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Measurement-induced chirality: Diffusion and disorder

Brian J. J. Khor,1,* Matthew Wampler ,1 Gil Refael,2,3 and Israel Klich1,†

1Department of Physics, University of Virginia, Charlottesville, Virginia 22903, USA
2Department of Physics, California Institute of Technology, Pasadena, California 91125, USA

3Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA

(Received 2 August 2023; revised 26 October 2023; accepted 4 November 2023; published 8 December 2023)

Repeated quantum measurements can generate effective new nonequilibrium dynamics in matter. Here we
combine such a measurement driven system with disorder. In particular, we investigate the diffusive behavior
in the system and the effect of various types of disorder on the measurement induced chiral transport protocol.
We begin by characterizing the diffusive behavior produced by the measurements themselves in a clean system.
We then examine the edge flow of particles per measurement cycle for three different types of disorder: site
dilution, lattice distortion, and disorder in on-site chemical potential. In the quantum Zeno limit, the effective
descriptions for the disordered measurement system with lattice distortions and random on-site potential can be
modeled as a classical stochastic model, and the overall effect of increasing these disorders induces a crossover
from perfect flow to zero transport. On the other hand if vacancies are present in the lattice the flow of particles
per measurement cycle undergoes a percolation phase transition from unity to zero with percolation threshold
pc ≈ 0.26, with critical exponent ν ≈ 1.35. We also present numerical results away from Zeno limit and note that
the overall effect of moving away from the Zeno effect is to reduce particle flow per cycle when the measurement
frequency in our protocol is reduced.
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I. INTRODUCTION

The development of engineering novel quantum systems
by applying periodic (Floquet) driving has produced quantum
phases without a static analog [1–9]. A prominent example
is the anomalous Floquet topological insulator [5–8], where
a chiral edge state emerges alongside completely trivial bulk
bands, in stark contrast to standard topological insulators. The
idea behind this phase is to break time reversal symmetry
by sequentially modulating particle hopping on a lattice; this
stirs the particles in such a way that their trajectories in the
bulk trace out closed loops, whilst on the edge chiral states
emerge [1]. Such dynamics has been realized experimentally
in, for example, cold atom systems [10,11], while theoreti-
cally these ideas have recently been extended to interacting
systems where an even more diverse class of topological
phases emerges [7,12–14].

On the other hand, the interplay between measurements
and unitary time evolution in quantum many-body systems
has received renewed interest in recent years [15–44]. This
is, in part, due to developments on phase transitions in the
entanglement entropy of random unitary circuits with mea-
surements (see Ref. [35] and references therein) as well as on
the utility of measurements to induce nontrivial dynamics and
to prepare quantum states [15,45–49].

In Ref. [15], it was shown that periodic sequences of mea-
surements may be used to induce chiral edge charge transport
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alongside trivial bulk dynamics in a way much analogous to
anomalous Floquet insulators. The general intuition behind
this procedure is to use measurements to control the effec-
tive particle hopping on a lattice. This may be seen most
clearly in the limit of rapid measurements, the quantum Zeno
limit, where dynamics is frozen within monitored sections of
the lattice and hopping is eliminated between monitored
and un-monitored sections of the lattice. This measurement-
based control of the particle hopping may then be leveraged
to recreate the periodic modulation of hopping amplitudes
used to induce anomalous Floquet insulators. However, the
measurement-based scheme also exhibits distinct features due
to the nonunitary nature of the evolution.

In this work, we continue an investigation of the
measurement-induced chirality protocol [15] by looking at
the following aspects. (1) The diffusive dynamics of the
measurement-induced chiral systems when the system is
tuned away from the “perfect swapping” limit and away from
the Zeno measurement limit, and (2) the effects of various
kinds of disorder on the measurement-induced chiral flow
rate in our free fermion systems hopping on a Lieb lattice.
In particular, we consider chiral flow in the case of site va-
cancy disorder, random hopping strength, and random on-site
potential, both in and out of the Zeno measurement limit, and
diffusive dynamics for the case of random on-site potential.
Indeed, an important characterization of systems exhibiting
chiral physics is their response to disorder, as have been long
studied in, e.g., the context of the quantum Hall effect [50,51],
where relations to percolation physics have been explored.
Disorder also plays a crucial role in the anomalous Floquet
insulators mentioned above.
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FIG. 1. The three varieties of disorder considered in this work:
(a) sites are randomly removed from the lattice with probability p,
(b) random on-site potentials are applied to the lattice (the strength
of the potential at each site is represented by the size of the vertex),
and (c) the hopping strength between adjacent sites is given by a
uniform, random distribution (represented by the size of the edge).

The approach we take in this paper will import techniques
developed in [52], in similar spirit taken in our earlier work
[15]. In Ref. [52], the competing effects of unitary evolution
and measurements were studied using a closed hierarchy ap-
proach. This technique has also been used, for example, to
describe nonequilibrium steady states of current [52] and den-
sity fluctuations (quantum wakes) following a moving particle
detector and other disturbances [53].

The structure of our work is as follows. In Sec. II,
we briefly review the measurement protocols and the basic
physics behind our earlier work on measurement-induced
chirality [15]. This is followed by studying the diffusive
dynamics of the measurement-induced chirality out of the
perfect swapping parameter and out of Zeno limit in Sec. III.
After dealing with clean systems, we proceed to study two
varieties of disorders in subsequent sections as illustrated in
Fig 1. In Sec. IV, we deal with site vacancy disorder for
our system in the Zeno limit, as motivated by our system. In
particular, there is a percolation threshold when measurement
period is tuned to perfect swapping case with deterministic
walk [54]. In Sec. V, we numerically simulate the effect of
random hopping strength and random on-site potential on the
chiral flow rate induced by measurement, still operating in the
Zeno limit, and provided an analytical mean field treatment
to describe the weak disorder limit. In Sec. VI, we investigate
numerically the diffusive dynamics and the chiral flow rate for
our measurement-induced chiral system under all three types
of disorder (vacancy, random hopping and random potential)
away from the Zeno limit. We present discussions and possi-
ble outlook in Sec. VII.

II. MEASUREMENT INDUCED CHIRALITY PROTOCOL

In this section, we briefly review the protocol realizing the
measurement induced chirality in [15]. We consider fermions
freely hopping on a Lieb lattice, subject to a cycle of local
density measurements as follows.

The measurement cycle in Fig. 2 consists of eight steps
taking an overall measurement period T . At each step, we take
repeated measurements to detect particles throughout a subset
of the lattice, while the system is allowed to evolve freely
in between measurements with the nearest neighbor hopping
Hamiltonian H = −thop

∑
〈i, j〉 c†

i c j + H.c. We denote the set

FIG. 2. Measurement protocol. Yellow vertices indicate the set of
repeatedly measured sites, while black sites are the unmeasured, free
evolving set, Ai. The adjacent black vertices trace out a chiral path
around a plaquette in the Lieb lattice. In the Zeno limit with perfect
swapping parameters, particles will trace out the path as shown by
the red loops in first figure.

of sites not being measured at step i by Ai as marked in Fig. 2
and enforce periodicity by setting Ai+8 = Ai. Within step i, we
carry out the following steps.

(1) Particle densities at all sites in (Ai ∩ Ai−1)c are mea-
sured, i.e., we measure all other sites in the lattice except the
sites circled in each step in Fig. 2.

(2) Free evolution under a free hopping Hamiltonian H =
−thop

∑
〈rr′〉 c†

rcr′ + H.c. for a time τ = T
8n . Here n is an inte-

ger describing the measurement frequency.
(3) Particle densities at all sites in Ac

i are measured.
(4) Steps 2 and 3 are repeated n times.
The overall effect of the measurement protocol has been

shown in Ref. [15] to exhibit protected chiral charge flow
of the particles, as shown by the red loops in Fig. 2. The
physical intuition of measuring everywhere in the lattice other
than the circled sites is to restrict (and in the case of rapid
Zeno monitoring, freeze entirely) particle motion elsewhere
other than between the circled pairs of sites. This dynamics
is reminiscent of the anomalous Floquet topological insula-
tor [1] in that we selectively switch on certain links on the
lattice where free evolution are allowed to take place but
also presents differences due to the nonunitary nature of the
measurements.

We emphasize that the Lieb lattice was chosen for ease of
comparison with the Floquet insulator dynamics of Ref. [1],
however the particularities of the band structure associated
with the Lieb lattice (a flat band) are not important since any
coherent dynamics is quickly disrupted by measurement as
we will see in detail. It is only for reduced measurement rates
that effects from the band structure may begin to emerge. We
also remark that the measurement protocol is not restricted
to the Lieb lattice alone. For a more thorough discussion on
the geometric conditions a lattice needs to satisfy in order to
carry out a measurement protocol as above, we refer interested
readers to Appendix C in Ref. [15].

In order to study the charge flow, we focus on the dynamics
of the two point correlation function G(t )rr′ = Tr(ρ(t )c†

rcr′ )
under measurement and unitary time evolution. The correla-
tion G transforms in a simple way under particle detection
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measurements and under noninteracting evolution, respec-
tively (see, e.g., Refs. [15,52]):

G → (1 − Pr )G(1 − Pr ) + PrGPr, (1)

G → UGU †, (2)

where Pr = |r〉 〈r| is the projector onto site r where a parti-
cle detection measurement is has been performed, and U =
exp(−iHt ) is the (single particle) unitary time evolution be-
tween consecutive measurements under the free Hamiltonian
H for time t . We stress that the map (1) is the result of
averaging over measurement outcomes.

It is informative to consider the limit of many measure-
ments per step (n → ∞), i.e., the quantum Zeno limit. The
signature characteristic of this regime is the freezing of
evolution in the subspace of measured sites while free evo-
lution continues to occur between unmeasured sites. In other
words, the time evolution during the ith step of the eight-step
measurement cycle may be replaced by evolution under the
Hamiltonian

HAi = −thop
∑

〈rr′〉∈Ai
c†

rcr′ + H.c., (3)

where now the evolution is confined to between unmeasured
sites within each set Ai.

Another important aspect of the dynamics in the Zeno limit
is that in this limit, repeated application of Eq. (1) under our
protocol, kills off-diagonal elements of G between sites in the
set Ai

c, and the switch between measurement of Ai
c to the next

step Ac
i+1 eliminates any lingering off-diagonal correlations

that have developed inside the set Ai during the evolution [15].
Therefore, at the beginning/end of steps, we only need to keep
track of the diagonal components Grr. Let us combine these
in a vector, |g(t )〉, where 〈r|g(t )〉 ≡ Grr. Then the effective
action of step i in the protocol, including the unitary evolution
and measurements in the Zeno limit, is described by

|g(t )〉 → R |g(t )〉 (4)

Ri = ⊕〈r,r′〉∈Ai

(
1 − phop phop

phop 1 − phop

)
⊕other sites I, (5)

i.e., the evolution of the local particle density |gi(t )〉 in the
Zeno case is given by a periodically driven random walk. The
probability for hopping between sites is related to the period
of each measurement step T/8 by the following equation [15]

phop = sin2

(
T

8

)
. (6)

Note that when the full measurement period T = 4π (2n +
1), n ∈ Z, we have phop = 1 and the evolution becomes
deterministic hopping/walk, a situation we call “perfect swap-
ping”. Similarly, when T = 8πn the evolution is frozen,
with phop = 0. We now summarize the two methods used in
Ref. [15] to measure the chiral charge transport induced by
the measurement protocol in the system.

In the first method, the charge flow is found numerically
by making a cut through the lattice and measuring the charge
flow across it, Fig. 3. Namely, the number of particles flowing
across the slice is found by measuring the change in total

FIG. 3. (Left) The initial configuration and setup for studying
chiral particle flow for all disorder cases considered (with left half
plane filled with particles in blue). The particle exhibits both down-
ward chiral motion (black arrow) and diffusive motion which moves
the front to the right (blue arrows). (Right) After running the protocol
in the half-filled lattice setting, particles density increases beyond
the initial configuration, where lighter blue indicates lower particle
density.

particle number below the cut, i.e., given by

Fsim(t ) ≡
∑

r below slice

(G(t )rr − G(t = 0)rr ). (7)

In order to measure the charge flow along a given edge in the
system, we fill up all the sites near that edge with particles and
then measure (7) while applying the measurement protocol.
The filling of half the system with particles must be done
since, if the whole system was filled, opposite edges in the sys-
tem would exhibit charge transport with equal magnitude but
opposite direction, thereby leading to a no net flow of particles
across the cut. The details of how particles are inserted into the
bulk of the system and the specific path of the cut through the
lattice do not affect the charge flow per measurement cycle
(beyond transient effects) [15].

The second method used to measure the chiral particle flow
assume rapid measurements and relies on the counting statis-
tics of the transport up or down in the system. We introduce
a counting field eiθ to each vertical link by modifying the
transition matrices R3, R4, R7, R8 to

Ri = ⊕〈r,r′〉∈Ai

(
1 − phop eiθ phop

e−iθ phop 1 − phop

)
⊕other sites I (8)

whenever r, r′ are nearest neighbors on a vertical line such
that site r is located above r′. We will denote the transition
matrix (with counting fields) of the full measurement cycle by

Rcyc(θ ) = R8R7R6R5R4R3R2R1. (9)

With the counting field present, we can introduce the mo-
ment generating function after N measurement cycles

χN (θ ) = ∑
rr′

[Rcyc(θ )N ]rr′Grr(t = 0), (10)

which may be used to calculate the charge transport in the y
direction. Namely, the flow per unit length per measurement
cycle (in the long time, N → ∞, limit) is given by

F = lim
N→∞

1

Ly

1

N
i∂θχN (θ )|θ=0 (11)

with Ly the length of the system in the y direction.
In Ref. [15], it was shown that the analytical form of the

flow in the Zeno limit exhibits bulk-edge decomposition in the
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sense that F can be decomposed into a term that is calculated
entirely with bulk operators only and another term that is
computed from the edge operators alone

F = Fbulk + Fedge. (12)

A computation performed in Ref. [15] shows the flow Fedge

depends on phop via

Fedge = p2
hop + p3

hop + p4
hop. (13)

The other flow term Fbulk, on the other hand, depends on phop

in a more nontrivial way, and it is best instead to express Fbulk

in the following form in terms of the bulk operators

Fbulk = i
∑
αβ

[
JB(k)

1

I − RB(k)
∂ky RB(k)

]
αβ

∣∣∣∣∣
k=0

. (14)

Here, RB(k) = RB(k, θ = 0) is a bulk transition operator,
equivalent to Rcyc(θ ) in Eq. (9) except that it comes with
periodic boundary conditions instead of open boundary con-
ditions. In Eq. (14). RB is expressed in k space. The explicit
construction of RB(k, θ ) is delineated in Appendix A as a
6 × 6 matrix in terms of phop, k and the counting field θ . Here,
JB(k) = −i∂θRB(k, θ )|θ=0. From the expressions of JB(k) and
RB(k) (as a nontrivial matrix of phop), one can then compute
Fbulk from a given phop as a sum of the resulting matrix ele-
ments. This formalism is summarized rather briefly here and
we refer readers to [15] for a more extensive discussion and
proof.

III. MEASUREMENT INDUCED DIFFUSION

In Ref. [15] (as reviewed in Sec. II), the focus was on the
emergence of the protected, chiral transport near the edge of
the system. However, it is worth analyzing further the dynam-
ics in the bulk.

One reason is that the bulk dynamics sets the timescale
over which the chiral edge transport is sustained. To see this,
take for example the initial particle configuration described
in Fig. 3. Note that if any of the holes initially located in the
right half plane of the lattice reach the left boundary of the
system at some time during the evolution, then the hole may
be transported along the edge in place of a particle. This would
then alter (namely, reduce) the edge flow. Hence, the timescale
over which the flow F is robust is set by the length of time it
takes for holes initially in the bulk to reach the boundary. In
this section, we study the diffusive behavior of bulk particles
(and holes). We calculate the diffusion coefficient analytically
in the Zeno limit of our measurement protocol and find it
numerically for finite measurement frequencies.

Another reason to take a closer look at the dynamics in the
bulk, is that it acts as a further probe of the interplay between
the chirality of the measurement scheme and the stochastic be-
havior induced from the random measurement outcomes. The
juxtaposition of these two effects was particularly clear when
analyzing the edge dynamics. For example, working in the
Zeno limit, consider replacing the chiral stochastic evolution
Rcyc (9), by evolving with a randomized protocol, where in
each step of the eight-step protocol, we randomly pick Ri and
average over all possible outcomes. This situation is described
by the averaged cycle Rcyc = R1+R2+R3+R4+R5+R6+R7+R8

8 . In this

FIG. 4. A finite droplet on 51 × 51 Lieb lattice is allowed to
evolve under quantum Zeno measurement and unitary evolution. The
droplet configuration for phop = 0.6 exhibits both outward diffusion
and clockwise chiral edge transport while the droplet for phop = 1
exhibits clockwise chiral edge motion only. The droplet setup is em-
ployed for all calculations and simulations on the diffusion constant.

case, the random walk exhibits diffusive dynamics even in
the perfect swapping case, in sharp contrast with the chiral
protocol Fig. 4. It is truly the chiral nature of the drive that then
is responsible for the ballistic transport along the edge. In the
bulk of the system, transport is diffusive as it would be without
the introduction of chirality into the drive, but nonetheless the
chirality does still play a role leading to different diffusion
constants.

A clarifying comment is in order about different origins
of the diffusive dynamics in the system. Namely, there are
two distinct ways to induce diffusion discussed in this paper:
through the measurements (via the tuning of the length of each
measurement step away from perfect swapping or by reducing
measurement frequency) which occurs already in the clean
system, and through the addition of disorder (e.g., on-site
potential or hopping strength disorder). In this section, we
focus on the former, leaving a discussion of disorder-induced
diffusion to Secs. V and VI.

Transport in a system is defined as diffusive when the
average squared displacement from the center of mass is linear
in time, i.e.,

〈�r2(t )〉 = Dt, (15)

where D is the diffusion constant. In our case, starting with
Grr(t = 0) = δrr′δr,0, we have

〈�r2(t = NT )〉 ≡
∑

r(r − rmean(t = NT ))2Grr(t = NT )∑
r Grr(t = NT )

,

rmean(t = NT ) ≡
∑

r rGrr(t = NT )∑
r Grr(t = NT )

,

D = lim
N→∞

〈�r2(t = NT )〉 − 〈�r2(t = 0)〉
NT

.

(16)

Numerical results for the diffusion constant are shown in
Fig. 5, for both Zeno limit and finite measurement frequen-
cies.

As one reduces the measurement frequency per measure-
ment step away from the Zeno limit, the diffusion constant
increases. The feature where diffusion transport is suppressed
(or absent in the Zeno limit) at T = 4πn, n ∈ Z+ becomes
less pronounced in low frequency limit, and eventually the
diffusive transport will become ballistic without any measure-
ment.
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FIG. 5. The diffusion constant in a measurement induced chiral
Lieb lattice as a function of the period of measurement cycle T up
until T = 16π , where in the Zeno limit the diffusion constant is pe-
riodic with 8π . Various measurement frequencies per measurement
step, f , is shown.

In the Zeno limit, the absence of diffusion at T = 4πn, n ∈
Z+ can be attributed either to the perfect swapping case
where n ∈ odd, or the zero hopping case where n ∈ even by
inspecting Eq. (6), with phop = sin2( T

8 ) (setting thop = 1). We
note that the Zeno limit diffusion constant curve exhibits 8π

periodicity.
We can extract the diffusion constant both analytically

and numerically in the Zeno limit. Numerically, we calculate
the diffusion constant on a finite lattice using Eq. (16) for
intermediate timescale before the particle distribution hits the
boundary by having nonzero Grr(t ) > 0 for boundary sites
r. Analytically, we consider a translationally invariant system
with setup considered in Appendix A, placing a single particle
at the position 1 of the unit cell at origin and performing
the calculation in momentum space with the formula (see
derivation in Appendix A)

D = lim
N→∞

1

8N

⎡
⎢⎣

6∑
μ=1

[ − ∇2
k RN

B (k)|k=0
]
μ,1

+
⎡
⎣ 6∑

μ=1

[
∂kx R

N
B (k)|k=0

]
μ,1

⎤
⎦

2

+
⎡
⎣ 6∑

μ=1

[
∂ky R

N
B (k)|k=0

]
μ,1

⎤
⎦

2
⎤
⎥⎦, (17)

where RB = R8R7R6R5R4R3R2R1 is the 6 × 6 transition ma-
trix in Eq. (5) written in k space [see Appendix A for explicit
form of Ri(k)] by making use of translational invariance. We
see that the analytical and numerical result agree well as
shown in Fig. 6.

Identifying the diffusion coefficient, is also helpful for the
numerical calculation of the edge flow we discuss in the next
section. Indeed, to correctly extract the late time dynamics of
the measurement induced chiral flow, one wants to estimate

FIG. 6. The diffusion constant as a function of hopping prob-
ability for measurement induced chirality in clean system, in the
Zeno limit. The averaged randomized quantum Zeno measurement
protocol is shown in the blue line.

the maximum timescale tmax for which the chiral flow counts
mostly only the flow traveling to the lower half of the Lieb
lattice setup in Fig. 3 before the transverse spreading from
diffusion hits the right boundary of the Lieb lattice in Fig. 3.
This is done to exclude finite size lattice boundary effects on
the numerical counting of the chiral flow. By taking into ac-
count the transverse diffusive transport, we can extract the late
time chiral transport for different system sizes while taking
into account finite size effect systematically. We discuss how
we extract the late time mean flow per cycle for the rest of the
paper in Appendix B.

IV. SITE DILUTION AND PERCOLATION THRESHOLD

In Ref. [15], the measurement induced chiral charge trans-
port along the edge of the system was shown to be protected
against edge perturbations in analogy with the protected edge
flow induced in anomalous Floquet insulators. In order to
investigate further the nature of the measurement-induced
protection, we now turn to consider the effects of several
different varieties of disorder on the chiral flow. Furthermore,
these considerations of disorder will also be useful for gaining
insight into the effects of imperfections that may occur in real
experimental implementations of the measurement protocol.

The first kind of disorder we consider is site vacancy dis-
order. Namely, as shown in Fig. 1(a), we consider a situation
where there is a probability pα for each site on the Lieb lattice
to be vacant, i.e., where particles are prohibited from hopping
to or from the vacant sites. The locations of the vacant sites
then stays constant throughout the measurement protocol.

In this section, we will only consider the quantum Zeno
limit and postpone results away from the Zeno limit until
Sec. VI. In this case, there are two different scenarios: (1)
the perfect swapping case (phop = 1) where we will see that
the dynamics is entirely determined by geometric consider-
ations with the flow set by the site percolation threshold pc

of the Lieb lattice, and (2) cases away from perfect swapping
(phop < 1) where both the stochastic nature of the dynamics
and site percolation effects play a role.

A. Perfect swapping case: percolation threshold

With phop = 1, the dynamics is deterministic, with parti-
cles moving in a chiral fashion along edges while performing
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FIG. 7. (Left) Mean flow per cycle in the perfect swapping case phop = 1 plotted as a function of probability of site vacancy in the lattice
pα for various linear system sizes Lx (see Fig. 3) over 1000 disorder realizations. (Middle) The fluctuations of the mean flow per cycle
across 1000 disorder realizations for various system sizes with peak around pc ≈ 0.26. (Right) The scaling collapse with the functional form
〈F 〉 = f ((pα − pc )L1/ν ), where pc ≈ 0.26 and ν ≈ 1.35.

localized trajectories in the bulk. Importantly, the chiral flow
in this case is robust against geometric deformations as shown
in our previous work [15]. Therefore the flow across the sys-
tem given a specific disorder realization is simply determined
by whether a percolating cluster can be formed, and the dis-
order average flow should exhibit a percolation threshold as
function of the local vacancy probability pα . We numerically
study the mean chiral flow per cycle as a function of the site
vacancy probability pα averaged over disorder realizations in
the perfect swapping case. We denote chiral flow as F and
mean chiral flow averaged over disorder realizations as 〈F 〉.

In Fig. 7(a), we set the linear system site to take values L =
25, 33, and 41. We observe that at low disorder, the mean
flow per cycle 〈F 〉 is close to unity. Increasing the probability
of site vacancy eventually causes the flow to drop sharply to
zero chiral flow, with a sharper percolation threshold expected
as we increase L.

The disorder averaged 〈F 〉 at different linear lattice sizes
intersect around pc ≈ 0.26 in Fig. 7(a), roughly matching the
peak fluctuations (standard deviation) in the chiral flow across
disorder realization in Fig. 7(b). To understand the critical
properties of the flow near percolation threshold in the perfect
swapping case, we note that since F determines whether a
percolating cluster exists in a given disorder configuration,
having the values 1 (if percolating cluster exists) or 0 (if no
percolating cluster exists). When taken as an average over dif-
ferent disorder configurations, 〈F (pα, phop = 1)〉 then gives
the probability that a percolating cluster exists.

The percolation threshold pc we obtained matches with
the earlier result on 2D site percolation in Lieb lattice in an
earlier work [54], but there we should interpret the result by
mapping pα → 1 − p as we starts with a filled Lieb lattice and
adding in site vacancy when tuning up pα , while [54] starts
with empty Lieb lattice and gradually filling the lattice sites.

Given that disorder averaged 〈F 〉 gives the probability that
a concentration pα gives a percolating cluster, according to
the classic percolation theory [55], we then expect such quan-
tity to exhibit finite size ansatz of the form 〈F 〉 = f ((pα −
pc)L1/ν ) to describe the percolation threshold around pc ≈
0.26. We find that the critical exponent obtained is around
ν ≈ 1.35, which roughly coincide with the 2D site percolating

Lieb lattice result in [54]. The fluctuations of the mean chiral
flow across disorder realizations also peak around the percola-
tion threshold pc ∼ 0.26, and the size of peak increasing with
system length L as shown in the middle panel in Fig. 7.

B. Away from perfect swapping: crossover

Away from the perfect swapping case, the flow ceases to
be robust over a finite range of disorder and drops as soon as
we introduce site dilution, as shown in Figs. 8(a) and 8(b).
The sharp transition feature we have observed in the perfect
swapping case is therefore specific to the perfect swapping
case, where we have deterministic walks rather than random
walk for the case of finite hopping probability phop < 1, where
now both random walks and site percolation affect the chiral
flow rate in our study.

FIG. 8. (a) Mean flow per cycle for phop = 0.8 and (b) for phop =
0.95, averaged over 1000 disorder configurations. (c) Fluctuations
(standard deviation) of the mean flow per cycle for phop = 0.8 and
(d) for phop = 0.95 over across 1000 disorder realizations for various
system sizes L. Note that in contrast to the phop = 1 case, the fluctu-
ation decreases as a function of system sizes, signifying a crossover.
phop < 0.8 has similar qualitative features for the mean flow per cycle
curve as that of phop = 0.8 and a less pronounced fluctuation.
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FIG. 9. 2D plot of the mean chiral flow per cycle for site vacancy
for a 33 × 33 Lieb lattice, averaged over 1000 disorder realizations.
The horizontal axis represents hopping probability phop and the verti-
cal axis is the probability of vacancy in the lattice pα . The percolation
transition happens on the line phop = 1.

Another distinction with the perfect swapping case can
be seen from the fluctuations in the chiral flow rate across
disorder realizations as shown in Figs. 8(c) and 8(d). In con-
trast with the perfect swapping case (where fluctuation of the
flow increases with system size), the fluctuation of the flow
decreases as we increase the system size. The averaged flow
across disorder no longer exhibits sharp percolating threshold,
unlike the perfect swapping case.

The physical reason for the difference is that the flow is a
quantity that is affected by both the hopping probability and
site vacancy, and in the case of random walk phop < 1 both
factors affect the late time chiral flow per cycle, obscuring
contributions from site vacancy (geometric percolation) alone.
This is not an issue for perfect swapping case, where the only
factor affecting the flow is geometrical. Finally, we present a
contour plot of the mean chiral flow per cycle across disorder
realizations with two parameters of interest here in Fig. 9:
the hopping probability phop and the probability of blockade
disorder pα .

A comment is in order for stochastic random walks on
lattice with site vacancies. In Ref. [56], particle diffusion was
studied in the context of site percolation. When no percolating
cluster can be formed (in our convention, pα > pc), the mean
square spreading 〈r2〉 = const in late time dynamics for a
particle undergoing diffusive behavior. In another limit when
percolating cluster can always be formed (pα < pc), we have
normal diffusive behavior 〈r2〉 = Dt in late time. However,
interesting anomalous diffusive behavior occurs right at pα =
pc according to [55,56], where 〈r2〉 ∝ t2/3. While we have not
investigated diffusive transport for the case of site vacancy
disorder, this will constitute an interesting point to investigate.

V. LATTICE DISTORTION AND ONSITE
POTENTIAL DISORDER

We next investigate two additional models of disorder.
Namely, we consider the case where the hopping parameter

strength between sites is disordered and the case where a
random on-site potential is applied to each site [represented in
Figs. 1(c) and 1(b) respectively with explicit details for each
model below]. We will again restrict ourselves to the Zeno
limit, leaving results on the effects of disorder away from the
Zeno limit to Sec. VI.

The first model we consider is the application of the mea-
surement protocol to a Lieb lattice with the random hopping
Hamiltonian

H = −
∑
〈rr′〉

trr′a†
rar′ , (18)

where trr′ is now a random variable drawn from the uni-
form random distribution [−δt + 1, δt + 1], i.e., we set the
mean of 〈trr′ 〉 = 1 with disorder strength δt , which we allow
to be at max |δt | � 1. Hopping disorder is associated with
random lattice distortion, with distances between lattice sites
randomly lengthened or shortened, leading to an alteration in
the hopping integral thop between sites.

In the Zeno limit, we calculate the transition matrix Ri

which characterizes the evolution for the ith step of the
measurement protocol with the random hopping disorder, re-
placing Eq. (5) with

Ri = ⊕〈r,r′〉∈Ai

(
1 − phop,rr′ phop,rr′

phop,rr′ 1 − phop,rr′

)
⊕other sites I

(19)

and the hopping probability depends on trr′ via

phop,rr′ = sin2

(
trr′T

8

)
.

In other words, the random hopping Hamiltonian translates to
a periodic random walk where different links have different
hopping probabilities.

The second disorder model we study in this section is
a random on-site potential. We note that it was shown in
Ref. [5] that this variety of disorder, when added to the Flo-
quet model of Rudner et al. [1], may prevent bulk diffusion
(due to Anderson localization) while still preserving protected
edge transport. Such a system is referred to as an anomalous
Floquet-Anderson Insulator.

We note that, in the measurement-induced model, the diffu-
sive behavior in the bulk is expected even when a disordered
potential is present. This occurs even if the disorder is suf-
ficient to result in Anderson localization in the absence of
measurements. Indeed, Anderson localization is a wave ef-
fect that emerges due to interference within a single particle
wave function as it moves through a random potential. The
projective measurements rapidly collapse the wave function to
single sites within the lattice, thus no interference is possible
ruining Anderson localization (as long as the distance be-
tween measured sites is smaller than the expected localization
length). We note, however, that Anderson localization physics
may still play a role in the limit where the measurements are
temporally and spatially sparse enough [45].

In this section, we analyze in detail the effect of the disor-
der on the diffusion constant as well as its effect on the chiral
edge flow. We also present a mean-field type argument which
approximately captures these effects.
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FIG. 10. (a) The mean Flow per cycle for the case of random
hopping strength δt and (b) The mean Flow per cycle for the case of
random potential δW . Here the line represents numerical simulation
taken on a 33 × 33 Lieb lattice averaged over 1000 disorder realiza-
tion, and is compared to the mean field result (dot) outlined in the
main text.

The Hamiltonian for the case with random on-site potential
takes the form

H = −thop

∑
〈rr′〉

a†
rar′ +

∑
r

Wra†
rar, (20)

where Wr is sampled from the random uniform distribution
Wr ∈ [−δW, δW ]. We set thop = 1 and T = 4π in our nu-
merical results below, while we keep the variable thop and
T in the our expression of the random stochastic transition
matrix below [Eq. (21)]. The random stochastic transfer ma-
trix describing two neighboring unmeasured sites r and r′ is
(surrounded by measured sites and in the Zeno limit) takes the
form with Ri from Eq. (19) with phop,rr′ taking the form below
instead (for derivation see Appendix C)

phop,rr′ =
2t2

hop

(
1 − cos

(
T
8

√
4t2

hop + (Wr − Wr′ )2
))

4t2
hop + (Wr − Wr′ )2

. (21)

Let us unpack Eq. (21). For low disorder, the typical chemical
potential difference between adjacent lattice sites is small
and the model is close to the mean hopping probability
phop determined by T . As disorder strength increases, the
denominator grows while the numerator stays bounded by
the cosine function, leading to the hopping probability to
zero (thereby freezing the dynamics) due to huge potential
difference.

Let us interpret the numerical results on the mean chiral
flow per cycle and diffusion constant for the case of random
on-site potential as shown in Figs. 10(b) and 11, respectively.
In the intermediate disorder strength, we have an interesting
situation where chirality is partially suppressed but diffusion

FIG. 11. The mean diffusion constant as a function of the
strength of disorder potential for system with random on-site poten-
tial averaged over 1000 disorder realizations in the Zeno limit. Here
T = 4π corresponds the perfect swapping case in the clean limit
without any diffusion. The mean diffusion constant from the crude
mean field treatment agrees with the numerical simulations for weak
disorder.

transport proliferates as shown in Figs. 10 and 11, respec-
tively. This can be understood in that in the intermediate
disorder strength we have a random bond model where many
links takes intermediate hopping probability 0 < phop,rr′ < 1.
In the intermediate disorder case with random walk, diffusion
is more pronounced than in the case close to perfect swapping
(with deterministic walk) or freezing (with phop ≈ 0). In the
strong disorder case, we again have strong localization in
both the measurement induced chiral transport and diffusive
transport.

In the limit of weak disorder, we can estimate the flow
by computing the spatial average of phop,rr′ at different links
and using the resulting spatially averaged p̄hop as the effective
hopping probability in Eq. (12) to compute the flow trans-
port in a translationally invariant system to get the effective
flow. In this sense, we call this approach the “mean-field”
approach, where we replace a disordered model with in-
homogeneous hopping probability phop,rr′ at different links
with homogeneous p̄hop over all links, and treat it as if it
has translational invariance. The inhomogeneity in the hop-
ping probability at different links in a disordered model can
be caused by random hopping strength or random on-site
potential.

For the case of random hopping, the effective hopping p̄hop

is given by averaging

p̄hop(δt, thop) =
∫ thop+δt

thop−δt
dtrr′ sin

(
trr′T

8

)
. (22)

We compute F using the translational invariant formula
Eq. (12) using p̄hop for various δt and compare with direct
numerical simulations in Fig. 10(a). As expected, the agree-
ment goes well for small and intermediate δt ∼ 0.3 relative to
thop = 1 before deviation occurs for larger δt .

In the presence of potential disorder, the average hopping
probability as function of disorder strength δW and hopping
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FIG. 12. Comparison between flow per cycle for the case of (a) site vacancy, (b) random hopping strength, and (c) disordered potential.
The comparisons are made across different measurement frequencies against the Zeno limit case and in all cases the lattice size is 33 × 33 and
averaged across 1000 disorder realizations.

thop is

p̄hop(δW, thop) = 1

4δW 2

∫ δW

−δW

∫ δW

−δW
dWrdWr′

×
2t2

hop

(
1 − cos

(
T
8

√
4t2

hop + (Wr − Wr′ )2
))

4t2
hop + (Wr − Wr′ )2

.

(23)

In Fig. 10(b), we show the effective ’mean-field’ result vs
numerical simulations of the disordered system, and similarly
find good agreement at weak disorder. Note that both numer-
ically and mean field approximation show that large disorder
leads to an effective suppression of flow.

We also performed the mean-field approach to evaluate the
diffusion constant for the case of random on-site potential in
Fig. 11. In this case, the diffusion constant for the mean-field
approach agrees with numerical simulation for weak disorder,
but is not as tight for intermediate disorder compared to its use
in for estimating the flow, Fig. 10. It is interesting to note that
the maximal diffusion coefficient coincides with the region
where the drop in chiral flow as function of disorder strength
is the steepest.

We emphasize that the actual flow depends in a compli-
cated nonlinear way on the particular disorder realization,
therefore we can only expect the above approach to work
in the weak disorder limit, where fluctuations in phop,rr′ are
small.

In the next section, we turn to consider all variety of disor-
ders considered in this paper away from the Zeno limit in the
next section.

VI. NUMERICAL RESULTS AWAY FROM ZENO LIMIT

We now investigate the effect of relaxing the Zeno limit
assumption on our measurement protocol in the chiral flow
transport in various disordered systems we previously simu-
lated. In Fig. 12, we study the cases of site vacancy, random
hopping strength and random on-site potential against finite
measurement frequencies of 16, 32, 64, and 128 measure-
ments per measurement step (8 measurement steps make up
a measurement cycle in our protocol).

Intuitively, the overall effect of reducing measurement fre-
quency will tend to reduce the amount of chiral flow transport

in our systems, as shown in Fig. 12. In Fig. 12(a), we study
site vacancy disorder where we set T = 4π , which in the Zeno
limit corresponds to perfect swapping. The robustness of the
chiral flow to low disorder in the Zeno limit disappears as
soon as we tune the measurement frequency away from the
Zeno limit and the chiral flow starts decreasing as soon as we
introduce disorder. The same feature of the lack of robustness
against (global) minute disorder are also seen with the random
hopping strength in Fig. 12(b) and random on-site potential in
Fig. 12(c).

Nonetheless, we would like to note the interesting case of
random on-site potential in Fig. 12(c). Near the clean limit, we
expect that lowering the measurement frequency will lower
the chiral flow. Meanwhile, strong disorder limit suppresses
both diffusive and chiral transport in our half-filled system.
In a finite window of intermediate on-site disorder strength,
however, decreasing the measurement frequency actually en-
hances the chiral flow. However, whether this effect is an
artifact of finite size/time effect, or a genuine nontrivial effect
arising from the interplay between chiral flow and diffusive
spreading, is currently unknown and this is a possible avenue
for future work.

Finally, we turn our attention to diffusive dynamics, spe-
cializing in the case of diffusion constant of the measurement-
induced chiral system under random on-site potential away
from the Zeno limit. The diffusion constant generally in-
creases as the measurement frequency is decreased away from
the Zeno limit, which aligns with the intuition that away from
the Zeno limit particle dynamics in our measurement protocol
becomes more diffusive. The result is presented in Fig. 13,
where we fix T = 4π for all measurement frequencies.

VII. DISCUSSIONS AND OUTLOOK

In this work, we presented a systematic investigation on the
diffusive dynamics and the effect of disorder on measurement-
induced chirality exhibited by free fermions under various
disorder types. In particular, there is a putative percolation
transitionlike behavior exhibited by the mean chiral flow of
the particles in site blockade disorder in the disorder limit.
It is also noteworthy that our measurement protocol in gen-
eral is reliably robust to the introduction to global disorder,
with mean chiral flow rate decreasing significantly only when
disorder strengths are significant. Finally, we also provided
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FIG. 13. Diffusion constant for various measurement frequen-
cies (and the previous Zeno limit result in Fig. 11) as a function of
disorder potential strength δW , simulated with T = 4π over 1000
disorder realizations.

various analytical mean field picture to describe the random
hopping and random on-site potential cases and the agreement
holds up to significant disorder.

It is an interesting question whether the behavior we find
persists if the disorder were time dependent. In standard
quantum systems, a time-dependent disorder is fundamentally
different from a quenched disorder (e.g., Anderson local-
ization is absent in the dynamic case [57]). Because of the
time-dependent protocol used for measurement-induced chi-
rality, we speculate that dynamic disorder should result, in the
same behavior as the quenched disorder we consider above, at
least in the Zeno limit. However, as the rate of measurement
drops, corrections due to coherent behavior and localization
phenomena may start appearing at intermediate times. The
investigation of time dependent random potentials in the low
measurement frequency limit would be an interesting direc-
tion for additional work.

Several comments are in order regarding the relation of
our work to recent relevant literature. This work analyzed the
average transport and dynamics of densities over all possible
measurement outcomes and averaged over different disorder
realizations. The recent work by Pöpperl et al. [45] studies
particular quantum trajectories (measurement outcomes) of
the particle density profile using wave-functional approach
(while we used density matrices instead) with different inter-
esting averages for a 1D fermion on an Anderson localized
chain. Reference [42] also studied free fermions on 1D An-
derson chain but has focused primarily on entanglement
properties.

We now turn to discuss open problems and possible avenue
for future work in the general direction of measurement-
induced chirality. First, it would be interesting to define an
effective “cyclotron frequency” ωeff ∼ 1/T which is propor-
tional to an effective magnetic field Beff for this kind of
system. This is inspired by analogy of our measurement-
induced chiral flow to the anomalous Floquet topological

insulator proposed in Ref. [1] and would constitute an inter-
esting subproblem to develop the idea further.

Various interesting investigations can also be further ex-
plored on the diffusive dynamics in for monitored fermions
exhibiting measurement-induced chirality. It will be interest-
ing to investigate to see if statements can be made about
how the diffusion coefficient in the diffusion dynamics from
an occupied region to the empty in our setup can be re-
lated to Fick’s law. Another interesting thought to exploration
is the question of describing an effective electrical resis-
tance for our system given the diffusion constants for our
system.

Finally, one could also extend the question of
measurement-induced transports to measurement-induced
delocalization transitions [45] and other interesting quantum
walk behaviours [58,59] caused by different types of
measurements. The direction of using measurement to
engineer interesting transport and dynamics is a nascent and
new area of research that could potentially lead to more
interesting discoveries.
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APPENDIX A: DERIVATION FOR THE ANALYTICAL
EXPRESSION FOR THE DIFFUSION CONSTANT

In this Appendix, we derive the expression Eq. (17) from
the definition Eq. (16) using a translationally invariant setup in
Fig. 14 and working in momentum space. The setup is shown
in Fig. 14.

We define a set of consistent Fourier transformation by
using the following conventions

Rcyc(r, μ; r′, ν) =
∫

d2k

(2π )2
RB(k, μ, ν)eik(r−r′ ),

RB(k, μ, ν) =
∑

(r−r′ )

e−ik(r−r′ )Rcyc(r, μ; r′, ν) (A1)

where V = LxLy. Here, we would like to make two remarks
about our convention. (1) The matrix Rcyc(r, μ; r′, ν) is only
dependent on the difference r − r′, by making use of the trans-
lational invariance, hence Eq. (A1). (2) We count distance a
little differently than how one would normally count distance
for setup with unit cell decomposition. Normally, one only
keeps track of the distance between different unit cell in the
expression (r − r′) in Eq. (A1). However, as our numerical
calculation keeps track of distance between lattice sites rather
than unit cells, we will do likewise for our k-space calculation
for consistency.
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For example, the k-space R5(k, θ ) and R4(k, θ ) are 6 × 6
matrices of the following form respectively:

R5(k, θ ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − p 0 0 0 0 pe−ikx

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

peikx 0 0 0 0 1 − p

⎞
⎟⎟⎟⎟⎟⎟⎠

,

R4(k, θ ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − p peiky eiθ 0 0 0 0
pe−iky e−iθ 1 − p 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and we can construct RB(k, θ ) = R8R7R6R5R4R3R2R1 based
on this construct of the k-space stochastic transition matrices
by keeping track of the factors e−ikx whenever the particle
hops to the right and e−iky e−iθ whenever the particle hops
upward, and vice versa for the left and downward hopping
elements, and θ is the counting field keeping track of the
vertical flow alone in our setup.

Starting from Eq. (16), which we reproduce here for con-
venience,

rmean(t = 8N ) ≡
∑

r rGrr(t = 8N )∑
r Grr(t = 8N )

,

〈�r2(t = 8N )〉 ≡
∑

r(r − rmean(t = 8N ))2Grr(t = 8N )∑
r Grr(t = 8N )

,

D = lim
N→∞

〈�r2(t = 8N )〉 − 〈�r2(t = 0)〉
8N

.

(A2)

FIG. 14. The Lieb lattice is divided into six lattice sites per unit
cell, and the set of unmeasured sites in each step is shown as Ai. Here,
we note that we count the distance between neighboring lattice sites
with lattice constant a (conveniently set to 1) rather than counting
that as the inter-unit-cell distance in typical systems for consistency
with numerical simulation when computing the diffusion constant D.

For the term
∑

r(r − rmean)2Grr(t = 8N ) term, we simplify
to get ∑

r

(r − rmean)2Grr(t = 8N )

=
∑

r

r2Grr(t = 8N ) − r2
mean(t = 8N ), (A3)

We Fourier transform the real space Gr′r′ (t = 8N ) ≡
(RN

cyc)r′r |gr(t = 0)〉 according to Eq. (A1) in the definition
〈�r2〉. In our current setup, we start with a single particle with
unit density placed on the origin so that 〈�r2(t = 0)〉 = 0,
and since there is no injection and extraction, particle number
is conserved and we have

∑
r Grr = 1 at all times. Focusing

on the
∑

r r2(RN
cyc)rr′ |gr′ (t = 0)〉 term, we have

∑
r,μ

r2(RN
cyc

)
(r,μ),(r′,ν) |gr′,ν (t = 0)〉 =

∑
r,μ

r2(RN
cyc

)
(r,μ),(0,1) =

∑
r,μ

∫
d2k

(2π )2
r2eikr(RN

B (k)
)
μ,1

=
∑
r,μ

∫
d2k

(2π )2

( − ∇2
keikr)(RN

B (k)
)
μ,1 =

∑
r,μ

∫
d2k

(2π )2
eikr( − ∇2

kRN
B (k)

)
μ,1

=
∑

μ

∫
d2kδ2(k)

( − ∇2
kRN

B (k)
)
μ,1 =

6∑
μ=1

[ − ∇2
kRN

B (k)|k=0
]
μ,1. (A4)

In the first line, we make use of the fact that |gr′,ν (t = 0)〉 = δr′,0δν,1. In the second line, we use the fact that r2eikr = −∇2
keikr

and we integrate by part. From the second to the third line, we summed over r with
∑

r e−ikr = (2π )2δ2(k) and finally we
integrate with the delta function to arrive at our final expression.
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For the r2
mean term, we perform similar computation as the one above to get

r2
mean =

⎡
⎣∑

r,μ

r
(
RN

cyc

)
(r,μ),(0,1)

⎤
⎦ ·

⎡
⎣∑

r′,μ′
r
(
RN

cyc

)
(r′,μ′ ),(0,1)

⎤
⎦

=
⎡
⎣ 6∑

μ=1

[ − i∇kRN
B (k)|k=0

]
μ,1

⎤
⎦ ·

⎡
⎣ 6∑

μ′=1

[ − i∇k′RN
B (k′)|k′=0

]
μ′,1

⎤
⎦

= −
⎡
⎣ 6∑

μ=1

[
∂kx R

N
B (k)|k=0

]
μ,1

⎤
⎦

2

−
⎡
⎣ 6∑

μ=1

[
∂ky R

N
B (k)|k=0

]
μ,1

⎤
⎦

2

. (A5)

Collecting both terms, Eqs. (A4) and (A5), we get Eq. (17).

APPENDIX B: EXTRACTION OF THE LATE TIME
DYNAMICS OF THE MEAN FLOW PER CYCLE ON A

FINITE SIZE LATTICE

We comment on the approach we take to extract the late
time chiral mean flow per cycle in a finite size system. Given
the geometry shown in Fig. 15, there will be both chiral
transport and diffusive transport in our measurement protocol
away from the perfect swapping case or away from the Zeno
limit. In an infinitely large half-filled system, both chiral and
diffusive transport will continue forever without significant
boundary effect from the lattice. Nonetheless, in a finite size
system, the late time flow of our measurement protocol can
be altered after significant amount of particle diffuses to the
boundary of the Lieb lattice rather than transported solely via
chiral motion (see Fig. 15).

FIG. 15. In our measurement protocol, the net chiral flow is
measured by the number of particles transported along the direction
of the black arrow. The diffusive transport takes place along the
transverse direction (the direction of the grey arrow). We constantly
inject particle on the left edge of the lattice and extract particle on the
right edge. We keep track of the particle density at the top half edge
of the lattice (circled sites) prior to extraction to truncate and obtain
the late time chiral flow per cycle in the vicinity of the time steps.

To account for this effect, we therefore extract the chiral
flow rate of our lattice system by averaging about five cy-
cles before the cumulative density of particles at the upper
right half edge (see Fig. 15) becomes significantly populated
at some cutoff total density ρcutoff ∼ 0.1. Here we track the
cumulative sum of density of particles that has ever arrived
at these sites as we immediately extract these particles after
each protocol step. We then extract a tcutoff that happens when
ρcutoff reaches 0.1 and we averaged five measurement cycles
around tcutoff for our late time dynamics.

In the main text, except in the particular case of site va-
cancy disorder in the perfect swapping Zeno limit, where the
protected chiral edge flow dynamics is deterministic (phop =
1) and not random (thereby diffusive dynamics is absent),
we generally apply this approach for the extraction of the
late time chiral flow dynamics. The diffusive behavior is
present in all other disorder cases (both in and out of Zeno
limit).

APPENDIX C: DERIVATION OF THE STOCHASTIC
TRANSITION MATRIX FOR THE RANDOM ONSITE

POTENTIAL DISORDER

We outline the derivation of Eq. (21) in this Appendix.
We start off with the matrix form of the Hamiltonian and
focusing on 2 unmeasured sites r and r′ in the Zeno limit,
where there is no other hopping elements coming into sites r
and r′

HZeno =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
...

...

0 0
0 . . . 0 Wr −thop 0 . . . 0
0 . . . 0 −thop Wr′ 0 . . . 0

0 0
...

...

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(C1)

Here, we note that the Zeno limit measurement effectively
decoupled sites r and r′ from the dynamics of the rest of the
Hamiltonian. The time evolution unitary will retain the same
decoupled form so for convenience, we only retain a 2 × 2
matrix for the rest of the derivation.
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The resulting unitary matrix UZeno = exp(−iHZenot ) acting on the two sites when the Hamiltonian HZeno is allowed to evolve
for time t = T/8 now takes the form (calculated using MATHEMATICA)

UZeno =
(

U11 U12

U21 U22

)
,

U11 = exp

(
− i

T

8

(Wr + Wr′ )

2

)⎛
⎜⎝cos

(
1

2

T

8

√
4t2

hop + (Wr − Wr′ )2

)
−

i sin
(

1
2

T
8

√
4t2

hop + (Wr − Wr′ )2
)
(Wr − Wr′ )√

4t2
hop + (Wr − Wr′ )2

⎞
⎟⎠,

U22 = exp

(
− i

T

8

(Wr + Wr′ )

2

)⎛
⎜⎝cos

(
1

2

T

8

√
4t2

hop + (Wr − Wr′ )2

)
+

i sin
(

1
2

T
8

√
4t2

hop + (Wr − Wr′ )2
)
(Wr − Wr′ )√

4t2
hop + (Wr − Wr′ )2

⎞
⎟⎠,

U12 = U21 =
2i exp

( − i T
8

(Wr+Wr′ )
2

)
sin

(
1
2

T
8

√
4t2

hop + (Wr − Wr′ )2
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√
4t2

hop + (Wr − Wr′ )2
. (C2)

For an initial distribution G = diag(g1, g2), one then applies G → UGU † and a subsequent measurement to delete the
resulting off-diagonal components in G. The resulting form of G after the sequence of modified Zeno evolution and subsequent
measurement takes the form(

g1 0
0 g2

)
→

(
g′

1 0
0 g′

2

)
,

g′
1 =

g1
(
2t2

hop

(
1 + cos

(
T
8

√
4t2

hop + (Wr − Wr′ )2
)) + (Wr − Wr′ )2

) + g2
(
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hop
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8

√
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,
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g2
(
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hop

(
1 + cos

(
T
8

√
4t2

hop + (Wr − Wr′ )2
)) + (Wr − Wr′ )2) + g1

(
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hop

(
1 − cos( T

8

√
4t2

hop + (Wr − Wr′ )2
)))

4t2
hop + (Wr − Wr′ )2

.

(C3)

From these, one can readily extract the elements of the stochastic transfer matrices to take the form

Ri = ⊕〈r,r′〉∈Ai

(
1 − phop,rr′ phop,rr′

phop,rr′ 1 − phop,rr′

)
⊕other sites I,

phop,rr′ =
2t2

hop

(
1 − cos

(
T
8

√
4t2

hop + (Wr − Wr′ )2
))

4t2
hop + (Wr − Wr′ )2

, (C4)

which is Eq. (21) in the main text.
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