
PHYSICAL REVIEW B 108, 214307 (2023)

Varying quench dynamics in the transverse Ising chain:
The Kibble-Zurek, saturated, and presaturated regimes

Han-Chuan Kou and Peng Li *

College of Physics, Sichuan University, 610064 Chengdu, People’s Republic of China
and Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University,

610064 Chengdu, People’s Republic of China

(Received 22 August 2023; revised 31 October 2023; accepted 28 November 2023; published 12 December 2023)

According to the Kibble-Zurek mechanism, there is a universal power-law relationship between the defect
density and the quench rate during a slow linear quench through a critical point. It is generally accepted that a
fast quench results in a deviation from the Kibble-Zurek scaling law and leads to the formation of a saturated
plateau in the defect density. By adjusting the quench rate from slow to very fast limits, we observe the varying
quench dynamics and identify a presaturated regime that lies between the saturated and Kibble-Zurek regimes.
This significant result is first elucidated through the adiabatic-impulse approximation, then verified by a rigorous
analysis on the transverse Ising chain as well. As we approach the turning point from the saturated to presaturated
regimes, we notice a change in scaling laws and, with an increase in the initial transverse field, a shrinking of the
saturated regime until it disappears. During another turning point from the Kibble-Zurek to presaturated regimes,
we observe an attenuation of the dephasing effect and a change in the behavior of the kink-kink correlation
function from a Gaussian decay to an exponential decay. Finally, the coherent many-body oscillation after quench
exhibits different behaviors in the three regimes and shows a significant change of scaling behavior between the
S and PS regimes.
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I. INTRODUCTION

The Kibble-Zurek mechanism (KZM) describes how topo-
logical defects form in a system undergoing a continuous
phase transition at a finite rate [1–5]. It has been widely
applied in condensed matter physics, becoming one of the
cornerstones of nonequilibrium dynamics and leading to
numerous experimental tests [6–19]. In recent years, the quan-
tum KZM (QKZM), a quantum version of KZM, has attracted
significant interest for its application to quenches across a
quantum critical point [20–24]. The QKZM predicts that the
defect density scales as n ∝ τ

−dν/(1+zν)
Q in terms of the equi-

librium critical exponents, where τQ is the quench time, d is
the dimensionality of the system, and z and ν are dynamical
exponent and correlation length exponent, respectively. This
scaling law holds for slow quench and the quench time sets the
KZ length scale. Both theoretical [25–52] and experimental
[53–66] research in this area have made tremendous progress.

It is now widely accepted that fast quenches will even-
tually result in deviations from the KZM predictions. For
instance, saturated plateaus instead of the KZ scaling law in
the defect density have been uncovered in confined ion chains
[15,67], the holographic superconducting ring [68], and the
one-dimensional quantum ferromagnet [69]. The breakdown
of KZ scaling law stimulates subsequent theoretical inves-
tigations [70–74]. The appearance of plateaus in the defect
density has also been confirmed by experimental evidence
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in the ultracold Bose atoms and Fermi gases, in which the
systems are driven through the quantum phase transition at a
fast or moderate quench rate [75–81]. An empirical formula is
conjectured to fit the experimental data near the change from
KZ scaling to the saturated plateau [76,78,81]. Subsequently,
various studies demonstrate that the occurrence of the plateau
can be ascribed to the early-time coarsening before the freeze-
out time and the universality in the deviation from KZM is
established [72–74].

From the point of view of the sudden quench, it is natural
to envisage the appearance of a saturated regime since there is
an upper bound for the defect density [82–84]. However, there
is a lack of quantitative studies on the detailed variation of
quench dynamics. A few works showed there may be an inter-
mediate regime between the KZ and the saturated regimes. In
a study of holographic superfluids, it was shown that the fast
and very fast quenches can lead to distinguishable behaviors
based on the comparison of the final time, freeze-out time,
and the timescale in which the order parameter grows [70].
In another study within the framework of conformal field
theory, the authors established new scaling behaviors that may
dominate the intermediate regime [71,85,86].

In this work, we focus on the density of kinks and the kink-
kink correlation function in the one-dimensional transverse
Ising chain, which have been recently studied experimentally
[87]. Notably, we provide conclusive evidence for the exis-
tence of an intermediate regime between the Kibble-Zurek
(KZ) and saturated (S) regimes through this prototypical
model. Here, the intermediate regime is referred to as the
presaturated (PS) regime since it shares some common
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features with the saturated one. We establish a precise for-
mula of defect density in the PS regime, which goes beyond
the empirical one in Refs. [76,78,81]. There are two turning
points. One labels the breakdown of the S scaling law from
S to PS regimes, where we observe a change in scaling laws
and a shrinking of the saturated regime until it disappears with
the initial transverse field increasing. Another one labels the
breakdown of the KZ scaling law from KZ to PS regimes,
where we observe an attenuation of the dephasing effect and
a change in the behavior of the kink-kink correlation function
from a Gaussian decay to an exponential decay.

The paper is organized as follows. In Sec. II, we show the
scenario of adiabatic-impulse (AI) approximation from slow
to fast quenches, which tells us briefly why there can be a PS
regime between the KZ and S regimes. In Sec. III, the linear
quench protocol for the transverse Ising chain is established.
In Sec. IV, we elaborate on the quench dynamics in the three
regimes, which clearly shows both analytical and numerical
evidence for the existence of the PS regime. The two turning
points therein are also discussed in detail. In Secs. V and
VI, we study the kink-kink correlation function and many-
body oscillation, respectively. At last, we give a summary in
Sec. VII.

II. ADIABATIC-IMPULSE APPROXIMATION

First, we start from the AI approximation, which is applica-
ble to a variety of systems with second-order phase transition
[24]. A system is linearly ramped from g(ti ) = gi to g(t f ) =
g f (<gi ) across a critical point gc at a rate characterized by a
quench time τQ, where g(t ) = − t

τQ
is the parameter of the sys-

tem, and ti and t f are the initial and final times, respectively. A
distance from a quantum critical point can be measured with
a dimensionless parameter ε(t ) = g(t )−gc

gc
.

Generally speaking, the system can be prepared far away
from the critical point to acquire a simple initial state. After
quench, the system is driven to a final state, in which the
defects due to critical dynamics are easy to count. So it is
reasonable to assume

|gi − gc| � |g f − gc|. (1)

The system evolves nonadiabatically in the time interval tc −
t̂ < t < tc + t̂ , where tc = −gcτQ is the time when the system
crosses the critical point, t̂ ∝ τ

zν/(1+zν)
Q is the frozen-out time,

z are the dynamical exponents, and ν are the correlation length
exponents. The frozen-out time is a special timescale at which
the relaxation time τ (t̂ ) equals the inverse transition rate of
linear quench |ε/ dε

dt |t=t̂ , where ε = g(t )−gc

gc
is the distance from

the critical point. Here, we can write the three timescales: the
initial time ti = −giτQ, the final time t f = −g f τQ, and the
frozen-out time t̂ . In the KZ regime, we get the timescales
approximately sequenced as

ti < tc − t̂ < tc + t̂ < t f . (2)

As τQ decreases, the timescales become sequenced as

ti < tc − t̂ < t f < tc + t̂, (3)

FIG. 1. The scenario of AI approximation: (a) KZ regime, (b) PS
regime, and (c) S regime. The blue line represents the relaxation time
τ (t ) and the green line represents the inverse of the transition rate of
linear quench |ε/ dε

dt |. In (b) and (c), the extended dashed lines are
used to determine the intersection points between τ (t ) and |ε/ dε

dt |
outside of the linear quench (i.e., t < ti or t > t f ).

which corresponds to the PS regime. As τQ decreases further,
the timescales become sequenced as

tc − t̂ < ti < t f < tc + t̂, (4)

where the system enters into the S regime. The full scenario is
illustrated in Fig. 1. Moreover, the turning points can also be
estimated in the framework of the AI approximation. First, by
setting tc + t̂ = t f , we can estimate a quench timescale,

(
τKZ

Q

)
AI ∼ |g f − gc |−1−zν, (5)

as a turning point between the KZ and PS regimes. Second,
by setting ti = tc − t̂ , we obtain another quench timescale,

(
τ S

Q

)
AI ∼ |gi − gc |−1−zν, (6)

as a turning point between the PS and S regimes. The assump-
tion in Eq. (1) ensures the existence of the intermediate PS
regime from the point of view of the AI approximation.
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III. TRANSVERSE ISING CHAIN
AND QUENCH PROTOCOL

As a prototypical model of a quantum phase transition, we
consider the transverse field quantum Ising chain,

H = −J
N∑

j=1

(
σ x

j σ
x
j+1 + gσ z

j

)
, (7)

where σ a
j (a = x, y, z) are Pauli matrices and the total num-

ber of lattice sites, N , is assumed to be even. We impose a
periodic boundary condition, σ a

N+ j = σ a
j , and consider only

the ferromagnetic case (i.e., J > 0). We will set the ref-
erence energy scale to J = 1 so that the strength of the
transverse field is measured by g. By the Jordan-Wigner
mapping, σ z

j = 1 − 2c†
j c j and σ x

j = −(c†
j + c j )

∏
l< j σ

z
l , and

the canonical Bogoliubov transformation, cq = uqηq − vqη
†
−q

with the Bogoliubov coefficients uq and vq, we can arrive at
the diagonalized form of the Hamiltonian in the quasiparticle
representation,

H =
∑

q

ωq

(
η†

qηq − 1

2

)
, (8)

where ηq is the quasiparticle operator, q the quasimomentum,
and ωq = 2

√
1 + g2 − 2gcos q the quasiparticle dispersion.

In the thermodynamic limit N → ∞ and at zero tempera-
ture, there is a second-order quantum phase transition from a
ferromagnetic state (0 < g < 1) with Z2 symmetry breaking
to a quantum paramagnetic state (g > 1) [88]. The quantum
critical point (QCP) occurs at gc = 1, where the quasiparticle
dispersion becomes a linear one, ωq ∼ 2|q − qc| with critical
quasimomentum qc = 0, that is responsible for the dynamical
exponent z = 1 and implies the correlation length exponent
ν = 1.

We linearly ramp the transverse field from the paramag-
netic to the ferromagnetic phases across the quantum critical
point at a rate characterized by the quench time τQ,

g(t ) = − t

τQ
(ti � t � t f ), (9)

where τQ is the quench time, ti = −giτQ the initial time, t f

the final time, and gi the initial transverse field. The system is
initially in its ground state at a large initial value (gi � 1) to
ensure the state is deeply located at the paramagnetic phase.
Finally, g(t ) is ramped down to zero at t = t f = 0 and the
system gets excited from its instantaneous ground state. At
the final time, the Hamiltonian given by Eq. (8) reaches the
classical Ising limit, and thus the total number of defects (or
kinks) can be measured by the operator,

N = 1

2

N∑
j=1

(
1 − σ x

j σ
x
j+1

)
, (10)

over the final state, which is in fact the number of excited
quasiparticles [23].

As time evolves, the quantum state |ψ (t )〉, which gets
excited from the instantaneous ground state, should follow the
time-dependent Bogoliubov transformation,

cq = uq(t )η̃q + v∗
−q(t )η̃†

−q, (11)

where the quantum state has to be annihilated by the Bo-
goliubov fermions η̃q at every instant: η̃q|ψ (t )〉 = 0. In the
Heisenberg picture, the fermion operator and Bogoliubov
quasiparticle operator should satisfy i d

dt η̃q = 0 and i d
dt cq =

[cq, H] [23,89].
We can arrive at the dynamical version of the time-

dependent Bogoliubov–de Gennes (TDBdG) equations,

i
d

dt

[
uq(t )
vq(t )

]
=

[
εq(t ) 	q

	q −εq(t )

][
uq(t )
vq(t )

]
, (12)

where εq(t ) = 2{g(t ) − cos q} and 	q = 2 sin q. It can be
solved exactly by mapping to the Laudau-Zener (LZ) problem
[23,90]. We need to solve this problem for the linear ramp
and calculate the density of defects through the excitation
probability in the final state of the system.

And then, the LZ excitation probability is given by

pq =〈ψ (0)|η†
qηq|ψ (0)〉

=
∣∣∣∣ cos

q

2
uq(0) − sin

q

2
vq(0)

∣∣∣∣
2

(13)

at t = 0, where |ψ (t )〉 is quantum state, and uq(t ) and vq(t )
are solutions of Eq. (12). Generally, the kink density is related
to the average excitation probability,

n = lim
N→∞

1

N
〈ψ (0)|N |ψ (0)〉 = 1

π

∫
q>0

dq pq. (14)

In the Appendix, the solutions in Eq. (12) are expressed in
terms of complex parabolic cylinder functions with a variable
z = 2

√
τQ( t

τQ
+ cos q)eiπ/4. The variable z varies with t from

zi to z f that are formulated as

zi ≡ z|t=ti = 2
√

τQ(−gi + cos q)eiπ/4 (15)

and

z f ≡ z|t=t f = 2
√

τQ cos qeiπ/4, (16)

respectively.

IV. QUENCH DYNAMICS

By applying the asymptotes of the parabolic cylinder func-
tions that are given in Eqs. (A3)–(A5), we find that the quench
dynamics falls into one of the three regimes, listed in Table I.
In the following, we show the behaviors of the density of
defects in the three regimes.

A. Kibble-Zurek regime

In the KZ regime, characterized by the slow quench
when τQ � 1, the well-known KZM accurately predicts the
behavior of defect density. In this regime, the long-wave ap-
proximation is valid since only long-wave modes within the
small interval of q � 1√

πτQ
� π

2 contribute, while short-wave
modes are rarely excited when the system is driven across the
critical point. Meanwhile, we have |zi| � 1 and |z f | � 1. Ac-
cording to the asymptotes listed in Table I, the time-dependent
Bogoliubov coefficients at t = 0 are worked out as

|uq(0)|2 = e−2πτQq2
, (17)

uq(0)vq(0)∗ = e−πτQq2
√

1 − e−2πτQq2 eiφq , (18)
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TABLE I. Three types of regimes determined by the combination of limits of |zi| and |z f | defined in Eqs. (15) and (16), respectively. The
asymptote of the parabolic cylinder function follows from Eq. (A3) or (A4) when |z| → ∞, but follows from Eq. (A5) when |z| → 0.

KZ regime (τQ > 1) PS regime (g−2
i < τQ < 1) S regime (τQ < g−2

i )

ti = −giτQ |zi| → ∞ |zi| → ∞ |zi| → 0
t f = 0 |z f | → ∞ |z f | → 0 |z f | → 0

where the dynamical phase reads

φq = π

4
+ 2τQ + q2τQ(ln 4τQ + γE − 2), (19)

and γE is the Euler gamma constant. There are two length
scales in the KZ regime. The first length scale is the correla-
tion length (also known as KZ length),

ξ̂KZ = √
τQ, (20)

contained in |uq(0)|2 or |vq(0)|2. The second length scale is
the one ∝ √

τQ(ln 4τQ + γE − 2) implied in the dynamical
phase φq. Observably, the second length scale is much longer
than the KZ correlation length in the large-τQ limit, but it
vanishes as τQ approaches the boarder to the PS regime,
τQ → 1. It is well known that KZM determines the spectrum
of excitations pq after the system crosses the critical point,
and subsequent dephasing of the excited quasiparticle modes
manifests through the dynamical phase φq [48]. Therefore,
there is a significant difference in the dephasing process be-
tween τQ → 1 and τQ → ∞, which will be further discussed
in Sec. VI.

In this regime, the spectrum of excitations features a
Gaussian decay in quasimomentum, pq = e−2πτQq2

. Thus the
density of defects is given by

n = 1

2π
√

2τQ
, (21)

which decays as the inverse square root of τQ.

B. Saturated regime

If the evolution lasts only for a short period of time, break-
down of the KZ power law can be anticipated, which leads to a
plateau in the defect density, nsu + O(τ 2

Q), where nsu is a con-
stant attributed to a sudden quench [71]. There is a universality
in the deviation from the KZM [72]. In the S regime, charac-
terized by a very fast quench with the condition, τQ < g−2

i , for
a moderate or large initial transverse field, both |zi| and |z f |
approach 0. Following the prescription in Table I, we work
out two time-dependent Bogoliubov coefficients,

|uq(0)|2 = uq(ti )
2 − 4

3 g2
i τ

2
Q sin2 q, (22)

uq(0)vq(0)∗ = uq(ti )vq(ti ) + 1
3 g3

i τ
2
Q sin q

+ i(gi + cos q)τQ sin q, (23)

and the excitation probability

pq = psu
q − 1

3 g3
i τ

2
Q sin2 q

{
1 + O

(
g−1

i

)}
, (24)

where uq(ti ) and vq(ti ) are the initial Bogoliubov coefficients
formulated in Eqs. (A6) and (A7), and

psu
q =

∣∣∣uq(ti ) cos
q

2
− vq(ti ) sin

q

2

∣∣∣2
(25)

is the excitation probability in the sudden quench limit. Then
we can get the final density of defects,

n = nsu − 1

6
g3

i τ
2
Q, (26)

nsu =
∫ π

0

dq

π
psu

q

∣∣∣∣
gi�1

= 1

2
− 1

4gi
. (27)

The constant term 1
2 could be attributed to a sudden quench

(τQ = 0) in the limit gi → ∞. The third term is a higher-
order correction compared to the second one since we have
g3

i τ
2
Q < g−1

i .

C. Presaturated regime

Now we consider another important situation. Herein, al-
though the quench is fast (τQ < 1), it is not so fast as to
exceed the square of the initial transverse field gi, and we have
τQ > g−2

i instead of τQ < g−2
i . One can ensure this situation

by preparing the initial system far from the critical point. In
this case, we may consider the limits |zi| → ∞ and |z f | → 0
to search for appropriate asymptotes of the parabolic cylinder
functions as prescribed in Table I such that the two time-
dependent Bogoliubov coefficients are worked out as

|uq(0)|2 = |C1|2
x

{
4 x2 sinh

πx

2
cot2 q + cosh

πx

2

− 2 x
√

sinh (πx) cot q

}
, (28)

uq(0)vq(0)∗ = |C1|2√
x

{√
sinh (πx)

2x
ei π

4

+ (2x)
3
2

tan2 q

√
sinh (πx)ei π

4 + i
2xe− πx

2

tan q

}
, (29)

where x = τQ sin2 q and |C1|2 is to be found in Eq. (A8). To
get an analytical result, the excitation probability defined in
Eq. (13) is expanded into powers of τQ and, by keeping the
lowest order

√
τQ, we arrive at

pq = 1

2
− 1

2
cos q + uq(ti)

2 cos q

−
√

π

2
√

τQu2
q(ti ) sin2 q. (30)

In contrast to the Gaussian decay observed in the KZ
regime, the excitation probability exhibits a slower decay be-
havior as q increases. To the order of τ

3/2
Q , it is easy to verify
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that the density of defects can be worked out as

n = 1
2 − A(gi ) τ

1/2
Q + B(gi ) τ

3/2
Q , (31)

where

A(gi ) =
(

1 − 3

16g2
i

)√
π

4
, (32)

B(gi ) =
√

π

32g2
i

− 5π3/2

256g2
i

−
√

π

4
+ 3π3/2

32
. (33)

As the common feature with the S regime, the constant term
1
2 also originates from the sudden quench from a fully po-
larized paramagnetic state to a classical ferromagnetic state
in the limit gi → ∞, although now we demand the condition
τQ > g−2

i .
To view a panorama of the S, PS, and KZ regimes from the

slow to fast quench limits, we solve Eq. (12) numerically and
compare the numerical result with the above analytical ones
at several selected transverse field: gi = 4, 8, 16, and 32. The
comparison is illustrated in Fig. 2. Besides the KZ regime, the
predictions in Eqs. (26) and (31) are in very good agreement
with the numerical solution in the S and PS regimes.

D. Turning points

From the above results, we see that the quench dynamics
of the one-dimensional transverse Ising chain falls into one of
three distinct regimes from the slow to fast limits. Now we
look for the turning points between the regimes.

1. Turning point between S and PS regimes

As outlined in Table I, there is a turning point between the
S and PS regimes, whose defect densities are described by
Eqs. (26) and (31), respectively. Near the turning point, the
term with order τ

3/2
Q in Eq. (31) can be neglected compared

with the term with order τ
1/2
Q since we have A(gi )/B(gi ) =

5.61 + O(g−2
i ) according to Eqs. (32) and (33). As illustrated

in Figs. 3(a) and 3(b), one can observe an obvious change
of scaling behavior near a turning point τ S

Q. We can take the
intersection point of the two curves in Eqs. (26) and (31) as the
turning point, which is obviously dependent on gi. Then, from
Fig. 3(c), one can observe and verify numerically a scaling
law,

τ S
Q = 1.17g−2

i , (34)

for large enough gi. Consistently, according to Eq. (1), the
existence of the PS regime is ensured by gi > 2 since we have
gc = 1 and g f = 0 here. In Fig. 3(d), we show the behavior of
the defect density at τ S

Q as a function of 1/gi. And by fitting
the data, we obtain n|τ S

Q
= 1/2 − 0.43g−1

i . More interesting,
the scaling behavior of the turning point implies that the S
regime shrinks with gi increasing until it disappears in the
limit gi → ∞ so that the PS regime dominates the entire fast
quench regime.

FIG. 2. The density of defects vs the quench time and the three
regimes (S, PS, and KZ) with several selected parameters: (a) gi = 4,
(b) 8, (c) 16, and (d) 32. The dashed, solid, and dotted lines are
generated by the analytical formulas in Eqs. (26), (31), and (21),
respectively, which are in very good agreement with the numerical
solutions by Eq. (12) denoted by the triangles. We can observe
that the S regime shrinks rapidly with gi increasing and disappears
eventually if gi → ∞.
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FIG. 3. Scaling behavior of defect density near the turning point
from S to PS regimes: (a) (nsu − n)gi vs g2

i τQ according to Eq. (26)
and (b) (1/2 − n)gi vs g2

i τQ according to Eq. (31). In (a), the nu-
merical data collapse to the scaling law (dashed line), gi(nsu − n) ∝
(g2

i τQ )2. In (b), the numerical data collapse to the scaling law (solid
line), gi(1/2 − n) ∝ (g2

i τQ )1/2, near the turning point. (c) The turning
point τ S

Q vs gi showing a power-law scaling behavior, τ S
Q = 1.17g−2

i .
(d) Density of defects vs 1/gi at the turning point τ S

Q, which reaches
the value 1/2 when gi → ∞. By fitting the data, we obtain n|τS

Q
=

1/2 − 0.43/gi.

2. Turning point between PS and KZ regimes

According to Eq. (31), the defect density in the PS regime
loses scaling behavior near the border to the KZ regime since
its third term proportional to τ

3/2
Q becomes significant. Mean-

while, according to Eq. (30), the long-wave approximation
fails because the modes with large quasimomentum q are
involved.

On the other hand, the dephasing effect in the KZ regime
has an impact on the kink-kink correlation function through a
dephasing length,

l = ξ̂KZ

√
1 +

[
3

4π
(ln 4τQ + γE − 2)

]2

, (35)

that describes the kink-kink correlation range [48]. The de-
phasing effect is a consequence of the interplay between the
correlation length ξ̂KZ and the second length in the dynamical
phase expressed in Eq. (19). In the KZ regime, l is much
longer than the correlation length ξ̂KZ for slow quench. But
near the PS regime, it decreases and becomes comparable to
the correlation length ξ̂KZ and the dephasing effect is negligi-
ble. So, according to Eqs. (19) and (35), we can take the value

τKZ
Q = e2−γE

4
≈ 1.037 (36)

as the turning point between the PS and KZ regimes (see
Fig. 2). We notice that it does not depend on the initial

transverse field gi. At this point, the dynamical phases of the
different excited modes become independent of the quasimo-
mentum q since we have φq|τKZ

Q
= π/4 + 2τKZ

Q . Moreover, a
novel decay behavior in the kink-kink correlation is induced
when entering into the PS regime, which will be demonstrated
in the next section.

By Eqs. (5) and (6), we get the estimations (τKZ
Q )AI ∼ 1 and

(τ S
Q)AI ∼ g−2

i , which are in good agreement with the results in
Eqs. (34) and (36), respectively.

V. KINK-KINK CORRELATION

In this section, we discuss the two-point correlation func-
tion between two defects. At t = 0, the connected kink-kink
correlation function between two kinks with distance R is
defined as

CKK
R = 〈KjKj+R〉 − 〈Kj〉〈Kj+R〉, (37)

where Kj = 1
2 (1 − σ x

j σ
x
j+1) represents the kink number oper-

ator on the bond between sites j and j + 1. In the fermionic
representation, the correlation can be expressed in terms of the
diagonal and off-diagonal quadratic correlators and worked
out as

CKK
R>1 = ReβR+1ReβR−1 + (ImβR)2 − αR+1αR−1

+ αR−1ReβR+1 − αR+1ReβR−1, (38)

CKK
R=1 = (Imβ1)2 − Reβ2

2
− α2α0 + α0Reβ2 + α2

2
, (39)

CKK
R=0 = 1

4
− (Reβ1)2 − α2

1 + 2α1Reβ1, (40)

where

αR = 2

N

∑
q>0

|uq(t ) |2 cos(qR), (41)

βR = 2

N

∑
q>0

uq(t )v∗
q (t ) sin(qR) (42)

are the diagonal and off-diagonal correlators, respectively.
In Eq. (38), we can discern the nonmixed terms and mixed
terms. The nonmixed terms include the off-diagonal ones,
ReβR+1ReβR−1 and (ImβR)2, that only contain off-diagonal
correlators and the diagonal one, −αR+1αR−1, that contains
only a diagonal correlator. The mixed terms, αR−1ReβR+1

and −αR+1ReβR−1, contain both diagonal and off-diagonal
correlators. In Fig. 4, we exhibit the contributions of the terms.
In the KZ regime, one can observe that the mixed terms can
be neglected [48] [Fig. 4(a)]. However, after entering into the
PS regime, the mixed terms take charge [Fig. 4(b)–4(d)].

As a consequence, the behavior of the kink-kink correla-
tion undergoes a significant change during the breakdown of
the KZ scaling law from the KZ to PS regimes. In the KZ
regime, the kink-kink correlation features a Gaussian decay
[48,49,89],

n−2CKK
R = a

ξ̂KZR2

l3
e−3π (R/l )2 − e−2π (R/ξ̂KZ )2

, (43)

where n is formulated as Eq. (21), and a = 9.75 is a numerical
prefactor. However, near the border of the PS regime, the
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FIG. 4. Kink-kink correlator, nonmixed term, and mixed term for
various quench times (a) τQ = 8, (b) 1, (c) 0.9, and (d) 0.8, with gi =
6. In the KZ regime, the kink-kink correlator is mainly determined
by the nonmixed term. However, we observe that the mixed term
dominates the behavior of the kink-kink correlator in the PS regime.

length l shrinks to a scale comparable to the correlation length
ξ̂KZ, so the kink-kink correlation is expected to deviate from
the Gaussian decay, while in the PS regime, we adopt a scaling
hypothesis,

CKK
R /CKK

1 = ξ−	S(R/ξ ), (44)

where the unknown ξ is the correlation length for this regime,
	 is the scaling dimension, and S(x) is a nonuniversal scaling
function [52]. First, CKK

1 , defined in Eq. (39), is indepen-
dent of the distance R and can be fitted numerically alone.
As outlined in Fig. 5(d), we find it is described by CKK

1 ≈
−0.013e−0.73/τQ quite well. Second, the nonuniversal scaling
function is conjectured tentatively as (R/ξ )e−R/ξ so that we
can extract the correlation length ξ . By varying 	, it can be
observed whether the data collapse to the conjectured scaling
function. From Figs. 5(a) and 5(b), we see the data collapse to
the scaling function quite well when 	 ≈ 1, where we obtain

S(R/ξ ) = 1.86e−R/ξ R/ξ (45)

and

ξ = 0.33 + 0.23τQ. (46)

VI. COHERENT MANY-BODY OSCILLATION

Finally, we investigate the coherent many-body oscillation
after the quench, which is complementary to the dephasing,
as a detecting means to measure the dephasing effect on the
superposition state [51]. After the system is quenched across
the critical region, its post-transition state is a superposition
of states that populates with topological defects. The superpo-
sition inevitably results in the quantum coherent oscillation.
In the KZ regime, the coherent quantum oscillation satisfies
a Kibble-Zurek dynamical scaling law. It is interesting to
explore the behavior of the coherent many-body oscillation
in the PS and S regimes.

FIG. 5. (a) Kink-kink correlation vs the distance R, for several
values of the quench time τQ. We select the parameter gi = 8 here.
(b) Nonuniversal scaling function S(R/ξ ) vs the scaled distance R/ξ .
The numerical data collapse to the conjectured scaling function in
Eq. (45) (denoted by the dashed line). The inset shows that the
scaling function cannot fit for the data uniformly if 	 deviates
from 1. (c) The correlation length. (d) The kink-kink correlation
at R = 1. In (c) and (d), we obtain ξ = 0.33 + 0.23τQ and CKK

1 =
−0.013e−0.73/τQ , by fitting the data.

We calculate time-dependent transverse magnetization. It
is given by the expression〈

σ z
j (t )

〉 = 〈
ei

∫
t H (t ′ )dt ′

σ z
j e−i

∫
t H (t ′ )dt ′ 〉

t , (47)

where the system freely evolves after a linear quench,

g(t ) =
{− t

τQ
, −giτQ < t < 0

0, t � 0.
(48)

For the free evolution t > 0, the transverse magnetization can
be worked out as〈

σ z
j (t )

〉 = A + M cos(4t + φ), (49)
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FIG. 6. The scaling behaviors of (a) Asu − A and (b) M2
su − M2 as

a function of quench time with several selected parameters: gi = 4,
8, 16, and 32. Asu − A and M2

su − M2 scale as ∝τ 2
Q in the S regime

and, for sufficiently large gi, they scale as ∝τQ in the PS regime. The
lines are analytical results according to the formulas in Eqs. (53) and
(54).

which exhibits a coherent oscillation with a period T = π
2

along the time t . The nonoscillatory part, the amplitude, and
the phase angle, respectively, read

A = α0 + α2 − Reβ2 − 1

2
, (50)

M2 =
(

α0 − α2 + Reβ2 − 1

2

)2

+ 4(Imβ1)2, (51)

tan φ = 2Imβ1

α0 − α2 + Reβ2 − 1
2

, (52)

where αR and βR are defined in Eqs. (41) and (42) at t = 0.
The final result for the KZ regime was given by Dziarmaga

et al. in Ref. [51]. Here, we focus on the results for the S and
PS regimes, which read

A =
⎧⎨
⎩

1
2 − 1

16g2
i
+ (

π

64g2
i
− π

8

)
τQ, PS regime

1
2 − 3

16g2
i
− g2

i
12τ 2

Q, S regime,
(53)

and

M2 =
⎧⎨
⎩

1
4 − 3

16g2
i
+ (

7π

32g2
i
− π

8

)
τQ, PS regime

1
4 − 1

16g2
i
− 1

4 g2
i τ

2
Q, S regime.

(54)

FIG. 7. The time-dependent magnetization with fixed parameter
gi = 6 for (a) the slow quench and (b) the fast quench. The scaled
data are a function of scaled time, (t − tc )2/τQ. In (a), the data
collapse to the same curve and show the coherent oscillation with the
fixed period given by Eq. (56), which causes the dephasing process.
In (b), the data show that the evolution lacks a dephasing process.
The insets of (a) and (b) show that a longer duration of dephasing
results in a weaker coherent oscillation during free evolution.

In the case of a sudden quench limit, i.e., τQ = 0, we have
Asu = 1

2 − 3
16g2

i
and M2

su = 1
4 − 1

16g2
i
. The nonoscillatory part

and amplitude scale as Osu − O ∝ τ 2
Q, where O represents

either A or M2 in the S regime. However, in the large initial
transverse field limit, gi → ∞, they scale as Osu − O ∝ τQ in
the PS regime. Thus, there is a change of scaling behaviors
near the vicinity of τ S

Q. These analytical results are confirmed
by numerical ones, as illustrated in Fig. 6.

Furthermore, in the kink-kink correlator, we have observed
a shrinking of the characteristic length l from the KZ to PS
regime, which is due to an attenuation of the dephasing effect.
Here, we demonstrate that it can also be observed in the time-
dependent magnetization. After the critical quench dynamics,
the off-diagonal correlator exhibits a coherent oscillation that
leads to the dephasing effect [24,49],

βR(t ) = e
2it2

τQ

2π i

∫ π

−π

dq|uq(t )vq(t )∗|e−i(4t cos q+2φq−qR), (55)

where φq is dynamical phase and is formulated as Eq. (19) for
the KZ regime. The dephasing effect is the interplay of these
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two terms. One is e2it2/τQ that causes a coherent oscillation
with period Tt2 = πτQ along the axis of the square of time.
The other is e−i4t cos q that results in a amplitude decay after
integration. The dephasing effect also occurs in the time-
dependent magnetization,

(〈
σ z

j (t )
〉 − 〈

σ z
j

〉
GS

)
/n ∼ cos

(
2

τQ
t2

)
, (56)

where 〈σ z
j 〉GS is the transverse magnetization of the ground

state. The total evolution time of the linear quench is in pro-
portion to the quench time (i.e., t f − ti = giτQ), so a larger
quench time leads to a longer dephasing time. In the inter-
val tc < t < 0, where tc = −τQ is the time when the system
crosses the critical point, the slow quench exhibits a longer
duration of dephasing with oscillation in the fixed period Tt2 ,
as illustrated in Fig. 7(a). But, the fast quench exhibits a
transient duration of dephasing, as illustrated in Fig. 7(b). As
shown in the insets in Figs. 7(a) and 7(b), when t > 0, the am-
plitude A gradually decreases as the duration of the dephasing
increases. This means the dephasing effect inevitably weakens
the coherence.

VII. SUMMARY

In summary, we have demonstrated that there can be a
PS regime lying between the S and KZ regimes. First the
scenario is established according to the AI approximation.
Then we provide both analytical and numerical calculations
on the transverse field Ising model to realize the scenario.
As we shift the quench dynamics from the S to the PS
regime, the scaling behavior in the defect density changes
from (n − nsu)gi ∝ (g2

i τQ)2 to (n − 1/2)gi ∝ (g2
i τQ)1/2 near

turning point τ S
Q. This turning point scales with the initial

transverse field, τ S
Q ∝ g−2

i , implying that the S regime van-
ishes for an infinite initial transverse field, gi → ∞. As we
shift the quench dynamics from the KZ to the PS regime, the
dephasing effect is attenuated. Near the turning point τKZ

Q , the
kink-kink correlator exhibits an exponential decay behavior
rather than a Gaussian decay. This is due to the fact that the
characteristic length l shrinks to the scale of the KZ length,
ξ̂KZ. Below τKZ

Q , the lack of the dephasing effect leads to more
prominent coherent oscillations in the postquench state during
free evolution.

Intriguingly, a significant PS regime can emerge after the
KZ scaling law breaks down and before the S scaling law
develops. Although this finding is mainly based on a prototyp-
ical integrable system, the scenario of the AI approximation
suggests that the conclusion may be generalized to other sys-
tems, such as nonintegrable systems [91,92], to which the AI
approximation is also applicable [72,93–95].
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APPENDIX: SOLUTION OF THE TDBdG EQUATIONS

We can exactly solve the TDBdG equations given by
Eq. (12) by mapping them to the Landau-Zener problem.
Then, the time-dependent Bogoliubov coefficients can be
given by

vq(z) = C1D−sq−1(iz) + C2D−sq−1(−iz), (A1)

uq(z) = eiπ/4

√
τQ sin q

(
i

d

dz
+ iz

2

)
vq(z), (A2)

with free complex parameters C1 and C2. Here, Dm(z) is
the complex parabolic cylinder function, z = 2

√
τQ( t

τQ
+

cos q)eiπ/4, and sq = −iτQ sin2 q. To reduce the above rigor-
ous solution, we need to apply the asymptotes of Dm(z) that
are given by [96]

Dm(z) = e−z2/4zm, ∀| arg(z)| < 3π/4, (A3)

Dm(z) =e−z2/4zm −
√

2π

�(−m)
e−imπ ez2/4z−m−1,

∀ − 5π/4 < arg(z) < −π/4, (A4)

for |z| � 1, and

Dm(z) = 2m/2√π

�
(

1
2 − m

2

) − 2
1
2 + m

2
√

πz

�
( − m

2

) + O(z2), (A5)

for |z| → 0.
Furthermore, in numerical simulations, the time-dependent

parameter should start at a finite value. We choose a suffi-
ciently large but finite initial transverse field, so the initial
conditions of Eqs. (A1) and (A2) can be expanded into powers
of 1/gi,

uq(ti )
2 = 1 − sin2 q

4g2
i

+ O

(
1

g3
i

)
, (A6)

vq(ti )
2 = 1 − uq(ti )

2. (A7)

Based on this approximation, the two constants, C1 and C2,
can be expressed as

|C1|2 = uq(ti )
2 e− π

2 τQ sin2 qτQ sin2 q, (A8)

|C2|2 = 0, (A9)

for |zi| � 1, and

C1 = vq(ti )√
2π

− (−1)3/4uq(ti )
√

τQ sin q

2
+ O

(
τQ, τ 2

Q

)
, (A10)

C2 = vq(ti )√
2π

+ (−1)3/4uq(ti )
√

τQ sin q

2
+ O

(
τQ, τ 2

Q

)
, (A11)

for |zi| � 1, where zi is defined by Eq. (15).
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