratio

|cαν
(t )|2

|cα1 (t )|2 ∝ |eIm[2(Eαν −Eα1 )t]| = e−�ν
Imt . (41)

Here, we consider the quantity Ẽ defined as the average of
the second to the fifth largest value of Im(E ), and conjecture
that the difference between Ẽα1 ≡ Max[Im(E )] would be a
good measure for characterizing how quickly the state |�(t )〉
converges to (or not to) a hypothetical asymptotic state |α1〉.

Figures 8(b) and 8(c) show Ẽα1 and Ẽ as a function of
W in the noninteracting and interacting case, respectively.
Both Ẽα1 and Ẽ decrease with an increase of W , leading to
a decrease in �ν

Im [cf. Eq. (41)]. Interestingly, in the localized
phase of the noninteracting system, Ẽ is the same as Ẽα1 ,
which means Ẽα1 is degenerate. When Ẽα1 is degenerate, the
corresponding eigenstates are amplified under time evolution
similarly, i.e., �ν

Im = 0, and thus superposition cαν
(t ) is main-

tained [cf. Eq. (41)] even in the nonunitary time evolution.
Such a degeneracy stems from the fact that Im(Eαν

) is a sum of
single-particle eigenenergies εα’s. In the localized phase, most
of εα are real spectra, but some εα have nonzero imaginary
parts of eigenenergies due to the finite-system-size effect,
causing the combination of the sum of the real and complex
spectra to lead to the degeneracy of Im(E ). In contrast to
the noninteracting case, in an interacting case, Ẽα1 is not the
same as the Ẽ , which means that |�(t )〉 generally converges
to a single eigenstate |α1〉 and nonmonotonic behavior of Sent

appears consequently.

B. Entanglement entropy and correlation function

Finally, we focus on how the scaling of the entanglement
entropy Sent and the correlation function as a function of the
strength W of disorder. In Fig. 9(a), S∞ = Sent (t → ∞) [same
as in Eq. (33)], evaluated in a system of size L; so we will
also call S∞(L), ensemble averaged, plotted as function of L,
i.e., how S∞(L) scales with L at a various strength of disor-
der W in the noninteracting limit (V = 0). One remarkable
point is that the plotted curves S∞(L) show a nonmonotonic
evolution as a function of W . For weak W , S∞(L) obeys the

(a)

(b)

FIG. 9. Size dependence of the entanglement entropy S∞(L) (the
asymptotic value) (a) and behavior of the correlation function C∞(�)
(b) both in the noninteracting limit. (a) S∞ = Sent (t → ∞) is calcu-
lated in the system of size L and plotted as function of L. Partly, the
same data as the ones in Fig. 4 have been replotted. (b) Behavior
of the correlation function C∞(�) = C∞(�, t → ∞) = 〈c†

j c j+�〉, site
and sample averaged [as for precise definitions and conditions, see
Eqs. (43), (45), and main text]. The same wave functions as those in
Fig. 4 have been used.

logarithmic scaling, as we saw in the previous section, while
as W approaches the critical value Wc, a sharp distribution of
〈n̂k〉 in the crystal-momentum space in the manner of Eq. (27)
tends to be lost, and simultaneously S∞(L) starts to obey the
volume law. In this critical regime, 〈n̂k〉 takes values other than
0 or 1, implying an increase in the thermodynamic entropy [cf.
Eq. (32)]. Once W exceeds Wc, scaling of S∞(L) turns to the
area law, as is also the case in a Hermitian localized phase.
The evolution of the scaling behavior of S∞(L) or S∞(L,W )
may be summarized as

S∞(L) ∼
⎧⎨
⎩

log L (W � Wc),
L (W � Wc),
1 (W > Wc).

(42)

Another interesting issue is that the behavior of the corre-
lation function

Cj (l, t ) = 〈ψ (t )|c†
j c j+�|ψ (t )〉 (43)

shows a similar “nonmonotonic” dependence on W as the one
seen in the entanglement entropy (42). Figure 9(b) shows how
this correlation function

C∞(l ) = lim
t→∞C(l, t ) (44)

decays with the distance �, again, in the noninteracting case.
To be precise, in the panel the magnitude (absolute value) of
the correlation function, both ensemble and site averaged

〈|C∞(l )|〉 =
〈

1

L

∑
j

|Cj (l, t → ∞)|
〉

≡ C∞(l ) (45)

has been plotted. The brackets 〈. . . 〉 represent the ensemble
average. At weak W , it is expected to show an algebraic

214308-11



TAKAHIRO ORITO AND KEN-ICHIRO IMURA PHYSICAL REVIEW B 108, 214308 (2023)

FIG. 10. Scaling of Smax(L) at various strength of disorder W (i),
and behavior of the correlation function C(l, t ) in the space-time
(l, t ) (ii). (i) Smax(L) [introduced in Eq. (47)] is plotted as a function
of L. Partly, the same data as the ones in Fig. 4 have been used.
(ii) The behavior of the correlation function C(l, t ), introduced in
Eq. (43), is shown as a color map for three different values of disorder
strength W : (a) W = 0.5, (b) W = 3.0, and (c) W = 5.0 (subpanels).
We focused on the magnitude of the correlation function |C(l, t )|,
which has been also site and ensemble averaged [cf. Eq. (45)]. The
same wave functions as those in Fig. 4 have been used.

decay [108]:

C∞(l ) ∝ 1 − eiπ�

l
(46)

reflecting the sharp distribution of 〈n̂k〉 in the crystal-
momentum space (27). As W increases, the decay of the
correlation function C∞(l ) becomes slower; compare the
greenish plots with the bluish ones, implying that the non-
locality of the system is increased. This is concomitant with
the evolution of the scaling of the entanglement entropy
S∞(L) from logarithmic to volume law [cf. Eq. (42)]. Once
W exceeds Wc, the correlation function C∞(l ) decreases expo-
nentially, reflecting the localized nature of the wave function.

In the interacting case (V = 2), we focus on the maximal
value of Sent (t ) in its evolution:

Smax = Max[Sent (t )] ≡ Sent (t = t0), (47)

instead of S∞ = Sent (t → ∞) [Eq. (33)]. This is for a prac-
tical reason; the Krylov subspace method employed in this
work is very effective for reducing the computational diffi-
culty of dealing with a system of large size, while it does
not reduce that of a very long-time dynamics.8In Fig. 4, we
have already seen an overall behavior of Sent (t ) at different

8We note that we can also use Sent (∞) as a quantity to characterize
the delocalization-localization transition. We expect that Sent (∞)
obeys the volume law in the delocalized phase and the area law in
the delocalized phase, reflecting the property of |α1〉.

values of W , i.e., both in the delocalized and localized phases,
and also at different system sizes L. Here, we have focused
on the size dependence Smax(L) [panel (i) of Fig. 10] in the
interacting case. The scaling behavior of Smax(L) at various
values of W shows that Smax(L) increases (decreases) with W
in the delocalized (localized) regime, indicating that Smax(L)
is a good measure of delocalization (localization) transition
(crossover) in this interesting case, playing a similar role as
S∞(L) in the noninteracting case.

We also evaluate the correlation function C(l, t ) introduced
in Eq. (43) in the interacting case; here, we focus on its
time-dependent behavior since we are interested in how the
relaxation of a quantum state |�(t )〉 due to Im(E ) is reflected
in the behavior of the correlation function. Three panels
of Fig. 10(ii) show the time evolution of the correlation
function (43) at disorder strength W = 0.5 [Fig. 10(a), 3.0
[Fig. 10(b)], and 5.0 [Fig. 10(c)]. The absolute value of the
correlation function |C(�, t )| is plotted as a color map in
the space of � (the x axis) and log10(time) (the y axis). The
black dashed line in each panel represents the time t0 when
Sent (t ) takes the maximal value Smax = Max[Sent (t0)] [see
Eq. (47)]. At weak W [Fig. 10(a)], the correlation spreads
rapidly, i.e., C(l, t ) quickly (i.e., around t = t0) converges
to an asymptotic distribution C∞(l ) [see Eq. (44)] which
is spatially modulating, reminiscent of the algebraic decay
(46) in the noninteracting case [see also Fig. 9(b), e.g., case
of W = 0.5 (blue plots)]. As W is increased, the spreading
of correlation becomes delayed; t0 becomes larger, while
the asymptotic distribution C∞(l ) becomes a monotonically
decreasing function [Figs. 10(b) and 10(c)].

Unlike in the noninteracting case, we have not observed a
nonmonotonic feature with respect to W in the behavior of
the correlation function C(l, t ) in the interacting case. Still,
we have made a notable observation that t0 corresponds to the
time t when the behavior of the correlation function changes
qualitatively, i.e., from a strongly nonequilibrium-type behav-
ior (t < t0) to that of a steady-state type (t > t0). Once t ex-
ceeds tc, the correlation function C(l, t ) tends to become time
independent, indicating that the quantum state |�(t )〉 reaches
a steady state. This observation suggests that Smax is a good
quantity that encodes the transition or crossover of the system
or of the state |�(t )〉 from a nonequilibrium to a steady state.

VII. CONCLUDING REMARKS

In this paper, we have highlighted the differences in the
dynamical behavior between non-Hermitian and Hermitian
disordered systems based on the quasiparticle picture. First,
we have systematically studied the dynamical behavior of
the many-body HN model, including n j (t ), nk (t ), and Sent,
using the Krylov subspace method. Although the difference
between non-Hermitian and Hermitian systems is somewhat
masked in the behavior of nj (t ) in real space, we find that
it sharply manifest in nk (t ), and in Sent as well. In the non-
interacting system, we demonstrated both numerically and
analytically the characteristic relaxation of nk (t ), where nk (t )
converges either to 0 (for k > 0) or to 1 (for k < 0) in the
clean limit. This behavior stems from the presence of Im(E ),
which is an intrinsic nature of the non-Hermitian system. We
also discussed the relationship between the relaxation of nk (t )

214308-12



ENTANGLEMENT DYNAMICS IN THE MANY-BODY … PHYSICAL REVIEW B 108, 214308 (2023)

and Sent based on the quasiparticle picture and provided an
intuitive explanation for the nonmonotonic behavior of Sent as
a function of W . Interestingly, we found that Sent exhibits a
nonmonotonic behavior as a function of time in the interact-
ing case. By carefully examining the distribution of Im(E ),
especially, through comparison with the noninteracting, we
have clarified the nature of this nonmonotonic time evolution,
which is unique to this non-Hermitian interacting system.

The nonmonotonic behavior of Sent with respect to time
stems from Im(E ), which implies the instability of the many-
body localized phase [109,110]. Recent studies suggest that
thermalization symptoms [111,112] appear even in a strongly
disordered system, resulting in the study of many-body
delocalization-localization transition [113–117] at a turning
point. They have examined the response of a quantum system
to the inclusion of thermal grain [118] and evaluated the
imaginary part of eigenenergy [119], which may relate to the
real-complex transition of the HN model.

For the noninteracting case, we have recently noticed that
the nonmonotonic behavior of Sent (t → ∞) is also reported
in Ref. [108]. They have employed a recently proposed nu-
merical approach [120] instead of the exact diagonalization
and performed calculations in larger system sizes compared
to ours. Their findings indicate that the scaling of Sent (t →
∞) exhibits logarithmic area-law transition. This result is in
contradiction with our findings at critical regime (W ∼ Wc),
which may come from the finite-size effect. This discrepancy
raises a new question as to whether Sent obeys volume-law
scaling in an interacting system. We intend to address this
question in future work.
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APPENDIX A: A VIEWPOINT FROM
THE LINDBLAD/GKSL EQUATION

The Lindblad/GKSL equation [73,74] is a fundamental
equation describing a quantum system coupled to an envi-
ronment or a measuring apparatus. The GKSL equation is
expressed as

∂ρ(t )

∂t
= −i[Heff, ρ(t )] +

∑
m

Lmρ(t )L†
m, (A1)

where Heff = H − i
2

∑
m L†

mLm, and Lm is called the Lindblad
operator that stems from the interaction between the original
quantum system and environment or a measuring apparatus.

The purpose of this Appendix is to clarify the relationship
between Eq. (A1) and Eqs. (10) and (13). Indeed, Eqs. (10)
and (13) can be derived from Eq. (A1) by simply neglect-
ing the second term of Eq. (A1). Without the second term,
the evolution of the density matrix ρ(t ) is determined by an
effective von Neumann equation prescribed by the generally
non-Hermitian effective Hamiltonian Heff. If a pure state is

chosen as an initial state, this dynamics coincides with the
one obtained in the time evolution so that |�(t )〉 is deter-
mined by Eqs. (10) and (13). Conversely, our non-Hermitian
Schrödinger dynamics prescribed by Eqs. (10) and (13) may
be thus justified in the context of the GKSL description of an
open quantum system.

Of course, why and under what circumstances the second
term of Eq. (A1) is negligible is left to be explained (one may
need also a further justification), and so is the meaning of
neglecting the second term. This may be best illustrated in the
so-called quantum trajectory picture [123] (cf. also quantum
jump [124] and first-order Monte Carlo methods [125,126]).
In this picture the time evolution of a wave function |�(t )〉 is
regarded as a stochastic process described below, and a series
of such a stochastic process (corresponding to the entire time
evolution of the wave function) is referred to as a quantum tra-
jectory; in the end, an ensemble average of many trajectories
will be taken. Also, here, the environment means an ensemble
of measuring apparatus, represented by an operator Lm. After
each time step of δt , a quantum state |�(t )〉 evolves with a
probability 1 − p into

|�(t + δt )〉 = (1 − iHeffδt )|�(t )〉√
1 − p

(A2)

and with a probability pm into

|�(t + δt )〉 = Lm|�(t )〉√
pm/δt

, (A3)

where p = ∑
m pm and pm = 〈�(t )|L†

mLm|�(t )〉δt . Equa-
tion (A3) describes the case in which the measurement
apparatus m obtains an outcome, while Eq. (A2) describes
the situation in which none of the measurement apparatus
obtains an outcome, i.e., the case of null outcome. A series
of this stochastic process determines a single trajectory of
the quantum state |�(t )〉. Our non-Hermitian Schrödinger
dynamics prescribed by Eqs. (10) and (13) is, on the other
hand, obtained by selecting, after each time step, the case of
null outcome (postselection) or, in other words, by projecting
the quantum state onto its subspace of such successive null
outcomes (or by choosing such a trajectory). Note that in
Eq. (A2) a change in the amplitude of the wave function in the
numerator, i.e., (1 − iHeffδt )|�(t ), is precisely compensated
by the normalization factor

√
1 − p in the denominator, which

is equivalent to the renormalization we adopted in Eq. (13).

APPENDIX B: OTHER DEFINITIONS
OF THE ENTANGLEMENT ENTROPY

Since a non-Hermitian system has right and left eigenvec-
tors, three possible definitions of Sent and density matrix 

have been considered. In particular, Sent is defined as

SR,R
ent = −Tr[ρR,R ln(ρR,R)], (B1)

SL,L
ent = −Tr[ρL,L ln(ρL,L )], (B2)

and

SR,L
ent = −Tr[ρR,L ln(ρR,L )], (B3)

where ρR,R = TrB[|α〉〈α|/〈α|α〉], ρL,L = TrB|[α〉〉〈〈α|/〈〈α
|α〉〉], and ρR,L = TrB[|α〉〉〈α|/〈〈α|α〉]. Here, a superscript
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(R or L) represents which eigenstate (left or right) is used
to construct the density matrix. The definition we employ in
this work relates to Eq. (B1), which yields a non-negative
value of Sent as well as Sent of a Hermitian system. This
non-negativity of Sent holds, which can be shown by Schmid
value decomposition. Whereas, in the case of Eq. (B3), the
non-negativity of Sent does not have to hold since ρR,L can
become a non-Hermitian matrix, which has been studied in the
context of nonunitary conformal field theory (CFT) [127,128].
Furthermore, in this case, the qualitative behavior of Rényi
entropy does not coincide with Sent [129], which is hardly
seen in the Hermitian case and in Eqs. (B1) and (B2) [130].
The previous study mainly focused on the static behavior
(eigenvector) of Eq. (B3) and, thus, it may be an interesting
direction to investigate the dynamical behavior of Eq. (B3).

APPENDIX C: CHOICE OF THE BOUNDARY
CONDITIONS: EFFECT OF THE SKIN EFFECT

The Hatano-Nelson model exhibits a so-called non-
Hermitian skin effect under the open boundary conditions
(OBC). Skin effect is a localization phenomenon where an
extensive number of the eigenstates are at the boundary with
real eigenenergy. Although this feature has already been re-
ported in the original works of Hatano and Nelson, it has now
been recognized as a hallmark of topological phases of non-
Hermitian physics. Here, we comment on whether or how the
choice of OBC (skin effect) affects features of entanglement
dynamics compared to our study [periodic boundary condition
(PBC)]. In the quench dynamics under OBC, the nonrecip-
rocal hopping makes the density dynamics asymmetrical in
motion, which is also observed in the case of PBC, but the
density is to be eventually localized at the boundary reflect-
ing OBC. Reference [120] has demonstrated many-body HN
model under OBC in the clean limit exhibits entanglement
transition due to skin effect. They have reported that entangle-
ment entropy obeys logarithmic scaling, which is the same as
the case of periodic boundary conditions. However, the effec-
tive central charge is not equal to one. They have analyzed this
entanglement transition and shown that it originates from the
skin effect. Recently, both Refs. [108,131] have investigated
how disorder potential affects this entanglement transition.
Interestingly, they have reported that entanglement entropy
exhibits nonmonotonic behavior as a function of disorder
strength in the case of OBC as well as that of PBC. In the
delocalized phase, entanglement entropy increases with the
increase in disorder strength. However, in the localized phase,
entanglement entropy decreases with the increase in disorder
strength. While the origin of suppression of entanglement in
the case of OBC is different from that of PBC, we consider
that the quasiparticle picture and our discussion is still useful.
In the case of OBC, quasiparticle corresponds to skin mode,
which is robust and localized at the boundary even if backscat-
tering occurs. However, as the disorder strength increases, the
quasiparticle (skin mode) tends to move bidirectional rather
than unidirectional motion due to backscattering as well as
that of PBC, resulting in an increase in entanglement en-
tropy. Thus, disorder dependence of entanglement entropy
is qualitatively independent of the choice of the boundary
condition.

FIG. 11. Time evolution of the eigenvalues λk of correlation
function (D4): (a) L = 4, (b) L = 6, (c) L = 16, and (d) L = 18. In
(a), solid lines λ± = 1

2 ± 1
2

√
1
2 {sin[4 cosh(g)t + φ] + 1} are analyt-

ical solutions, where φ is a fitting parameter. g = 0.5.

APPENDIX D: ORIGIN OF THE OSCILLATORY
BEHAVIOR OF Sent IN THE WEAKLY

DISORDERED REGIME

Let us focus on the behavior of Sent (t ) in the weakly disor-
dered regime depicted in Fig. 4. We have noticed that a small
rapid oscillation is conspicuous on top of its global tendency
to saturate. The oscillation is also rather conspicuous in the
noninteracting case [Fig. 4(a)], and in the case of even number
of particles L/2 = 6, 8, 10. Here, we show that the oscillation
stems from a twofold degeneracy (in the imaginary part) of
the asymptotic state.

To simplify the argument, let us consider here the
noninteracting case, in which Sent is simply given by the
eigenvalues λi of the correlation function in the subsystem (of
size � = L/2) [89]

C =

⎛
⎜⎜⎝

〈c†
1c1〉 . . . 〈c†

1c�〉
...

. . .
...

〈c†
�c1〉 . . . 〈c†

�c�〉

⎞
⎟⎟⎠, (D1)

as

Sent = −
i=L/2∑

i=1

[λi ln(λi) + (1 − λi) ln(1 − λi )]. (D2)

The four panels of Fig. 11 show the behavior of numerically
evaluated λi’s in the cases of different number of particles
L/2. The plots show that there exists a qualitative difference
in the behavior of λi’s between the cases of L/2 even and odd;
in the case of L/2 even, a pair of λi’s appear symmetrically
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with respect to λ = 1
2 , while in the case of L/2 odd, there

exists no such pairwise behavior. Since λi’s taking a value
close to λ = 1

2 gives the most relevant contribution to Sent,
one naturally expects that such a pairwise behavior of λi’s in
the case of L/2 even leads to a conspicuous oscillation of Sent

in this case.
The reason why Sent is oscillatory in the first place may

be understood in the following way. In the asymptotic time
regime t → ∞ only the following two many-body states with
with a maximal imaginary part in the eigenenergy are relevant:

|�(t → ∞)〉 = 1√
2

(e−iεk=−π t c†
k=−π

+ e−iεk=0t c†
k=0)

×�
k=−2π/L
k=−2π/L×(L/2−1)e

−iεkt c†
k |0〉. (D3)

One can estimate the the correlation function (D3) in this
asymptotic regime as

Cn,m =
[

1

L

∑
eik(n−m)

]
+ 1

2L
(e−iπ (n−m) + 1)

+ 1

2L
(−1)L/2(e−4i cosh(g)t eiπn + e4i cosh(g)t e−iπm).

(D4)

This matrix can be easily diagonalized, e.g., in case of L = 4.
In Fig. 11(a) the analytic value of λi’s thus obtained are com-
pared with the ones found numerically. The plots show that
in most of the time regime considered in the figure except the
very early one around t � 0 the two plots coincide, indicating
that the system is indeed controlled by the asymptotic state
(D3), and the twofold degeneracy (in the imaginary part) of
the two relevant eigenstates is the origin of the fast oscillation
of Sent in this case.

APPENDIX E: NOTES ON THE GENERALIZED
GIBBS ENSEMBLE

In the limit of t → ∞, tc(k) < t for all k are satisfied,
and then |�(t )〉 reaches an equilibrium state. Generally, we
can obtain the corresponding statistical ensemble, assuming
principle of maximum entropy under some constraint, such as
expectation values of energy or total particles, using Lagrange
multipliers. In case of integrable systems, our target (W = 0
and V = 0) realized statistical ensemble is called generalized
Gibbs ensemble (GGE), which forms maximum entropy un-
der the constraint of n̂k . GGE is defined as

ρGGE ≡ e− ∑
k λk n̂k

Z
, (E1)

where Z = Tr[e− ∑
k λk n̂k ], and λk is the Lagrange mul-

tiplier that imposes constraint 〈�(t = 0)|n̂k|�(t = 0)〉 =
〈�(∞)|n̂k|�(∞)〉. GGE describes the expectation value of
various quantities as well as the saturation value of Sent. The
statistical expectation value of n̂k is defined by

〈n̂k〉GGE ≡ Tr(ρGGEn̂k ) = − ∂

∂λk
log(Z )

= 1

1 + exp(λk )
= 〈�(t )|n̂k|�(t )〉. (E2)

NumericalEq. (E6)

NumericalEq. (E6)

FIG. 12. Time evolution of 〈n̂k〉: L = 12, W = 0, and V = 0. The
numerical result is obtained by averaging over 100 different initial
states [Eq. (F1)]. Both solid and dashed lines represent numerical
result, while a scatter plot represents Eq. (E6).

Additionally, the thermodynamic entropy of GGE is in accor-
dance with the saturation value of Sent in the thermodynamic
limit, i.e.,

Sent(∞) = lim
L→∞

Sthermo

≡ lim
L→∞

−TrρGGE ln ρGGE

= lim
L→∞

∑
sk ≡ �

∫
dk s(k). (E3)

Sent (∞) follows a volume law [Sent (∞) ∝ �] if most 〈n̂k〉 take
neither 0 or 1, which is consistent to the fact that thermal
entropy obeys volume law.

In the Hermitian case, since n̂k is a conserved quan-
tity, 〈�(t )|n̂k|�(t )〉 remains constant value over time, while
〈�(t )|n̂k|�(t )〉 varies during dynamics in the case of the
many-body HN model due to the nonunitary time evolution
∂t 〈n̂k〉 = i〈�(t )|H†n̂k − n̂kH |�(t )〉 �= 0. Let us focus on the
relaxation of 〈�(t )|n̂k|�(t )〉, which is naively formulated by

〈n̂k〉 = 〈�(0)|eiH†t n̂ke−iHt |�(0)〉
〈�(0)|eiH†t e−iHt |�(0)〉

= Tr(|�{k}|2n̂ke2
∑

k Im(εk )n̂k t )

Tr(|�{k}|2e2
∑

k Im(εk )n̂k t )
, (E4)

Eq. (32)

FIG. 13. Time evolution of Sent (red solid line with circles) and
the quasiparticle picture [Eq. (32), blue solid line with crosses]: L =
16, W = 0, and V = 0. We choose the DW state as the initial state.
We take into account the possibility of quasiparticles moving from
the left (or right) end to the opposite end in the calculation (32) (for
more details, refer to Ref. [86]).
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FIG. 14. Scaling of Sent as a function of �/L with various values
of V : L = 20 and W = 0. A dashed line represents a numerical result,
while a scatter plot represents a fitting curve.

where εk is a single-particle eigenenergy (see Supplemental
Material [43]) and �{k} = 〈{nk}|�(0)〉 = 〈nk1 . . . nkL |�(0)〉:
|{nk}〉 represents the Fock space in momentum space. Here,
we assume |�{k}|2 is expressed as a GGE, so that

〈n̂k〉 = Tr(|�{k}|2n̂ke2
∑

k Im(εk )n̂k t )

Tr(|�{k}|2e2
∑

k Im(εk )n̂k t )

∼ Tr(n̂ke
∑

k [−λk+2 Im(εk )t]n̂k )

Z
, (E5)

where Z = Tr(e
∑

k [−λk+2 Im(εk )t)]̂nk ), and we assume superpo-
sition consists of various filling to use the knowledge of the
grand canonical ensemble. We can derive time-dependent be-
havior of 〈n̂k〉, which is defined as

〈n̂k〉 = Tr(n̂ke
∑

k [−λk+2 Im(εk )t]n̂k )

Z

= − ∂

∂{[λk − 2 Im(εk )t]} log(Z )

= 1

1 + e−2 Im(εk )t
, (E6)

where in the last line we take all λk to be 0, which is justified
in case the initial state is prepared as DW state. Equation (E6)
implies that an imaginary eigenenergy either amplifies or de-
cays a corresponding mode 〈n̂k〉 and this relaxation depends
on the magnitude of Im(εk ).

APPENDIX F: TIME DEPENDENCE
OF 〈n̂k〉 FOR FREE-PARTICLE CASE

In Sec. IV, we observed 〈n̂k〉 converge to stationary val-
ues more rapidly than Eq. (E6). This discrepancy appears
to arise from the fact that we assume Q = ∑

i ki takes the

values ranging from 0 to L to derive an analytical expression
of 〈n̂k〉, although we employ half-filling sector in actual nu-
merical calculation. To justify Eq. (E6), we select the initial
state as

|�(0)〉 =
Q=L∑
Q=0

1√
L + 1

∣∣{nQ
k

}〉
, (F1)

where |{nQ
k }〉 is the Fock state that satisfies with

∑
i ki = Q

and we randomly choose the Fock state |{nQ
k }〉. Figure 12

shows the time evolution of 〈n̂k〉 with the initial state given
in Eq. (F1). The behavior of 〈n̂k〉 is closer to Eq. (E6) than the
result shown in Fig. 5.

APPENDIX G: QUASIPARTICLE PICTURE
FOR NONRECIPROCAL SYSTEM

In the HN model, quasiparticles decay or amplify under
time evolution, leading to the question of when the quasipar-
ticle picture becomes ill defined. To address this question, we
compare numerical results with the result suggested by the
quasiparticle picture, as shown in Fig 13. Initially, the result
suggested by the quasiparticle picture agrees with the numer-
ical result; however, as time evolves, it begins to converge to
0, which differs from the numerical result. This discrepancy
stems from the assumption within the quasiparticle picture
that Sent behaves as thermal entropy, whereas in this case, Sent

actually characterizes quantum correlation. Additionally, this
discrepancy contrasts with a recent study in which the quasi-
particle picture is used to describe the entanglement dynamics
in the non-Hermitian system (PT -symmetric system) [25]. As
quasiparticles exhibit unidirectional motion in the HN model,
the question of whether the quasiparticle picture quantita-
tively still describes entanglement dynamics is intriguing. The
quasiparticle picture can be compatible and generalized to
many physical situations, such as an inhomogeneous initial
state [132] and a state with no quasiparticle pair structure
[133]. Therefore, further study is necessary to generalize the
quasiparticle picture to the HN model, which may become a
framework for non-Hermitian GGE.

APPENDIX H: THE EFFECT OF INTERACTION
ON THE SCALING OF Sent (∞)

Figure 14 shows the saturation value of Sent as a function
�/L with various values of V . For weak V , a discrep-
ancy between a numerical result (dashed line) and a fitting
function (scatter plot), which is a form of Eq. (38), is
negligible, but it becomes more noticeable for large V .
Although a finite discrepancy exists for large V , a fitting
function [Eq. (38)] qualitatively characterizes numerical re-
sults, leading us to conclude that the scaling of Sent is
logarithmic.
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